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Abstract

We prove that weak solutions of the quasilinear equation

u_{t}-div\mathscr{A}(t, x, u, u_{X})=\mathscr{B}(t, x, u, u_{x})

are at almost every point Lipschitz continuous in the space directions and
H\"older continuous with exponent 1/2 in the time direction. This allows
us to conclude that those weak solutions for which u_{t}\in L_{loc}^{\infty,1} are totally
differentiate almost everywhere. In the course of establishing these two
theorems we generalize a result of Yu. G. Reshetnyak concerning the so
-called W^{m.p_{-}}differentiability of Sobolev functions

1. Introduction

In this paper, we study the pointwise differentiability (in the classical
sense) of weak solutions of a class of quasilinear partial differential equa-
tions of parabolic type.

Let X=(t, x_{1}, \ldots, x_{n}) , Y=(s, y_{1}, \ldots, y_{n}) , Z=(r, z_{1}, \ldots, z_{n}) denote points
in (n+1)-dimensional Euclidean space R^{n+1} Let \Omega be a bounded open
domain in R^{n} and G=(0, T)\cross\Omega . For X\in G , we consider the second
order quasilinear equation

u_{t}-div\mathscr{A}(t, x, u, u_{x})=\mathscr{B}(t, x, u, u_{x}) , (1)

where \mathscr{A}=(\mathscr{A}_{1}, \ldots, \mathscr{A}_{n}) is a R^{n}-valued function of (t, x, u, u_{x})\in G\cross R\cross

R^{n}-\mathscr{B} is a real-valued function of the same variables, u_{x}=( \frac{\partial u}{\partial x_{1}} , \ldots , \frac{\partial u}{\partial x_{n}})

denotes the spatial gradient of the function u , and div \mathscr{A} stands for the
divergence of the vector \mathscr{A}(t, x, u(t, x), u_{x}(t, x)) with respect to the space
variables x_{1} , \ldots , x_{n} . Moreover, we assume that \mathscr{A}(X, u(X) , \phi(X)) and
\mathscr{B}(X, u(X) , \phi(X)) are measurable for every choice of measurable func-
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tions u and \emptyset , and fulfill the following growth conditions:
|\mathscr{A}(t, x, u,\phi)| \leq a|\phi|+b_{1}|u|+b_{2} ,
|\mathscr{B}(t, x, u,\phi)| \leq b_{3}|\phi|+b_{4}|u|+b_{5} , (2)
\emptyset\cdot \mathscr{A}(t, x, u, \phi) \geq a^{-1}|\phi|^{2}-b_{6}^{2}u^{2}-b_{7}^{2} ,

where a is a positive constant, while the coefficients b_{1} , b_{2} , \ldots
b_{7} are non

-negative functions of (t, x) , each contained in some class L^{p,q}(G) . The
positive reals p, q , which may possibly be different for different
coefficients, are subject to the relations:

p>n+2 and \frac{n}{p}+\frac{2}{q}\leq 1-\theta for b_{1} , b_{2} , b_{3} , b_{6} , b_{7} , (3)

p> \frac{n+2}{2} and \frac{n}{p}+\frac{2}{q}\leq 2-\theta for b_{4} , b_{5} (4)

for some \theta>0 . We recall that a measurable function w=w(t, x) is said
to be of class L^{p,q}(G) if

||w||_{L^{pq}(G)}^{q} := \int_{0}^{T}(\int_{\Omega}|w(t, x)|^{p}dx)^{q/p}dt<+\infty ,

with obvious modifications when p or q is equal to \infty .
Let W^{m,p}(G) denote the Sobolev space of functions integrable in the

p-th power with distributional derivatives up to order m in L^{p}(G) . Then
u\in W^{1,2}(G) is called a weak solution of (1) if and only if the integral
identity

\iint_{G}[\varphi u_{t}+\varphi_{x}\cdot \mathscr{A}(t, x, u, u_{x})-\varphi^{1}\mathscr{B}(t, x, u, u_{x})]dtdx=0 (5)

holds for each infinitely differentiate function \varphi=\varphi(t, x) which, for every
fixed t , has a compact support as a function of x_{1} , \ldots , x_{n} and vanishes on
\Gamma=([0, T]\cross\partial\Omega)\cup(\{0\}\cross\Omega) , the parabolic boundary of the space-time cylin-
der G .

Using refined iterational techniques introduced originally by Moser
[Mol, 2, 3] Aronson and Serrin [AS] proved that weak solutions of (1)
are locally H\"older continuous. Interior H\"older continuity has, of course,
been proved with use of various methods for different classes of linear and
nonlinear parabolic equations with measurable coefficients by a large num-
ber of other authors, like Moser [Mo 3], Nash [N], Ivanov [I], Trudinger
[T], and recently DiBenedetto [DiB] , just to mention a few. However,
the value of H\"older exponent obtained by most these authors is usually
very close to zero, so that the information about the regularity of solu-
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tions provided by these theorems is certainly not of geometric character –
the solutions can (at least a priori) behave rather wildly.

For elliptic equations with measurable coefficients, apart from the fun-
damental de Giorgi type theorems ascertaining H\"older continuity of weak
solutions, a number of results are known about almost everywhere
differentiability of weak solutions, giving additional geometric information
about the regularity of such solutions. One example of such a result is
provided by a theorem of Mori [M] stating the a.e . differentiability of
quasiconformal mappings (in fact, the same theorem has also been proved
by Bojarski in his important paper [Bol] even without the assumption of
bijectivity)–the connection with elliptic equations is via the Beltrami
equation f_{\overline{z}}=\mu(z)f_{z} . Other theorems of this type are due to Bojarski
[Bo 2] in the case of the linear equation div(a(x)u_{x})=0 , and to Reshetnyak
[R2] in the more general case of the quasilinear equation div^{\mathfrak{l}}\mathscr{A}(x, u, u_{x})=

\mathscr{B}(x, u, u_{x}) (a concise proof of the second result may be found in [HS]).

In this paper, we prove two theorems concerning the weak solutions
of (1). First of them, stated below as Theorem 1, roughly speaking
ascertains that all the weak solutions of (1) are, at almost every point of
G, Lipschitz continuous in the space directions and H\"older continuous
with exponent equal to 1/2 in the time direction. The second result,
stated below as Theorem 2, gives a sufficient (though at first glance
artificial) condition for the a.e . differentiability in the classical sence of
weak solutions of (1).

THEOREM 1. Let u\in W^{1,2}(G) be a weak solution of the equation (1).

Defifine the parabolic distance of points X, Y\in R^{n+1} by the formula
d_{p}(X, Y)= \max(|t-s|^{1/2}. \max_{1\leq i\leq n}|x_{i}-y_{i}|) . (6)

Then, for almost every point X=(t, x)\in G, there exist positive constants C

and \delta such that for any h\in(0, \delta)

\{Yd_{p}(X,Y)<h\}ess\max|u(X)-u(Y)|\leq C\cdot h. (7)

Moreover, the constant C depends only on the following parameters:

C=C(n, a, \theta, ||b_{1}||, ||b_{2}||, \ldots.||b_{7}||, u(X), u_{t}(X), u_{x}(X)) ,

where the norms ||b_{i}|| are taken in the respective L^{p,q} spaces.

THEOREM 2. Let u be a weak solution of (1) such that u_{t}\in L_{le)c}^{\infty.1}(G) .
Then u is totally differentia te almost everywhere in G with respect to
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Lebesgue measure.
Both these theorems have already been proved in [S] for weak solu-

tions of linear uniformly parabolic equation with bounded measurable
coefficients:

u_{t}- \sum_{k,l=1}^{n}\frac{\partial}{\partial x_{k}}(a_{kl}(t, x)\cdot\frac{\partial u}{\partial x_{l}})=\sum_{l=1}^{n}b_{l}(t, x)\cdot\frac{\partial u}{\partial x_{l}} .

However, to cover the present case, the argument used in [S] has to be
modified. The backbone of our reasoning is taken from [HS]: we derive
Theorem 1 from the local boundedness of weak solutions (so that it is
obtained before we even know that weak solutions are H\"older continuous).
The main argument is provided by Theorem 3 (see Section 2 for exact
formulation and proof) which generalizes a theorem of Reshetnyak [R1]
concerning the s0-called differentiability in the sense of W^{m,p} of Sobolev
functions. To get an idea of how Theorem 3 intervenes, note that the
class of differential equations (1) is invariant under the group of transfor-
mations

X=(t, x)–>P_{h}(t, x)+(r, z) , (8)

where P_{h} : R^{n+1} – R^{n+1} is the linear mapping given by

P_{h}X=P_{h}(t, x)=(h^{2}t, hx) . (9)

Therefore, the differentiability properties of solutions of (1) crucially rely
on the way and sense in which the function v_{h}(Y)=u(X+P_{h}Y) can be
approximated by the Taylor polynomials of u ,

T^{(m)}(V) \equiv T_{X,u}^{(m)}(V)=\sum_{0\leq|\alpha|\leq m}\frac{D^{a}u(X)}{\alpha!}\cdot V^{a} , (10)

with P_{h}Y substituted for V. Theorem 3 states that if u\in W^{m,p}(G) , then
for almost every X\in G and for h tending to zero, v_{h}(Y)-T_{X,u}^{(m)}(P_{h}Y)

(treated as a function of Y with Y running over some fixed cube centered
at 0) tends to zero in the W^{m,p_{-}}norm faster than |h|^{m} In Section 3, we
apply this result with m=1 , p=2 to establish Theorem 1, and finally we
derive Theorem 2 from Theorem 1.

In the following, we shall use the standard multiindex notation:

\alpha= (\alpha_{0}, \alpha_{1}, \cdots \alpha_{n})\in Z_{+}^{n+1} ,
|\alpha|=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n} ,

\alpha!=\alpha_{0} ! \alpha_{1} ! \ldots\alpha_{n} !

Moreover, we write D_{i} for the partial derivative with respect to x_{i} , i=
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1, ... n , and D_{0} for the partial derivative with respect to t , and let

D^{a}=(D_{0})^{a_{0}}(D_{1})^{a_{1}}\cdots(D_{n})^{a_{n}} .

The barred integral f_{A}f(x)d\mu(x) denotes the mean value of a measurable

function f on the set A , i.e. f_{A}f(x)d \mu(x)=(\mu(A))^{-1}\int_{A}f(x)d\mu(x) . By

R(X, h) we denote the rectangle with center at X and edges parallel to
the coordinate axes in R^{n+1} such that the edge parallel to t is of length 2h^{2}

and those parallel to x_{1} , \ldots , x_{n} are of length 2h, that is,

R(X, h)=\{Y\in R^{n+1} : d_{p}(Y. Y)<h\}

= \{(s, y):|t -s|<h^{2}, \max_{1\leq i\leq n}|x_{i}-y_{j}|<h\} .

Rectangles of this kind shall sometimes be referred to as parabolic. We
abbreviate R(0, h) simply as R(h) when 0 is the origin of R^{n+1} .

2. Parabolic Taylor approximations

In this section, we prove the following
THEOREM 3. Let u\in W^{m,p}(R^{n+1}) . Then, for almost every point X\in

R^{n+1} . the function
w_{h,X}(Y):=|h|^{-m}(u(X+P_{h}Y)-T_{X,\mathcal{U}}^{(m)}(P_{h}Y)) ( Y\in R(1)) (11)

tends to zero in the space W^{m,p}(R(1)) as harrow 0 .

REMARK. This theorem generalizes in a natural way the afore-
mentioned result of Reshetnyak [R1] (which reads almost exactly as the
statement above, the only relevant difference being the definition of the
transformation group: in [R1] P_{h}x=hx for x\in R^{n} ). The idea of our
proof resembles those of Reshetnyak [R1] and Ziemer [Z , Theorem 3. 4. 2],

but some of the details are considerably more delicate; this is mainly due

to the fact that in our case \frac{d^{2}}{dh^{2}}P_{h}X\neq 0 . In order to formulate his the0-

rem Reshetnyak has introduced the notion of differentiability in the sense
of W^{m,p} : this suggests that Theorem 3 could be perhaps referred to as the
theorem on parabolic Taylor approximations.

The proof will be split in two steps: at first, we prove a Taylor-like
formula for u(X+P_{h}Y) (differentiating u(X+P_{h}Y)m times with respect
to the parameter h) and next we use this formula to prove the theorem.
To clarify the reasoning, we divide it into several lemmas. We write B_{h}

= \frac{d}{dh}P_{h} , with the convention that (B_{h}X)_{i}=x_{i} for i=1 , \ldots , n and (B_{h}X)_{0}=
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2hx_{0} .

2. 1 Preliminary lemmas

LEMMA 1. Let u\in C^{\infty}(R^{n+1}) , fifix X=(t, x)=(x_{0}, x) , Y=(s, y)=(y_{0} ,
y) , and let F be a function of one real variable defifined by F(h)=u(X
+P_{h}Y) . Then

\frac{d^{l}}{dh^{l}}F(h)=\phi_{l}(h, X, Y, ) (12)

where

\phi_{l}(h, X, Y)=\sum_{k=0}^{[1/2]}a_{l,k}\sum_{|\alpha|=l-2k}j|\alpha|\dagger D^{a}(D_{0})^{k}u(X+P_{h}Y)\cdot(B_{h}Y)^{\alpha}\cdot(2y_{0})^{k}\alpha! . (13)

where (B_{h}Y)^{a}= \prod_{i=0}^{n}((B_{h}Y)_{i})^{a_{i}} , and the coefficients a_{l,k} futfifitt the recurrent

formulae:
a_{l+1,k}=a_{l,k}+(l-2k+2)a_{l,k-1} for k=1 , \ldots [(l+1)/2] ;

a_{l0}=1 for all l\in N ; (14)
a_{l,k}=0 for k>[l/2] ,

i.e. a_{l,k}=l!/((l-2k) ! (2k) ! !) , where (2k) ! !=2\cdot 4\cdot\ldots\cdot 2k .

PROOF. The proof will proceed by induction on l. Both (13) and
(14) obviously hold for l=1 . Let A(\mu) denote the set of all finite
sequences in \{0, 1, \ldots

n\} of length \mu ,

A(\mu)=\underline{\{0,1,}\ldots. n }
\cross\cdots\cross\{0,1\mu times’\ldots.n\}

.

For J=(j_{1}, \ldots, j_{\mu})\in A(\mu) , we write

D_{J}=D_{j_{1}}D_{j_{2}} . \ldots D_{j\mu}=\frac{\partial}{\partial x_{j_{1}}}\circ\frac{\partial}{\partial x_{j_{2}}}O\ldots\circ\frac{\partial}{\partial x_{j\mu}},

(B_{h}Y)_{J}= \prod_{\gamma=1}^{\mu}(B_{h}Y)_{j\gamma} .

(If \mu=0 , then we take for A(0) any singleton, and if J\in A(0) , we let D_{J}=

identity and (B_{h})_{J}=1.) Summing over ordered sequences, we can rewrite
the right hand side of (13) in the form

\sum_{k=0}^{[l/2]}a_{l,k}\sum_{J\in A(l-2k)}D_{J}(D_{0})^{k}u(X+P_{h}Y)\cdot (B_{h}Y)_{J}\cdot (2y_{0})^{k} .

Differentiating the above formula with respect to h , using the chain rule
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and the Leibniz formula, and keeping in mind that \frac{d}{dh}(B_{h}Y)_{i}\neq 0 if and

only if i=0 , we conclude

\phi_{l+1}(h, X, Y)=\frac{d}{dh}\phi_{l}(h, X, Y)=\Sigma_{1}+\Sigma_{2} ,

where

\Sigma_{1}=\sum_{k=0}^{[l/2]}a_{l,k}\sum_{J\in A(l-2k+1)}D_{J}(D_{0})^{k}u(X+P_{h}Y)\cdot(B_{h}Y)_{J}\cdot(2y_{0})^{k} .

\Sigma_{2}=\sum_{k=0}^{[l/2]}a_{l,k}(l-2k)
\sum_{-,J\in A(l2k-1)}D_{J}(D_{0})^{k+1}u(X+P_{h}Y)\cdot(B_{h}Y)_{J}\cdot

(2y_{0})^{k+1} .

Hence, in view of l-2k-1=(l+1)-2(k+1), we obtain (13) and the desired
ed relations between the coefficients a_{l,k} . The proof is complete.

Using the Taylor formula, we can state the following obvious lemma.

LEMMA 2. Let u\in C^{\infty}(R^{n+1}) . Then, with the notation of Lemma 1,

u(X+P_{h}Y)=u(X)+ \sum_{l=1}\phi_{l}(0, X, Y)\cdot\frac{h^{l}}{l!}m1+\int_{0}^{h}\phi_{m}(\lambda, X, Y)\frac{(h-\lambda)^{m-1}}{(m-1)!}d\lambda .

(15)

We shall need one more result concerning the parabolic rectangles.
Though the family \mathscr{B} of all parabolic rectangles R(X, h) is not regular
according to the classical definition, which one may find for instance in
Stein’s monograph [St], nevertheless it is possible to prove the following.

LEMMA 3. If 1\leq p<\infty , G is an open set in R^{n+1} and f\in L_{lOC}^{p}(G) ,

then for almost every X\in G ;

\lim_{harrow 0}f_{R(X,h)}|f(Y)-f(X)|^{p}dY=0 .

This fact can be obtained as a corollary to rather general theorems
concerning the covering properties of different families of measurable sub-
sets of Euclidean space (the key fact here is that, given any two parabolic
rectangles in R^{n+1} , one can always translate one of them into another; for
details see De Guzm\’an’s book [DeG]) . Related topics–but in a far more
general setting have been considered by Calder\’on and Torchinsky in
their paper [CT]. A simple straightforward proof of Lemma 3 can be
obtained as follows. Mimicking Banach’s argument, one first establishes
a covering lemma of Vitali type. Next one introduces the maximal func-
tion \mathscr{M}_{\mathscr{L}}(f) by setting
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\mathscr{M}\nearrow|(f)(X)=s_{h}u_{>}pf_{R(X,h)}|f(Y)|dY

With the help of the covering lemma it can be shown in a standard way
that \mathscr{M}_{\parallel}(f) is of weak type 1-1, whence the desired result follows easily
(the argument imitates the one used e.g. in [St], Chapter 1).

2. 2. Proof of Theorem 3

We begin by reordering the sum which defines the Taylor polynomial
T_{X,u}^{(m)}(P_{h}Y) with respect to the increasing powers of h . In what follows, \overline{\alpha}

denotes the multiindex with n integer coordinates \alpha_{1} , \ldots
\alpha_{n} , so that

\alpha=(\alpha_{0},0, \ldots, 0)+(0,\hat{\alpha}) ,

and \lceil r\rceil denotes the ceiling of the real number r , i.e., the smallest integer
greater or equal to r . Remembering also that Y=(s, y)=(y_{0}, y)=(y_{0} ,
y_{1} , \ldots , y_{n} ) and changing the summation order several times, we find that

T_{X,u}^{tm)}(P_{h}Y)= \sum_{0\leq|\alpha|\leq m}\frac{D^{a}u(X)}{\alpha!}\cdot(P_{h}Y)^{a}

= \sum_{0\leq|\alpha|\leq m}\frac{D^{\overline{\alpha}}(D_{0})^{\alpha 0}u(X)}{\overline{\alpha}!\alpha_{0}!}\cdot h^{|\overline{\alpha}|+2\alpha_{0}}\cdot Y^{a}

= \sum_{k=0}^{m}\sum_{a_{0}=0}^{k}\sum_{|\overline{\alpha}|=k-\alpha_{0}}\frac{D^{\overline{\alpha}}(D_{0})^{a_{0}}u(X)}{\overline{\alpha}!\alpha_{0}!}\cdot y^{\overline{a}}\cdot s^{ao}\cdot h^{k+ao}

= \sum_{k=0}^{m}\sum_{\mu=k}^{2k}(\sum_{|\overline{a}|=2k-\mu}\frac{D^{\overline{\alpha}}(D_{0})^{\mu-k}u(X)}{\hat{\alpha}!(\mu-k)!}\cdot y^{\overline{\alpha}}\cdot s^{\mu-k})\cdot h^{\mu}

= \sum_{\mu=0}^{2m}(\sum_{k=\lceil\mu/2\rceil|\overline{\alpha}|}^{\min(\mu,m)}\sum_{=2k-\mu}\frac{D^{\overline{a}}(D_{0})^{\mu-k}u(X)}{\hat{\alpha}!(\mu-k)!}\cdot y^{\overline{\alpha}}\cdot s^{\mu-k})\cdot h^{\mu}-

Write now the outer sum \Sigma_{\mu=0}^{2m}(\ldots)\cdot h^{\mu} in the form \Sigma_{\mu=0}^{m}(\ldots)\cdot h^{\mu}+\Sigma_{\mu=m+1}^{2m}

(
\ldots

) \cdot h^{\mu} and let R_{m}(h, X, Y):=\Sigma_{\mu=m+1}^{2m}(\ldots)\cdot h^{\mu} Then, changing the sum-
mation index inside the first sum from k to i=\mu-k leads almost immedi-
atelyl to

T_{X,u}^{(m\rangle}(P_{h}Y)= \sum_{\mu=0}^{m}\frac{\phi_{\mu}(0,X,Y)h^{\mu}}{\mu!}+R_{m}(h, X, Y) , (16)

where

R_{m}(h, X, Y)= \sum_{\mu=m+1}^{2m}h^{\mu}(\sum_{k=\lceil\mu/2\rceil|\overline{a}|}^{m}\sum_{=2k-\mu}\frac{D^{\hat{a}}(D_{0})^{\mu-k}u(X)}{\hat{\alpha}!(\mu-k)!}\cdot y^{\overline{\alpha}}\cdot s^{\mu-k}) . (17)

Using Lemma 2 and the identity

Observe that in order to determine \phi_{\mu}(0, X, Y) , it suffices to take the sum over those
multiindices \alpha for which \alpha_{0}=0- the remaining terms vanish for h=0.
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\frac{h^{m}}{m}=\int_{0}^{h}(h-\lambda)^{m-1}d\lambda ,

we see that for any u\in W^{m,p}(R^{n+1})\cap C^{\infty}(R^{n+1})

w_{h,X}( Y)=|h|^{-m}(u(X+P_{h}Y)-T_{X,u}^{(m)}(P_{h}Y))

= \int_{0}^{h}[\phi_{m}(\lambda, X, Y)-\phi_{m}(0, X, Y)]\frac{(h-\lambda)^{m-1}}{|h|^{m}(m-1)!}d\lambda-\frac{R_{m}(h,X,Y)}{|h|^{m}} .

(18)

2. 2. 1. Convergence of w_{h,X}(Y) in the L^{p}-norm

Assume for a moment that u\in W^{m,p}(R^{n+1})\cap C^{\infty}(R^{n+1}) . Let

\tilde{w}_{h,X}( Y)=\frac{|h|^{-m}}{(m-1)!}\int_{0}^{h}[\phi_{m}(\lambda, X, Y)-\phi_{m}(0, X, Y)](h-\lambda)^{m-1}d\lambda . (18)

According to the footnote on the page 8,

\phi_{m}(\lambda, X, Y)-\phi_{m}(0, X, Y)

= \sum_{k=0}^{[m/2]}a_{m,k}\sum_{\alpha_{0}=0}\frac{|\alpha|!}{\alpha!}(D^{a}(D_{0})^{k}u(X+P_{h}Y)-D^{a}(D_{0})^{k}u(X))Y^{a}|\alpha|=m-2k\cdot
(2y_{0})^{k}

+ \sum_{k=0}^{[m/2]}a_{m,k}\sum_{|a|=m-2k}j|\alpha|\dagger D^{a}(D_{0})^{k}u(X+P_{\lambda}Y)\alpha!\cdot Y^{a}\cdot (2y_{0})^{k}\cdot (2\lambda)^{a_{0}} .
ao>0

Hence, combining the equations (17) and (18) with Jensen’s inequality and
Fubini’s theorem, we obtain after simple calculations (involving the ele-
mentary estimate |\Sigma_{i=1}^{N}a_{i}|^{p}\leq N^{p-1}\Sigma_{i=1}^{N}|a_{i}|^{p} )

\int_{R(1)}|w_{h,X}(Y)|^{p}dY\leq 2^{p-1}(\int_{R(1)}\frac{|R_{m}(h,X,Y)|^{p}}{|h|^{pm}}dY+\int_{R(1)}|\tilde{w}_{h,X}(Y)|^{p}dY)

\leq C\sum_{|\beta|\leq m}\{f_{0}^{h}\int_{R(1)}|D^{\beta}u(X+P_{\lambda}Y)-D^{\beta}u(X)|^{p}dYd\lambda (20)

+ \int_{0}^{h}\int_{R(1)}|D^{\beta}u(X+P_{\lambda}Y)|^{p}dYd\lambda+|h\cdot D^{\beta}u(X)|^{p}\}

for h\in(0,1) . We now show that (20) is valid not only for smooth u but
also for any u\in W^{m,p}(R^{n+1}) ; to be more precise, if u\in W^{m,p}(R^{n+1}) , then,
for almost all X\in R^{n+1}\wedge(20) holds for all h\in(0,1) . To this end, let u_{\epsilon}=

u*\phi_{\epsilon} denote the regularizers of u , where \phi_{\epsilon} is the approximative identity
of the form

\phi_{\epsilon}(X):=\epsilon^{-\nu}\phi(P_{1/\epsilon}(X)) , 1’=n+2=trace(\frac{d}{dh}P_{h})|_{h=1} ,

and \emptyset is a positive function of class C_{0}^{\infty}(R(1)) with \int_{R^{n+1}}\phi dx=1 . The fol-
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lowing lemma lists a number of useful properties of u_{\epsilon} .

LEMMA 3. Let u\in W^{m,p}(R^{n+1}) . If u_{\epsilon} is defifined as above, then, for
all \beta with |\beta|\in[0, m] ,

OD^{\beta}u_{\epsilon}(X) -arrow D^{\beta}u(X) as \epsilon\downarrow 0 for almost all X\in R^{n-1} . in particular
for those X for which

\lim_{harrow 0}f_{R(X,h)}|D^{\beta}u(Y)-D^{\beta}u(X)|^{p}dY=0 , (21)

OD^{\beta}u_{\epsilon}arrow D^{\beta}u as \epsilon\downarrow 0 in L^{p}(R^{n+1}) .

Let E be the set of those X\in R^{n+1} for which the condition (21) holds
for all \beta with 0\leq|\beta|\leq m . Then |R^{n+1}\backslash E|=0 and, for every X\in E , there is
a constant M=M(X) such that

f_{R(X,8)}|D^{a}u(Y)|^{p}dY\leq M (22)

for all \alpha with 0\leq|\alpha|\leq m and all \delta>0 . If we set Z=X+P_{h}Y , then dZ=
h^{\nu}\cdot dY and Z\in R(X, h) if and only if Y\in R(1) . Therefore (20) leads
directly to

f_{R(X,h)} \frac{|u_{\epsilon}(Z)-T_{x,u_{\epsilon}}^{(m)}(Z-X)|^{p}}{|h|^{pm}}dZ

\leq C\sum_{0\leq|\beta|\leq m}(f_{0}^{h}f_{R(X.\lambda)}|D^{\beta}u_{\epsilon}(Z)-D^{\beta}u_{\epsilon}(X)|^{p}dZd\lambda (23)

+ \int_{0}^{h}f_{R(X,\lambda)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZd\lambda+|hD^{\beta}u_{\epsilon}(X)|^{p}) .

Consider now X\in E , fix h>0 , and let \epsilonarrow 0 . By Fatou’s lemma and
Lemma 4, the lower limit of the left-hand side of (23) is greater than or
equal to the left-hand side of (20). The desired result will follow from
Lemmas 3, 4, and the Dominated Convergence theorem of Legesgue once
we prove the following

Claim. There exists a positive constant K such that

f_{R(X,\lambda)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ\leq K (24)

for any \epsilon>0 , \lambda\in[0, h] and \beta with |\beta|\leq m .
We now proceed to establish (24). In view of Jensen’s inequality, for

a measurable A\subset R^{n+1} .
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\int_{A}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ=\int_{A}|\int_{R^{\eta+1}}\phi_{\epsilon}(Z-Y)D^{\beta}u(Y)dY|^{p}dZ

\leq\sup\phi\cdot(\epsilon^{-\nu})^{p}\int_{A}(\int_{R(Z,\epsilon)}|D^{\beta}u(Y)|dY)^{p}dZ

\leq 2^{(n+1)p}\sup\phi\cdot\epsilon^{-\nu}\int_{A}\int_{R(Z,\epsilon)}|D^{\beta}u(Y)|^{p}dYdZ .

Hence, for A=R(X, \lambda) ,

f_{R(X,\lambda)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ \leq C\epsilon^{-\nu}f_{R(X.\lambda)}\int_{R(Z,\epsilon)}|D^{\beta}u(Y)|^{p}dYdZ .

Case 1. If \lambda\leq 3\epsilon , then R(Z, \epsilon)\subset R(X, 4\epsilon) for Z\in R(X, \lambda) and by (22),

f_{R(X,\lambda)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ \leq c\epsilon^{-\nu}f_{R(X,\lambda)}\int_{R(X,4\epsilon)}|D^{\beta}u(Y)|^{p}dYdZ

=C \epsilon^{-\nu}\int_{R(X,4\epsilon)}|D^{\beta}u(Y)|^{p}dY

\leq constant .

Case 2. If \lambda>3\epsilon , then \lambda+\epsilon<\lambda+3\epsilon<2\lambda and

\int_{R(x,\lambda)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ=\int_{R(X,3\epsilon)}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ+\int_{3\epsilon<dp(Z,X)<\lambda}|D^{\beta}u_{\epsilon}(Z)|^{p}dZ

\leq C\epsilon^{-\nu}\int_{R(X,3\epsilon)}\int_{R(X,4\epsilon)}|D^{\beta}u(Y)|^{p}dYdZ

+C \epsilon^{-\nu}\int_{3\epsilon<d_{P}(Z,X)<\lambda}\int_{R(Z,\epsilon)}|D^{\beta}u(Y)|^{p}dYdZ

=I_{1}+I_{2} .

From (22) it is clear that I_{1} does not exceed C\lambda^{\nu} . To obtain a similar
estimate for I2 write Y=Z+W. whereupon

Y\in R(Z, \epsilon) if and only if W\in R(\epsilon)

and
2\epsilon<d_{p}(Z+W, X)<\lambda+\epsilon ,

and hence, by Fubini’s theorem,

I_{2} \leq C\epsilon^{-\nu}\int_{R(\epsilon)}\int_{2\epsilon<dp(Z+W,X)<\lambda+\epsilon}|D^{\beta}u(Z+W)|^{p}dZdW

\leq C\epsilon^{-\nu}\int_{R(\epsilon)}\int_{dp(Y,X)<2\lambda}|D^{\beta}u(Y)|^{p}dYdW

\leq constant\cdot\lambda^{\nu} .

Thus (24) is established. Consequently, we obtain (20) for u\in

W^{m,p}(R^{n+1}) and almost all2 X. Hence, by Lemma 3,

2The set to which X beings depends on u , of course !
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||w_{h,X}(\cdot)||_{L^{p}(R(1\rangle)} -arrow 0 as h\downarrow 0 , for a.e . X\in R^{n+1} . (25)

2. 2. 2. Convergence of D_{Y}^{\beta}w_{h,X}(Y) with |\beta|=m in the L^{p}-norm

Let \beta be a fixed multiindex with |\beta|=m . If u\in C^{\infty}(R^{n+1}) , then clearly
o if \beta_{0}=0 , then D_{Y}^{\beta}\phi_{m}(0, X, Y)=m ! D^{\beta}u(X) ,
o if \beta_{0}>0 , then D_{Y}^{\beta}\phi_{m}(0, X, Y)=0 ,

and

D \sqrt[\beta]{}\int_{0}^{h}\phi_{m}(\lambda, X, Y)\frac{(h-\lambda)^{m-1}}{(m-1)!}d\lambda)=D_{Y}^{\beta}(u(X+P_{h}Y))

=D^{\beta}u(X+P_{h}Y)\cdot h^{m+\beta_{0}} .

Hence, for the function \tilde{w}_{h,X}(Y) defined by (19) the following equality
holds

D_{Y}^{\beta}(\tilde{w}_{h,X}(Y))=\{

D^{\beta}u(X+P_{h}Y)-D^{\beta}u(X) if \beta_{0}=0 ,
(26)

h^{\beta_{0}}\cdot D^{\beta}u(X+P_{h}Y) if \beta_{0}>0 .

It is also clear that for small h

|D_{Y}^{\beta}( \frac{R_{m}(h,X,Y)}{|h|^{m}})|\leq C\cdot|hD^{\beta}u(X)| . (27)

Let \sigma=1-sgn\beta_{0} (i.e. \sigma=1 if \beta_{0}=0 and \sigma=0 if \beta_{0}>0 ). The formulae (26)
and (27) lead–as in the last section–to the estimate:

|h|^{-mp} \int_{R(1)}|D_{Y}^{\beta}(u_{\epsilon}(X+P_{h}Y)-T_{X,u_{\epsilon}}^{(m)}(P_{h}Y))|^{p}dY

\leq C( \int_{R(1)}|h|^{p\beta_{0}}|D^{\beta}u_{\epsilon}(X+P_{h}Y)-\sigma D^{\beta}u_{\epsilon}(X)|^{p}dY+|h\cdot D^{\beta}u_{\epsilon}(X)|^{p}) (28)

=C( f_{R(X,h)}|h|^{p\beta_{0}}|D^{\beta}u_{\epsilon}(Z)-\sigma D^{\beta}u_{\epsilon}(X)|^{p}dZ+|h\cdot D^{\beta}u_{\epsilon}(X)|^{p} ).
Passage to the limit \epsilonarrow 0 (which is legitimate according to the arguments
of Section 2. 2. 1) shows that, for any X in a set E of full measure in
R^{n+1}- the following inequality holds:

|h|^{-mp} \int_{R(1)}|D_{Y}^{\beta}(u(X+P_{h}Y)-T_{X,u}^{(m)}(P_{h}Y))|^{p}dY

\leq C( f_{R(X,h\rangle}|h|^{p\beta_{0}}|D^{\beta}u(Z)-\sigma D^{\beta}u(X)|^{p}dZ+|h\cdot D^{\beta}u(X)|^{p} ). (28)

Thanks to Lemma 3, the right-hand side of (29) tends to zero as h tends
to zero. Hence, for |\beta|=m ,
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||D_{Y}^{\beta}w_{h,X}(\cdot)||_{L^{p}(R(1))} -0 as h\downarrow 0 for a.e . X\in R^{n+1} . (30)

Since the norm in W^{m,p} given by

||u||_{1} := \sum_{|a|=m}||D^{a}u||_{L^{p}}+||u||_{L^{p}}

is equivalent to the standard one defined as

||u||= \sum_{0\leq|a|\leq m}||D^{a}u||_{L^{p}} ,

the theorem follows from (25) and (30).

REMARK. Theorem 3 holds true for functions in W^{m,p}(G) , where G is
an open subset of R^{n+1} . Indeed, let G= \bigcup_{i=1}^{\infty}\Omega_{i} , where the \Omega_{i} are open
sets such that -\Omega_{i}\subset\Omega_{i+1} for i=1,2 , \ldots and choose \varphi_{i}\in C_{0}^{\infty}(\Omega_{i+1}) so that \varphi_{i}

\equiv 1 on some open neighbourhood of \Omega_{i} . If u\in W^{m,p}(G) , then u\cdot\varphi_{i}\in

W^{m,p}(R^{n+1}) (we extend u\cdot\varphi_{i} to the whole of R^{n+1} by putting u\cdot\varphi_{i}\equiv 0 out-
side the support of \varphi_{i}). Applying Theorem 3, we see that

|h|^{-m}(u(X+P_{h}Y)-T_{X,u}^{(m)}(P_{h}Y))arrow 0 as h\downarrow 0 , in W^{m,p}(R(1))

for a . e . X\in\Omega_{i} . The desired conclusion follows upon noting that G=
\bigcup_{i=1}^{\infty}\Omega_{i} .

3. Proofs of Theorems 1 and 2

In this section, we establish the results alluded to in the Introduction
concerning the weak solutions of (1). With Theorem 3 at hand, their
proofs are quite easy. In the next section, we briefly indicate possible
generalizations of our theorems to other classes of equations (invariant

under the action of other multiplicative groups of linear mappings) and
ways of getting somewhat more precise information about the non
-differentiability set might be obtained.

3. 1. The case b_{i}\in L^{p}

For the sake of simplicity, we assume throughout this subsection that
p=q in (3) and (4), so that the coefficients b_{i} are in the suitable L^{p}

spaces. We will show in the next subsection how to cope with the general
case.

In the proof of Theorem 1, we shall need the following result concern-
ing the local boundedness of weak solutions.

THEOREM 4. (Aronson & Serrin). If u\in W^{1,2}(R(2)) is a solution to
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(1), then

||u||_{L^{\infty}(R(1))}\leq C\cdot(||u||_{L^{2}(R(2))}+K) , (31)
where

C=C(n, a, \theta,||b_{1}||, ||b_{3}||, ||b_{4}||, ||b_{6}||) ,

K=||b_{2}||+||b_{5}||+||b_{7}|| .

Moreover, C is a non-decreasing function of the last four arguments.

PROOF OF THEOREM 1. Our first goal is to show that the parabolic
difference quotient

v_{h}(Y) := \frac{u(X+P_{h}Y)-u(X)}{h}

satisfies a parabolic equation resembling (1), with slightly changed
coefficient functions. It is quite clear that, for 2h<d_{p}(X, \partial G) , v_{h} is awell
defined function of Y\in R(2) of class W^{1,2} . Let \emptyset be a function of class
C^{\infty}(R(2)) with compact support. Extend \emptyset to the whole of R^{n+1} by put-
ting \phi\equiv 0 outside R(2) and let, for (r, z)=Z=X+P_{h}Y\in G ,

\varphi(Z)=\phi(P_{1/h}(Z-X)) .

Since u is a weak solution of (1), we have

\iint_{G}[\varphi u_{r}+\varphi_{z}\cdot \mathscr{A}(r, z, u, u_{z})-\varphi \mathscr{B}’(r, z, u, u_{z})]drdz=0 . (32)

If we change the integration variables from Z\in G to Y\in R(2) , then drdz
=h^{n+2}dsdy and

\nabla_{z}u(r, z)=\nabla_{z}[u(X)+hv_{h}(P_{1/h}(Z-X))]

=\nabla_{y}v_{h}(s, y) ,
\nabla_{z}\varphi(r, z)=h^{-1}\nabla_{y}\phi(s, y) ,

\frac{\partial}{\partial r}u(r, z)=\frac{\partial}{\partial r}[u(X)+hv_{h}(P_{1/h}(Z-X))]

=h^{-1} \frac{\partial}{\partial s}v_{h}(s, y) .

Thus, in view of (32), we see that v_{h}=v_{h}(s, y) is a weak solution of the
parabolic equation

\frac{\partial v}{\partial s}-div_{\mathcal{Y}}\mathscr{A}_{h}(s, y, v, v_{y})=\mathscr{B}_{h}(s, y, v, v_{y}) ,

where Y=(s, y)\in R(2) and
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\mathscr{A}_{h} : R(2)\cross R\cross R^{n}arrow R^{n}

\mathscr{B}_{h} : R(2)\cross R\cross R^{n}arrow R

are defined by

\mathscr{A}_{h}=\mathscr{A}_{h}(Y. v, W)=\mathscr{A}(X+P_{h}Yu(X)+hv, W) ,
\mathscr{B}_{h}=\mathscr{B}_{h}(Yv, W)=h\mathscr{B}(X+P_{h} Y. u(X)+hv , W).

Theorem 4 implies that

ess\max_{\in YR(1)}\frac{u(X+P_{h}Y)-u(X)}{h}\leq C_{h}\cdot(||v_{h}||_{L^{2}(R(2))}+K_{h}) . (33)

Notice that by changing u on a set of null measure we can replace the
essential maximum by the mmimum in (33). In fact, it suffices to let

u(X):= \lim_{harrow}sup0t_{R(X,h)}u(Y)dY

To complete the proof, we now only have to show that the right hand side
of (33) remains bounded when h tends to zero.

STEP 1. Using the properties of \mathscr{A} and \mathscr{B} one can easily check that
\mathscr{A}_{h} , \mathscr{B}_{h} fulfill the growth condition (2) with the constant a unchanged the
b_{i} being replaced by b_{i,h} , i=1 , \ldots 7:

b_{1,h}(Y)=|h|\cdot b_{1}(X+P_{h}Y) ,
b_{2,h}(Y)=|u(X)|\cdot b_{1}(X+P_{h}Y)+b_{2}(X+P_{h}Y) ,
b_{3,h}(Y)=|h|\cdot b_{3}(X+P_{h}Y) ,
b_{4,h}(Y)=|h|^{2}\cdot b_{4}(X+P_{h}Y) ,
b_{5,h}(Y)=|h|(|u(X)|\cdot b_{4}(X+P_{h}Y)+b_{5}(X+P_{h}Y)) ,
b_{6,h}(Y)=2|h|\cdot b_{6}(X+P_{h}Y) ,
b_{7,h}(Y)=2|u(X)|\cdot b_{6}(X+P_{h}Y)+b_{7}(X+P_{h}Y) .

Lemma 3 implies now that for almost every X the norms of b_{i} , 1=1 , \ldots 7,
in the respective L^{p}(R(2)) spaces (for each b_{i} the exponent p being taken
accordingly to (3) or (4) ) are bounded as h tends to zero. For instance,

||b_{1,h}||_{p}=( \int_{R(2)}[b_{1,h}(Y)]^{p}dY)^{1/p}

\leq C\cdot(f_{R(X,2h)}[b_{1}(Z)]^{p}dZ)^{1/p}

arrow C\cdot b_{1}(X) for h\downarrow 0 ,

and obviously the remaining cases can be treated in the same way.
Hence, the constants C_{h} and K_{h} on the right hand side of (33) remain
bounded (by a constant independent of h) for sufficiently small positive
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|h| .

STEP 2. Theorem 3, applied with m=1 and p=2, readily implies
that for harrow 0 the function of Y=(s, y) given by

\frac{1}{h}(u(X+P_{h}Y)-T_{x,u}^{(1)}(P_{h}Y))=

=v_{h}(s, y)- \sum_{i=1}^{n}\frac{\partial u}{\partial x_{i}}(X)\cdot y_{i}-h\frac{\partial u}{\partial t}(X)\cdot s

tends to zero in W^{1,2}(R(2)) as harrow 0 . Hence, the L^{2}-norm of v_{h} is bounded
ed for small |h| .

Now the combination of both steps implies the desired result.
According to our remark about the possibility of replacing the essen-

tial maximum by the maximum in (33), Theorem 1 can be restated in the
form of the following

COROLLARY 1. Let u be a weak solution of (1). Then, for almost
every X\in G, there exist a constant C and a positive \delta such that

|u(Y)-u(X)|\leq C\cdot d_{p}(X, Y)

for d_{p}(X, Y)<\delta. In other words, at almost every point in G, u is Lips-
chitz continuous with respect to the parabolic distance d_{p} {or, to be more
precise, there exists a representative of u\in W^{1,2}- which is, at almost every
point of G, Lipschitz continuous with respect to d_{p}).

Recall the classical

THEOREM 5 (Stepanoff differentiability criterion). Let f : Garrow R be
an arbitrary function defifined on an open set G\subset R^{m} . Defifine

E=\{a\in G : \lim_{xarrow}\sup_{a}\frac{|f(x)-f(a)|}{1x-a)}<+\infty\} ,

then E is Lebesque measurable and f is differentiable a.e. in E.

Combining this theorem (see [Sff] or [F], Theorem 3. 1. 9) with TheO-
rem 1 and the local H\"older continuity of weak solution of (1) implies The-
orem 2.

PROOF3 OF THEOREM 2. Let A=(a_{0}, a_{1}, ... a_{n})\in G be a point at
which u is Lipschitz continuous with respect to d_{p} , so that (7) holds with
X replaced by A. Fix a positive, sufficiently small number \delta and take K
3The proof is exactly the same as in the case of linear uniformly parabolic equation with

bounded coefficients [S]. To render our exposition self-contained we repeat it here.
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=(k_{0}, k_{1}, \ldots k_{n}) with |K|=\delta . Choose also an additional point B with time
coordinate equal to that of A and with spatial coordinates equal to those
of X=(t, x)=A+K, B=(a_{0}, x_{1}, \ldots, x_{n}) . Let Q(x, h) denote a standard
cube in R^{n} . Q(x, h)= \{y:\max_{1\leq i\leq n}|x_{i}-y_{i}|<h\} . By the triangle inequality,

|u(A)-u(X)|\leq

\leq|u(A)-u(B)|+|u(B)-f_{Q(x,\rho)}u(a_{0}, y)dy| (34)

+|f_{Q(x,\rho)}[u(a_{0}, y)-u(t, y)]dy|+|f_{Q(x,\rho)}u(t, y)dy-u(X)|

=S_{1}+S_{2}+S_{3}+S_{4} .

To establish the theorem, it suffices to prove that each of the terms S_{i} on
the right-hand side of the above inequality is bounded by a constant times
\delta . For S_{1} this is true by virtue of Theorem 1. To estimate S_{2} and S_{4} , we
use the local H\"older continuity of weak solutions of (1) ([AS], Theorem 4,
p. 110). Namely, in (34) we perform the integrations over an n-dimen-
sional cube Q(x, \rho) contained in the space R^{n} of x variables. Select \rho=

\delta^{\gamma}=|K|^{\gamma} , where \gamma is the reciprocal of the H\"older exponent \alpha of the func-
tion u , i.e., \gamma=1/\alpha . Then, for y\in Q(x, \rho) , one has

|u(B)-u(a_{0}, y)|\leq C\cdot (|K|^{\gamma})^{a}=C\cdot \delta ,

and in a similar manner
|u(X)|-u(t, y)|\leq C\cdot\delta ,

whence the desired estimates of S_{2} and S_{4} follow.
Finally, to estimate S_{3} , we exploit the assumption u_{t}\in L_{lOC}^{\infty,1} . If I

denotes the interval (a_{0}, t) , then |I|\leq\delta and

|f_{Q(X,\rho)}[u(a_{0}, y)-u(t, y)]dy|\leq|K|\cdot f_{Q(\chi,\rho)}f_{I}|u_{t}(s, y)|dsdy

\leq|K|\cdot f_{I}M(s)ds ,

where

M(s)= ess_{\mathcal{Y}}\sup|u_{t}(s, y)|

is a locally integrable function of one real variable s . The classical
differentiation theorem of Lebesgue implies now that for R^{n+1}\ni K -arrow 0 , i.e.,
for |I|arrow 0 , we have

f_{I}M(s)dsarrow M(a_{0}) for a.e . a_{0} .
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Putting all these estimates together, we conclude that, for sufficiently
small |K| ,

|u(A+K)-u(A)|\leq C\cdot |K| for a . e . A, (35)

where the constant C depends on n , the structure of (1), the values of u
and its distributional derivatives at A, the local H\"older norm of u , and
M(a_{0}) . This allows us to apply Stepanoff’s criterion and obtain the a . e .
differentiability of u in the classical sense. The proof is complete.

3. 2 The general case

We now indicate how the proof of Theorem 1 has to be modified when
the functions b_{i} are in the L^{p,q} spaces.

LEMMA 5 (Minkowski’s inequality for integrals). Let X and Y be
measurable spaces with a-finite measures \mu and \nu, respectively. Then, for
r>1 and for any nonnegative real-valued function w=w(x, y) which is
measurable on the product space (X\otimes Y, \mu\otimes\nu) ,

( \int_{Y}(\int_{X}w(x, y)d\mu_{X})^{r}dfJy)^{1/r}\leq\int_{X}(\int_{Y}w(x, y)^{r}dIJy)^{1/r}d\mu_{\chi} .

PROOF. The proof is based on a simple argument using the duality

between L^{r} and L^{s} for \frac{1}{r}+\frac{1}{s}=1 . Let \Phi(y)=\int_{X}w(x, y)d\mu_{x} and define, for
g\in L^{s}(Y) , the mapping

L^{s}(Y) \ni g\vdash\Psi(g)=\int_{Y}g(y)\cdot\Phi(y)d_{1/y}\in R .

With the help of the Fubini theorem and the H\"older inequality, one finds
that \Psi is a continuous linear functional on L^{s} and that ||\Psi||_{(L^{S})^{*=}}||\Phi||_{L^{r}}-

which is equal to the expression on the left-hand side of Minkowski’s in-
equality–does not exceed the integral standing on the right hand side.

LEMMA 6. Let u be a positive function of class L^{p,q}(G) , where p, q\in

[1, \infty] futfifitt one of the following conditions:

op>\frac{n+2}{2}and\frac{n}{p}+\frac{2}{q}<2 ,

op>n+2 and \frac{n}{p}+\frac{2}{q}<1 .

It is then possible to fifind p,\hat{q}\geq 1 such that:
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o \Phi\leq p,\overline{q}\leq q and u\in L^{p,\hat{q}}(G) ,
O\beta and \hat{q} futfifitt the same inequalities as p and q, respectively,
ofor almost every X=(t, x)\in G=(0, T)\cross\Omega the following holds:

\lim_{harrow}\sup_{0}f_{t-h^{2}}^{t+h^{2}}(f_{Q(x,h)^{u(s,y)^{p}dy)ds<+\infty}}\overline{q}/p .

In the proof of this fact we shall need some well known results con-
cerning the Hardy-Littlewood maximal functions. For f\in L^{p}(\Omega) define

\mathscr{M}pf(x)=s_{F_{\subset\Omega}} _{x,h}Q()u,(f_{Q(x,h)}|f(y)|^{p}dy)^{1/p}

From the covering lemma of Vitali, it follows that \mathscr{M}_{p} is of weak type
p_{-}p . More precisely, for every positive t and every \sigma\in[0,1] ,

| \{x\in\Omega : \mathscr{M}pf(x)>t\}|\leq\frac{5^{n}}{(1-\sigma)^{p}t^{p}}|\int_{\{y}|f|\geq\sigma t\}|f(y)|^{p}dy . (36)

Let \lambda_{g}(t):=|\{x:|g(x)|>t\}| denote the distribution function of g. Then the
familiar formula (the Bonaventura Cavalieri principle)

\int_{\Omega}|g(x)|^{r}dx=r\int_{0}^{+\infty}t^{r-1}\lambda_{g}(t)dt

combined with the weak type property of \mathscr{M}p implies that for f\in L^{r}(\Omega) ,
where r>p , \mathscr{M}_{p}f also belongs to L^{r}(\Omega) and

|| \mathscr{M}_{p}f||_{L^{r}(\Omega)}\leq 2(\frac{5^{n}r}{r-p})^{1/r}\cdot||f||_{L^{r}(\Omega)} . (37)

REMARK. In the inequalities (36) and (37), 5^{n} can be replaced by 3^{n}-

but it is, of course, irrelevant here.

PROOF OF LEMMA 6. For the sake of simplicity assume that p>n+2
and \frac{n}{p}+\frac{2}{q}<1 (in the other case the proof is literally the same). If q\geq p ,

then take \overline{q}=p=p . It is obvious that p and \hat{q} fulfill the desired inequal-
ities. The last condition follows directly from Lemma 3.

The case p=\infty presest no difficulties.
Suppose now that \infty>p>q . Take \hat{q}=q and p \in(\max(\hat{q}, n+2), p)

such that \frac{n}{\Phi}+\frac{2}{\overline{q}}<1 (it is of course possible because all the inequalities

are strict). We shall prove slightly more than required, namely

\lim_{h_{1},hzarrow tPf_{t-h_{1}}^{t+h_{1}}(f_{Q(x,h_{2})}}suu(s, y)^{p}dy)\overline{q}/pds<\infty for a.e . X\in G . (38)

It is obvious that
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t_{t-h_{1}}^{t+h_{1}}(f_{Q(x,h_{2})^{u(s,y)^{p}dy)^{\overline{a}/p}ds\leq f_{t-h_{1}}^{t+h_{1}}[\mathscr{M}u(s,\cdot)(x)]^{\overline{q}}ds}}p .

Hence, in order to prove (38), it suffices to show that, for a . e . x\in\Omega , the
function \mathscr{M}_{p}u(S^{ },\cdot)(x)- treated as a function of s\in(0, T)- belongs to the
space L^{\overline{q}}((0, T) ; ds ) and next to apply the classical Lebesgue
differentiation theorem. The Minkowski inequality for integrals and the
estimate (37) imply in an obvious way that

[ \int_{\Omega}(\int_{0}^{T}[\mathscr{M}_{p}u(_{S^{ }},\cdot)(x)]^{\overline{q}}ds)^{p/\overline{q}}dx]^{\overline{q}/p}\leq\int_{0}^{T}(1_{\Omega[\mathscr{M}_{\beta}u(s}

, \cdot)(x)]^{p}dx)^{\overline{q}/p}ds

\leq C\cdot\int_{0}^{T}(||u(_{S^{ }},\cdot)||_{L^{\rho}(\Omega)})^{\overline{q}}ds

=C\cdot(||u||_{L^{pq_{(G)}}})^{\overline{q}}

<+\infty ,

whence the desired result follows. The proof of Lemma 6 is complete.

Using the above lemma, we can treat each of the functions b_{i} as ele-
ments of L^{ff,\overline{q}} rather than L^{p,q} . The proof of Theorem 1 goes almost
without changes, the only exception being that (cf. STEP 2 of the proof in
Section 3) in order to obtain the boundedness of the norms of b_{i,h} in the
respective L^{p,\overline{q}} spaces one has to apply Lemma 6 instead of Lemma 3.
This simple observation enables one to complete the proof of Theorem 1
(and hence also Theorem 2) in the general case.

4. Conjectures

In this section, we sketch briefly how the results of the previous sec-
tions, which are still far from being conclusive, could possibly be general-
ized. It is just a plan of what remains to be done.

Let A_{h} be a group of linear dilations in R^{m} defined for positive h by

A_{h}(x)=(h^{a_{1}}x_{1}, h^{a_{2}}x_{2}, \ldots h^{a_{m}}x_{m}) (39)

for some multiindex \alpha\in(R_{+})^{m} . Set

\rho=\min_{1\leq i\leq m}\alpha_{i} and \sigma=\max_{1\leq\iota\leq m}.\alpha_{i} .

Then
h^{\rho}|x|\leq|A_{h}(x)|\leq h^{\sigma}|x| ,

for any x\in R^{m} and any h>1 , and

h^{\sigma}|x|\leq|A_{h}(x)|\leq h^{\rho}|x| ,
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for any x\in R^{m} and any h\in(0,1) . One can also define a homogeneous
norm r associated with the group \{A_{h} : h>0\} , r(A_{h}x)=h\cdot r(x) , and an as-
sociated (pseudo) distance d(x, y)=r(x-y) . The choice of r is not
unique. One possibility is the following norm

r(x) := \max_{1\leq i\leq m}(|x_{i}|^{\frac{1}{a_{i}}}) .

The balls in the associated metric d\equiv d_{A} are rectangles of the form

R_{A}(x, h)=\{y:\forall_{1\leq i\leq m}|y_{i}-x_{i}|<h^{a_{i}}\} .

The homogeneous norm r can always be chosen to be of class C^{\infty}(R^{m}\backslash \{0\})

(sec[L] , [CT]). It is possible to prove (see [CT]) that, for the family \mathscr{T}

of all the rectangles R_{A} , a covering lemma of Vitali type holds. This in
turn allows to obtain in a standard way an analogue of Lemma 3.

Our proof of Theorem 3 relies much more on general properties of the
group P_{h} : R^{n+1}arrow R^{n+1}P_{h}(t, x)=(h^{2}t, hx) than on specific definitions
involving expressions like r . Accordingly, it seems that the substantia-
tion of the conjecture stated below is a matter of overcoming certain
difficulties of merely technical charactor.

CONJECTURE 1. Let u\in W^{1,p}(\Omega) , where \Omega\subset R^{m} is an open domain.
Then, for almost every x\in\Omega , the following function of y\in R_{A}(0,1) :

w_{h}(y):=|h|^{-\rho l}\cdot(u(x+A_{h}y)-T_{xu}^{(l)}(A_{h}y))

tends to zero in W^{l,p}(R_{A}(0,1)) as h tends to zero.

REMARK 1. Assume now that a class of partial differential equations
(in m real variables) with measurable coefficients is invariant under the
action of the group A_{h} and that it is possible to prove a local boundedness
result \‘a la Aronson &Serrin. If Conjecture 1 were true, it would then be
possible to prove that weak solutions of the class of equations in question
are at almost every point of their domain of definition Lipschitz continu-
ous with respect to the metric d_{A} , or, in other words, H\"older continuous
with exponent 1/\alpha_{i} in the direction of the \chi_{i}-axis. An analogue of TheO-
rem 2 would also be true.

REMARK 2. Hajlasz [H] proved that in the case of the elliptic equa-
tion

div \mathscr{A}(x, u, u_{x})=\mathscr{B}(x, u, u_{x})

the weak solutions which belong to W^{l,p} , l>1 , are in fact differentiate
outside a set of suitable Riesz capacity equal to zero, if we assume that,
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for the functions which appear in the growth conditions analogous to (2),
the complements of sets of p-Lebesgue points are not only of zero Lebes-
gue measure but also of zero Riesz capacity. His proof uses the well
known fact that for Sobolev functions the set of exceptional points (for
which the limit of integral averages over the Euclidean balls does not
exist) is of Riesz (and Bessel) capacity zero.

Introduce the space L^{a,p} of anisotropic Bessel potentials,

L^{a,p}(R^{m}):= {g:g=G_{a}*f for some f\in L^{p}(R^{m}) },

where G_{a} is the anisotropic Bessel kernel defined by

\hat{G}_{a}(\xi)=\int_{R^{m}}G_{a}(x)e^{-2\pi iX\cdot\xi}dx=\frac{1}{(1+r^{2}(\xi))^{a/2}}

( r denotes the A_{h^{-}}homogeneous norm smooth outside zero). One can
prove that G_{a}\in L^{1}(R^{m}) is analytic in R^{m}\backslash \{0\} and vanishes exponentially
at \infty . The anisotropic Bessel capacity is defined in the following stan-
dard way (cf. [Vol], [V02])

B_{a,p}(E)= \inf{ ||f||_{p}^{p} : f\geq 0 , G_{a}*f\geq 1 on E}.

It is expected that the following conjecture holds true.

CONJECTURE 2. For any function f belonging to the space of
anisotropic Bessel potentials L^{a,p}(R^{m}) , the set E_{f} of those points x\in R^{m}

for which

\lim_{\deltaarrow}sup0f_{\{y}r(x-y)<\delta\}|f(y)-f(x)|^{p}dy\neq 0

is of zero B_{a,p^{-}}capacity, i . e . B_{a,p}(E_{f})=0 .

This conjecture (if valid) combined with theorems describing the
mutual embedding relations of classical Sobolev spaces and anisotropic
potential spaces (see the papers [L], [DT]) would allow one to obtain in
Theorem 1 additional information about the set of points at which the
solution is not Lipschitz continuous with respect to the parabolic distance
d_{p} .

To be more precise, let 1<l< \frac{n+1}{2} , and assume that a weak solution
u of equation (1) fulfills

u \in W^{l,2}\simeq H^{l}=\{w\in L^{2}(R^{n+1}) : \int(1+|\xi|^{2})^{l/2}|\overline{w}|\xi|^{2}d\xi<+\infty\} (40)
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(the statement of Theorem 1 is purely local so that there is no less of
generality in assuming that u can be extended to the whole of R^{n+1} ). If

\alpha=\frac{(l-1)(n+1)}{n+2} , then (see [DT], Theorem 10)

grad u\in W^{1-1,2}\subset L^{a,2} ,

where L^{a,2} denotes the space of anisotropic Bessel potentials associated
with the group of linear transformations

A_{h}X= ( h^{\frac{2n+2}{n+2}}x_{0}, h^{\frac{n+1}{n+2} \ldots _{h^{\frac{n+1}{n+2}}x_{n)}}}x_{1},, X\in R^{n+1} . h>0 . (41)

Assume moreover, that, for each of the functions b_{i} , the set E_{b_{t}} ,

E_{b_{i}}= \{X=(t, x)\in G: \lim_{harrow}\sup_{0}f_{t-h^{2}}^{t+h^{2}}(f_{Q(x,h\rangle}b_{i}(s, y)^{p}dy)^{q/p}ds<+\infty\} ,

is of full B_{a,2}- capacity:

B_{a,2}(G\backslash E_{b_{i}})=0 , i=1 , \ldots . 7 (42)

(this is always true e. g . if the b_{i} are continuous except at isolated points
of G). Finally, let dim E denote the Hausdorff dimension of a set E with
respect to the homogeneous norm r associated with the group of ‘dilations’
(41).

CONJECTURE 3. Let u be a weak solution of (1) and denote by L_{u}

the set of those points in G at which u is Lipschitz continuous with
respect to the parabolic distance d_{p} , that is, X\in G belongs to the set L_{u} if
and only if there exist positive C and \delta such that for h\in(0, \delta)

\max_{Y\in R(X.h)}|u(X)-u(Y)|\leq C\cdot h .

If \alpha=\frac{(l+1)(n+1}{n+2} and the conditions (40) and (42) are fulfilled, then

B_{a,2}(G\backslash L_{u})=0 , (43)
\dim(G\backslash L_{u})\leq n+1-2\alpha . (44)

In particular, \dim(G\backslash L_{u})<n for l=2.

REMARK. This Conjecture follows from Conjecture 2, Theorem 10 of
[DT] and the results of Section 4 of [Vol].

However, even in the elliptic case, when it is possible to prove the a.e .
differentiability of all the weak solutions using only their local bounded-
ness (see [HS]), this additional information about the capacity (and the
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Hausdorff dimension) of the non-differentiability set cannot be obtained
independently of the H\"older continuity of weak solutions (all the subtle
information about the capacity is lost when Stepanoff’s criterion is
applied). Therefore, to establish an analogue of Theorem 2 containing
information about the capacity and Hausdorff dimension of the excep-
tional set, it seems to be necessary to dispose of some more delicate from
of Stepanoff’s criterion.
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