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The lifespan of classical solutions
to nonlinear wave equations
in two space dimensions
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§1. Introduction

In the present paper we study the lifespan of solutions to initial value
problems for nonlinear wave equations of the form

o2u(x, t)—Aulx, t)=Alulx, t), (x, )ER"X[0, ),

(1.1) u(x, 0)=7(x), dul(x,0)=g(x), xER",

where p and A are positive constants and »=2, 3.

F. John [6] has proved the following remarkable results in three
space dimensions. The global classical solution to (1.1) exists for small
initial data with compact support provided p>po(3)=1++2, and the life-
span of classical solution to (1.1) is finite provided 1<p<po(3), f=0, >0
(also see F. John [7], p.32). Here po(n) stands for the positive root of the
quadratic ¢(n, p)=0 where

(1.2)  q(n, 1))=";1p2— nglp—l

and the lifespan of a solution z to (1.1) means the largest 7 such that
u(x, )ECHR"X[0, T)). He also proved in [6] that the lifespan Te of
solutions to (1.1) with f(x)=ep(x) and g(x)=e¢(x) is equivalent to &
for p=2. Recently H. Lindblad has refined this result by showing that
the following limit exists for 1<p<p(3):

hm 6—P(P—1)/Q(3,P) Te.

e-+0
R. T. Glassey has proved in two space dimensions that the global solu-
tion to (1.1) exists for small initial data with compact support provided
p>p0(2). R. T. Glassey [4] proved that if 1<p<po(2) then the lifespan of
a solution to (1,1) is finite. Moreover, J. Schaeffer proved that the

lifespan is finite for critical values p=po(2) and po(3).

The main aim of this paper is to look for the upper and lower bounds
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for the lifespan in two space dimensions.

THEOREM 1. Let ue be a C*-solution to (1. 1) with initial data f(x)
=ep(x) and g(x)=ed(x), where >0, o= CHR?) and ¢=CHR?). Then
therve exist positive constants €0 and C depending only on p, A, ¢ and ¢
such that the lifespan Te of u. satisfies the following inquality for 0<e<eo:

Te=exp(Ce™*7V) for p=p(2),
PN 1P oa T, > C for 2<p<po(2), p+3,
e TH¥log T)*=>C for p=3.

THEOREM 2. Let u. be a C*-solution to (1.1) with initial data
f(x)=0 and g(x)=ed(x), where €>0, ¢(x)=0, £0 and ¢=CHR?. Then
therve exists a positive constant C depending only on p, A and ¢ such that
the lifespan Te of ue has an upper bound :

T < CePP~D1a@n) foy 1< p<po(2).

We give here some remarks. Firstly, H. Lindblad [9] has proved for
p»=2 that if Lz ¢(x)dx=0 then 1815{)1 eTe exists and if /Rz ¢(x)dx+0 then

15193 a(e) ™ Te exists, where a(e) is defined by a(e)?c?log(a(e)+1)=0. His
results are much sharper than ours. Secondly, making use of the method
proving or the one in K. Kubota [8], we can prove simply the
existence of global solutions in R. T. Glassey (see Appendix). Third-
ly, we do not know the results of lower bounds of 7. for 1<p<2. Finally
the assumption of does not require that the support of initial
data is compact.

When the supports of initial data is non compact and p>po(3), F.
Asakura has proved in three space dimensions the following results.
Let D% (x), D*y(x)=0(x|"""*) as |x| > oo (Ja|<3, |8|<2). Then the
global solution to (1.1) exists for small initial data provided »>2/(p—1).
Moreover, he also proved that the lifespan of a solution to (1.1) is finite if
0<x<2/(p—1) and initial data satisfy

(1. 3) F(x)=0 and g(x)=e(1+]|x|)**

The next aim of this paper is to show that, in two space dimensions,
the lifespan is finite under the same assumption above. For global exis-
tence of solutions, see K. Kubota [8]

THEOREM 3. Let ue be a C*-solution to (1.1) with intial data satisfy-
ing (1.3). Then there exists a positive constant C depending only on A, p
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and x such that the lifespan Te of ue has an upper bound :

2 -1
TESCS(K—ﬁ) for p>1 and 0<x<—1)3—1.

We state here the relations between the upper bounds of 7. in Theo-
rem 2 and [Theorem 3. Let 1<p<po(2), then we have

because

Therefore the upper bound in [Theorem Z(3) is better than one in
3(2) provided 1/2+1p<x<2/(p—1) (0<x<1/2+1/p), respectively.

In § 2, we define the norm to be used and formulate an a priori esti-
mate which plays an important role in the proof of the existence theorem.
Making use of a priori estimate, we prove [Theorem I, employing the iter-
ation method in F. John [6]. In § 3, we prove a priori estimate mentioned
above. will be proved in § 4 by making use of the methods in
F. John [6] and R. Agemi [1]. will be also proved in § 5 by the
same method as in § 4. In Appendix, we give a simple proof of the global
existence theorem for p> po(2).

After this work was completed, we were informed of a recent work of
K. Tsutaya closely related to our [Theorem3 He also proved the
global existence mentioned before by using different way from
K. Kubota [8].

§ 2. Proof of Theorem1

Let initial data f(x)=ep(x) and g(x)=e¢(x) be supported in |x|<k.
Then we find from [7], Appendix (also see [1]) that a C*-solution « to (1.
1) with p=>1 is unique and

(2.1) ulx, t)=0 for |x|>t+k.

Considering this fact, we difine the norm for a continuous function
u(x, t) in Qr=R*x[0, T) satisfying (2.1):

(2.2) llull=(x§tt)1€1)QrN(|x|, )lulx, 1),

where
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(2.3)  N(r, )=k 22( 4y 1 2RVt — 1 +2k)12, 2< p< po(2).

As is well known, a solution to (1.1) has to satisfy the integral equa-
tion of the from

(2.4) ulx, )=uo(x, £)+AL(|ul?)(x, t),

where
p I S Y odp »
(2.5) L(u|?)(x, t)~27[/(:df[0 T ‘w'=1|u| (x+ pw, 7)dSw

and uo is a solution to a linear wave equation

G?uo(x, t)—Auo(x, t):(),
uo(x, 0)=ep(x), dato(x, 0)=eg(x).

By definition of the operator L, we see that if u satisfies (2. 1), then

L(J«|?) has the same property of u.
Now we can formulate an a priori estimate which is a core in the

proof of [Theorem 1.

LEMMA 2.1.  There exists a positive constant C depending only on p
such that, for any continuous function u(x, t) satisfying (2. 1),

2.7 ILAu”N<CR*M (K o, T)lul®  for 2<p<ps(2),

(2.6)

where

-q(2,p)/p
<T+2k> a IOgT-ZZk for p+3,

k
< T+2k )”3<1 T+2k
0og

(2.8) Mk p, T)= )
A A > for p=3.

Let X denotes the Banach space of functions wu(x, ) for which the
D®u are continuous in Qr for |e|<2 and satisfy (2.1) and [ D%/ < 0.
Here D“ stands for the space differentiation D2} Dgz.

We shall look for a solution # to (1.1) in X, employing the classical
iteration method :

(2.9) Unn=uo+AL(un|?), nEN.
It follows from Lemma 1 in , p. 236 that a solution u, to (2.6) satisfies
(2.10)  |D%uolx, )< Cp, ¢,)e(t+r+2E) V2t —r+2k) 12

for [@|<2 and ¢=0, where a positive constant C(g, ¢) depends on D¢
and D¢ for |B8|<3. Hence we find from (2.2), (2.3) and (2.10) that
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(2.11) | D*uo < C(p, ¢)k e,

which implies #o€X. Here we have used the fact that p=2 and t—7»
+2k> k.

Assume the a priori estimate (2.7). Then F. John [6] proved that the
sequence {u»} defined by (2.9) converges in X if uo satisfies the inequality
(56e) in [6], p.24. Applying the inequality to our case, we know that
{un} converges in X if

(2.12)  ACE*M(k, p, T)|luo” ' <

1
pzp ’ n uo“ <_2—

for 2<p<po(2). Therefore we find from (2.8) (2.11) that (2.12) holds if

-4q(2,p)/P
T2k e 0g TEER coni(hi g, ) <

T+2k\" TH2kN 5 -
T (o e cto pp=gy sor 0=3

ACk2< for p3,

ACkz(
and

Clo, ¢)k‘le<%.

Thus is proved by taking & small.
§3. Proof of the a priori estimate

Let # be a continuous function in Qr=R*x[0, T) satisfying (2. 1).
Then L(|u|?) satisfies (2.1) and hence we can assume hereafter that

(3.1) r<t+=ek, r=|x|;
It follows from (2.2) and (2.5) that

\L(l|lu|r)(x £
(3.2) p t—t d .
) .[ / /(Tf—;;—_?_[wlle(VﬂLWL 1) ?dS..

The integral over the unit circle in (3.2) is equal to
2[)'”N((|xl2+ 0*+2plx|cos ), )" Pdb
1
=2f_1(1—772)’”2N((72+pz+20m)”2, 7)"Pdy.

Changing the variable 7 for
A=(r*+ 0*+20m)"?,
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we find that the integral becomes

+r

4 AN, ©) 2R, 05 7)™,

o7
where

(3.3) M4, 0;7)=(p*—(A—7)*) ((A+7)—0?).
Therefore we get from (3.2)

|L(|"u|‘|’|)(x, t)| |
(3.4) 2le)” - pdp T AN(A, )77
< T /(;df/(; m lo—71 W dA.

In what follows, we can assume that
(3.5) A<t+k,
because of (2.1).

Inverting the order of the (p, A)-integral, we find that the integral in
(3.4) is equal to

t r+t-17 _p t—17 .Odp
./0‘ dr,/|‘r-t+r|/1N(A, Z') d/l/|;‘” \/((t_ Z')z_pz)h(/ly o, 7)

(3.6) t—r t-t-7 -p e edp
o) ANG e [ e e e

=L(r, )+ L(r,t),

where the last equality gives the difinitions of I; and I», and we regard L
as zero for t<r.

It follows from (2.2), (3.4) and (3.6) that the a priori estimate (2.7)
in is valid provided

(3.7) L(r, )< CO)RPM(k, p, T)N(7,t)""  for j=12,

where M is defined in (2.8) and we denote here and hereafter by C(p)
various positive constants depending only on p.

Firstly, we investigate the integral /.. In the interval of the p-inte-
gral, we have

Atr—p=2A+r—t+r,

(3.8) Ar+o=A+r+Ai—r|=24  or 2r.

Since
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b odp . (1 1)__7r_
(3.9) —/a/pz—aszz—pz—ZB 5 5 )= for 0<a<b,

it follows from (3. 3), (3.6), (3.8) and (3.9) with a=|1—7#|, b=¢—r that

t—7 pdp < T
/M—"'s/((t—r)z—pz)h(/i,p;r) - 227 or YA) Ve A—i+r
Thus we get

Tz rit-c AN(A, 7)~*
(3.10)  L(r, 1)< mﬁ reeve (J7 or VAT FA—TFr 4

Introducing new variables of integration

a=rt+A B=r—A4

and extending the domain of (@, 8)-integration, we find from (3.5) and (3.
10) that

t+r t—k AN(/l Z') P
(3.11) L(r, )< 4f - f (V7 or Y1) m)

We shall prove (3.7) for I, in the following two cases.

CASE 1: 4r>t+r+2k.

Since 2A=a— S <a+k in the domain of integration and, by definition,
(3.12)  N(A, r)=k 222 (q+2k)"*(B+2k)"?,
we get from (3.11)

L0122 rttr (44 9 B)2-P)2 t—r .
7(&/2_77 - (j&tz(kt)_—,,j da[k (B+2k)"'dB.

Note that a—(t—7)<a+k, because of (3.1). Then the integration by
parts yields

t+7r (a+2k)(2—i>)/2
-/t-r Ja—({t—7)

<227 (t+ 7 +20) P +(p-2) [ (a+2k)"de

(3.13)  L(r,t)<

da
(3.14)

Let 3<p<po(2). Then it follows from (3. 14) that the e-integral in (3.
[3) is dominated by

2V2(t+ 7 +2k)C P+ EEEL 2(1’ 2) (t—r+2k)CP"
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TITE —
Therefore, it follows from this, (1.2), (2.3) and (3.13) that

L(r, )< COORP Dt + 1 +20) V2§ — y+2k)C-P2]gg L =7 T2k

k
(3.15) = CON(r, 1) 020 022(y —  frgf)-oeoelog L =7 2k
<CORNGr, 0 (L2E) " og T22R

which is (3.7) for 7.
Let 2<p<3. Then it follows from (3.14) that the a-integral in (3.13)
is dominated by

<f 2t >(t+r—|—2k)‘3 P>/2<2(f +a— )(2t+3k)‘3 Pz,

Therefore, we get

I(r, )< CORPDH 1+ 7 +20) (T +28)> log L 22
LERLA Rl W S5

0g A

< COP)IEN(r, 1) (

Let p=3. Then, in the same way as above, the a-integral in (3.13)
is dominated by

~1/2
2V2r (t+7+2k) " +1og ok < A

Therefore, we get

L(r, )< CEKt+ 7 +20)(log T2 )

T+2k>”3<1 T+2k>2
2 & )

<C(3)EN(r, t)‘1<

Thus we have proved (3.7) for I, in Case 1.

CASE 2: 4r<t+r+2k ie., t+r+2k<2(t—r+2k).

In this case, we choose ¥4 in a denominator of the integrand in (3.
11). The we have

t+r (1-p)/2 t—r
G.16) K = free [ g [ (g2
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The a-integral in (3.16) is dominated, in the same way as in Case 1, by
t+7r
(.17 227+ r 42000+ (-1 [ (a+2k) " de
Let 2<p<po(2). Since (¢+r+2k) is equivalent to ({ —» +2k) in Case
2, we find from (3.17) that the e-integral in (3. 16) is dominated by
Co)t+r+2k) Y (t—r+2k)C P72
Therefore we have

L(r, )<SCO)EX P2t +r+2k) V2 (t —7r +2k)(3—p)/210gt—77;—2k

T+2k>-q<2'“/"10 T +2k
2 g

Let p=2. Then the e-integral in (3.16) is dominated by

<C()EN(r, z‘)‘1<

2J27(t+r+2k)_”2+10g————§i:igll:

<2/2+1log?2
Therefore, we have

T+2k
k

<COQ)EN(r, t)*(

L(r, 1)< C(2)Flog

T+2k>10 T +2k
% g

Thus the proof of (3.7) for I is finished.
Next we investigate the intergral I> defined for ¢>7. In the domain
of the integraion, we have

t—r—p=2t—r—(A+r)=t—r—a
t—r+o=t—r+|A—7|=2r or t—r—25.

It follows from this, (3.3) and (3.9) with a=|1—#|, b=2A+» that

//1+r pdp < T
=r1 (=702, p;7r) ~ 2(2ror Vi—r—B)WWt—r—a)’

Hence we have from this and (3. 6)

N ANQ, 0)"*dA
(3.18)  hr,< [ arf T o e =

Extending the domain of (a, 8)-intergral, we find from (3.5) and (3.18)
that
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4 t—r t—r /'iN(A, z.)—PdB
L(r, 1)< 4.£ da[k (V27 orvVt—r—B)Wt—r—a

Since 2A=a—p<a+k, we get from this and (3. 12)

(2+p)/2 t—r (2-p)/2 t—r
il M = DR

(3.19) L(r, 1)<

or

ﬁk(2+p)/2 /‘t ’(a+2k)(2 p)/2 t—r (B+2k) 1 dIB
8 0 Ji—r—a -k Jt—r—

We first show that, for 2<p<pe(2),

(3. 20) 12(7’, H<

t—r (2-p)/2
(3.21) ‘é QZ% da< C(p)(t—r +2k)EP2,

In fact,let 0<t—r<k,ie, 3k>t—»+2k. Then, by integration by parts,
the a-integral is dominated by

2 (2-p)/2
2i=rR)e <o £ (e +am)eon,

where we have used the fact that p=2. Let t—» >k which implies ¢t —»>
(t—7+2k)/4. Then, breaking the integral up into two pieces, we get

(=112 (g4 2k)% P2 e [T @-p)/2
[ s oty [ 0 20
42

<7 )
because po(2)<4. On the complement,

(t—1) (a+2k)(2-1’)/2 /- -r da,
< (2-p)/2 _ue
.[t—r)/z Ji—r—a da ( +2k) t-nizJt—r—a

g[z(p 2)/2(t—r+2k)(3"p)/2.

Next we show in a similar way to the above that

S (f— o)

(3.22) [f”%dﬁ Clt—r+28) "0 ——’Zjﬁ.

In fact, let 0<¢t—#»<k. Then, by integration by parts, the A-integral is
dominated by

2Vt—r+k BI<6(t—r+2k)12
Let k<t—». Then, breaking the integral up into two pieces, we get



The lifespan of classical solutions to nonlinear wave equations
m two space dimensions 527

W g B=N) o, (Branids
—r+4k

<2J3(¢t — 7 +28) gL -

On the complement,

/(‘ti—’r)’z(fiix/—% a8 £< : ; — 2k>—1,/(;t——r:/zﬁdﬁ

<2J2t—r+2k)7VE
When 47> t+ 7 +2k, it follows from (3.19) and (3.21) that

(3.23)  Llr, )< COOEP2(t +r +2k) V2t —r +2k)‘3"p”zlogl—%/i.

When 4r<t+r+2k, ie., t+r+2-k<2(t—r+2k), we obtain (3.23) from
(3.20), (3.21) and (3.22). Thus the estimate (3.7) for I follows from (3.

23), by the same way as in (3.15). Therefore, the proof of is
completed.

§4 Proof of Theorem 2

Let u(x, t) be a C%*solution to (1.1) in R*X[0, T) with the initial
data defined in the statement of [Theorem 2. In this section we shall show
that if T exceeds a certain constant we get a contradiction. This implis
that the lifespan of # has an upper bound which is expressed by such a
constant.

By the assumption of on ¢, there exists a x0& R? such that
(4.1) ¢(x0)>0.

Throughout this section we use the following notation. Let ¢ be the
spherical mean of v& C*(R?X[0, 0)) at a point xo with radius 7 ;

_ 1
2

Then (4.1) yields
(4.3) ¢ (0)>0.

(4.2) (7, t) /|w|=1v(x°+ rw, t)dSe.

Hence one can find 6 >0 so small that
(4. 4) ¢ (28)>0.

As in section 2, we know that u satisfies the integral equation (2. 4).
Here we employ the following lemmas.
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LEMMA 4.1. Let uo be a solution to (2.6) with ¢(x)=0. Then
4.5  w(r, t)=—= fmﬁ ¢ (A)dA 0<¢<2
4. uo(7, t 527 Jier ¢ for <27.

LEMMA 4.2. Let u be the solution to (1.1) with f(x)=0, g(x)=0
and p>1.
Then

(4. 6) alr, t)= \/—f/ JAla|P(A, 7)dAdr

for 0<t—r<r, where
(4.7) Tri:={(A 0)ER? ; t—v<r+A<t+v, t—A<t—7, >0}

These lemmas are due to R. Agemi [1].

Lemma 4.2 follows from the proof of (2.11) in [1]. Applying its
argument to uo, we readily get Lemma 4. 1. For the sake of complete-
ness, we shall review proofs of these lemmas.

PROOF OF LEMMA 4.2: It follows from (2. 4) that
(4.8) a(r, )=wuor, t)+ AL(ul?)(r, ¢).
Since the assumption that f(x)=0, g(x)=0 yields %=>0, we have
(4.9) a(r, )= AL(ul?)(r, t).

We now employ the following fundamental identity for iterated spherical
means by F. John [5], p.81;

%ﬁﬁ, /wl:lv(W?Jr 0w)dSwdS»,

(4.10) 2 o)
lo—7] Jhi/l 0; 75

where (A, p; 7) is defined by (3.3). Applying (4.10) with v=|«|? to the
right hand side of (4.9), we get

=t pdp err Nal®(A, o)
(4.11) u(rt> / / J—;_—T—)E——f WO o7 dA.

Here we have used the Jensen’s inequality

lulP=la|® for p>1.

Note that



The lifespan of classical solutions to nonlinear wave equations
in two space dimensions 529

t—r—v<r for 0<t—r<y»r and 7=0.

Then, inverting the order of (4, p)-integral, we find that the right hand
side of (4.11) equals to

24 - odp
f f Al o T o )= =pP)

24 , pdp
W[ [T G a [ S

Hence it follows from this and (4.11) that

a(r,t)
(4.12)

» pdp
B e[ a0 [ e

In the domain of (p, A)-integral of (4.12), we know that
(4.13) KA 0:7n)<127A((t—1)*—(A—7)%) for 0<t—r<r.
In fact, o<t¢—r implies

—(A—r)P<(t—o)—(A—7r)
Since A<t+r, p<t—r and <27, we have
At r+o<t+r+r+t—r=<2t+2r<67.
Moreover, o=|A—7| yields
At r—p<A+r—|A—r|<A+r+Ai—r=2A
Thus we get (4.13). Using the fact that

t—r odp B Y
/;_,lm—\/(l‘ )= (A—7r)?

we obtain (4.6) by (4.12) and (4. 13).

PROOF OF LEMMA 4.1: As is well known, a solution to (2.6) with
¢(x)=0 is expressed in the form

(4.14)  wolx, t)— t\/ﬁﬂ——[wlzle¢(x+pw)dsw.

Applying (4.10) with v=¢ to the right hand side of (4.14), we get
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— _26 (' pdp _ [*7__Ad(A)
w15 o 0= [ [ ey

As in the proof of [Lemma 4.2, inverting the order of (A, p)-integral yields
for 0<t—7r<r

@10 @l 0= [T e

Replacing t—7 by ¢ in (4.13), we obtain (4.5) by same way as in the
proof of Lemma 4.2,

Now, define the region
(4.17)  S={(r, t)ER?; 36<t+7r, 6<t—r<268)},
where ¢ is the one in (4.4). Then it follows from (4. 4), (4.5) and (4.17)

(4.18)  uo(r, t)z% for (r,t)€S and <27,

where C’ is a constant defined by
[P
(419 C=5=["JTF Wi

Since (2.4) yields
(4.20)  @(r, t)=ulr,t),

we have
(4.21)  a(r, t)z% for (»,t)€S and t<2r.

Let = denote the set
(4.22) =={(r,t)ER?; 36<t—r<vr)}.
For (7, t)€3 we introduce the sets

(4.23) Sre={(A, 1); t—r<A t+A<t+r, §<1—21<28),
' Rei={(A, 1); t—7<A t+A<t+7,30<r—A<t—7),
We note that for (7, t)E3

(4.24) S, R;.CTr:, S;.:.CS, R,.C3.

Hence it follows from (4. 6), (4.21) and (4. 24) that
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Ce

a(r, t)= 2;}/7 . t[—<—\/_'—> didr for (7, t)ES3.

Changing the variables by
(4.25) a=rt+4 B=1—4,

we have for (», H)EZ

alr, t)—A(C ¢’ 28 /:H (

2(t—1)+8

(1-p)/2
) da.
Since p>1 and a—B<a<t+r=<3r,
Y (p-1)/2
a(r, t)ziq%(%) v efr ‘P’Zf 3r—t—RB)dAs.

Here we find that for (7, t)E3
3r—t—B=>r—B=>r—28=r/3.

Hence

atr, 12 ALY (2Y7 " o
’ = T .

Therefore we obtain for (7, {)ES

_ Coe?r V¥ (t—r—s)® P2 if 1<p<3,
>
(4.26)  alr, t)_{Coe"r“"“z)’z if 3<p<po(2),

where we set s=36 and

_8A(C’)p l(p—l)/z
(won)  C=2ACL(Z)T

Now, assume that # has more general estimate
(4.28)  a(r,)=Cr - (t—r—s)(t—r)"® for (r, t)EZ

with C>0, ¢=1/2, a=0, b=0. Then it follows from (4.6), (4.24), (4. 25)
and (4.28) that for (», t)ES

_ A _ »

wlr, D25t fﬁ IRa(a, o) dads
AC 12-b9( 3 \Pa( o 1\-Db
27“/— RH/I (r—A—3s)*(r—A)"*°dAdr

‘éf(ji /t T f(i+:)+ﬂ<a B>1/2 pq( —s)*p~"da.
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We divide the estimate for # into the following two cases.

CASE 1: t—r=7r/2.
Since pg>q>1/2 and

a—B<a<t+r<3r<6(t—r)
for (7, t)€3 in this case, we have

1/2-pq A P t—r
47T\/73(l‘—:)1£+pq_”2 /; (3_3)pa(37“t_3)d3-

u(r, t)=>

By 3r —t=»>¢t—r, B-integral is replaced gy

[ =t r ==y

Hence

31/2_quCp(f_ v _s)pa+2
4ﬂ(pa+2)2”(t_r)Pb+PQ—l/2 .

CASE 2: t—r</2.
Since t+7r=27=4(¢t—r) and 2(t —»)+ B8 <3(t—7) for (», t)E3 in this
case, we have

a(r, t)=

B ACP t—7r  \bap—pb 4(t—7”)<_a,~>1/2—pq
(r, 1)247“/; L B=)METdB | (5 da
21/2—P<IACP

t—r
= 47rﬁ(t_7)pb+pq—3/2 /; (B“S)padﬂ
< QUEPIACP(t — y —s)Pat!
—Ar(pa+ )V (t—r)ptorEir
o 3PPACH(t—r —s)Pr?

T An(pa+2) Vv (t —y)Porra-liz:

Combining these two cases, we obtain

(4.29)  alr, )=C*r V*(t—r—s)*(t—r)"" for (r, t)ES,

where

a*=pa+2, b*:pb+pq—i,
(4. 30) «_ DgC? 1/2-pq

C —_(pa+2)2 ’ qu?’_ﬁi

Using the values
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, b=0, C=Coe? if 1<p<3,
(4.31)

q="5— a=b=0, C=Coc? if 3<p<po(2)

corresponding to (4.26), we have (4.29) with
«_ p3—Dp) yo pr=Pl e Di2(Cog®)”

(4.32) 2 ’ 7 C=Ga=py otz 1<P<3
| —4) pyP
a*=2, b*:A(LZZL_l_’ C*:D(p—z)/ziCOS) £ 3_§pgp0(2)
Define the sequences {a/}, {64, {C:} (/EN) by
»
(4.33) arn=pact?, bé+1'—ﬂbé+p , Con= _(_‘D,il—l—élz‘fz%z_»

a*, bi=b*, C,=C* as given in (4. 32).

Then (4.29) will hold with ¢=1/2, a*=a. b*=b, C*=C, for /EN.
Solving the above sequences we have

NEEL I R P
as ( iy s SR o v S 1<p<3,

— 2 (2 :p—2 1
a=p Ty b T b T

If 1<p<3, then

— 3—p 2 /41 _ 2
pa4+2—< 5 +p_1>p“ —1°

< pil (p+2—1)<2(£+2)p .

If 3<p<po(2), then

(4.34)

if 3<p<po(2).

par+2= -1 (pt1—1)<2(4+2)p' .

Hence it follows from (4.33) that

D2 C}

Crn= 10 +2)2

for 1<p<po(2),

which implies that

Cr=exp [pf(; logCi— z { 2log(j+2)+20( ; Dlogp-+logdDi )]

For sufficiently large ¢ we have
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(4.35)  Ce=exp[p(p~logCi—S(p))] for 1<p<po(2),

where

1 +2)+2(+1)1 +log4 D7}
S(p)= 2 2log(j+2) (]pﬁll) ogp+logdDijh
We note that S(p) is finite because p>1 and each term is positive for
sufficiently large ¢. Therefore it follows from (4.29), (4.33), (4.34) and (4.
35) that for (7, t)E3

(4. 36)

(@30 atr, n=7=; ”‘f)w ~explpJ(r, )],

where
(4.38)  J(r, t)=pYogCi—S(p)+

+
p—2 B )

p—1 9 log(t—r) if 3<p<po(2).
If there exists a point (7, )€3 such that

(4.39)  J(r, t)>0,

log(t—7»—s)—

then we have @(r, t)=o0 letting ¢ — oo, which implies that % cannot be a
C?-solution to (1.1). This contradicts the assumption that « is a C* solu-
tion to (1.1), so that we shall look for (#, t)E€3 which satisfies (4. 39).
In view of (4.38), if t—#»=2s, (4.39) follows from

for 1<p<po(2).

10g2

Hence the definition of Ci, (4.33), gives the following sufficient condition
to (4.39);

a2, p)
1-p

where ¢(2, p) is defined by (1. 2) and we set
(4. 40) C”=(52Dr )P CyleSPr+2pie=1),

=2 log(t—7)>1logC’e™ for 1<p<po(2),

Co is defined by (4.27). Here we have used the following fact which fol-
lows from the definition of Dg, (4. 30).

(4. 41) Dy2=>Dg for ¢=1/2.
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Recall that ¢(2, p) <0 for 1<p<po(2). Therefore, setting ¢t =27, we find
that (4. 39) follows from

t> CeP®=D1a@r) for 1< p<po(2),
where

C=2(C")1-pVaep)
Thus we conclude that 7 has to satisfy

T < C€P(P—1)/Q(2,P).
This completes the proof of [Theorem 2.
§5. Proof of Theorem 3

In this section we shall prove by using the same argument
as in the proof of [Theorem 2.

Let u(x, t) be a C?solution to (1.1) in R*X[0, T) with initial data
satisfying (1.3). In the definition of the spherical mean, (4.2), we set xo=
0. Define the set

(5.1) S'={(r, )ER?; s<t—r<r}

for some fixed constant s>0. By virture of Lemma 4.1, (4.5), we have
for (7, t)e3’

. e t+r _
wlr, 255 [T F (N

€ t+r e
>
Z s Jer JAQ+A)dA

1/ S >K~1 e t+7 k12
Z2a\T+s) Vi Jeo AN

If 0<x<1/2, then

_ < 1 < S K+1 e t+rd/'[
wlr, )25 1+s> Vr(t+r)t2 Jer
1 S K+1 e
= 37r(1-|—s> r*:
If x>1/2, then
L 1 / S >x+1 e I: —<t_r>lc—1/2:|
wlr, )= 7@2x—1)\1+s Jr(t—r) 2 1 t+vr

> 1 ( S >H1 3 min{l x~i}<1——t_r>
“x@x—1) \1+s/ Jr(t—r)17? 2 t+r
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e L infy 1))
3z 2x—1" 1+s Jr(t—r) e
Hence we obtain for (7, t)E3’

Coe if 0<x<i,
»

CoE
ﬁ(t _ 7,);c—l/z

where C, is a constant defined by

2 S K+1
’1}<1-|—s> )

2x—1
—1/2.

(5.2) w7, 1) >

. 1
it x>,

(5.3) Co=%min”

For (7, t)€3’ we find that

Ic+1/2(t — _S)

re<y
Therefore it follows (4.20) and (5.2) that

Coe(t —r—3s)1?

(5. 4) (r, t)=
Coe . 1
Jr(i— )12 if x>5.
Now, as in the proof of [Theorem 2, assume that # has more general

estimate (4.28). Hence we have (4.29), (4.30) for (»,¢)€3’. Using the
values

q=x+i, azi, b=0, C=Coe if 0<x£—1—,
2 2 2

(5.5) ] 1 ]

==, a=0, b=x—7, C=Ce if x>7
corresponding to (5.4), we obtain (4.29) with

*:ﬁ * 15__1 * __ Dx+1/2(C06)p . _1_
(5 6) a 2+2, b px+ 9 C (p/2+2)2 if O<]f£2,
: b
a*=2, b*=px——%—, C*Z—Dm(foe) if x>%,

Define the sequence {a/}, {6}, {C/} (¢=N) by (4.33) in which (4.32) is
replaced by (5.6). Solving these sequences we get
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(2 . ( L) 1 1
ar <p 1+ )p Py 1,bé’ 2p 5 if 0<x£2,
(5.7) 2 2 1 1
= l_ — phl = =
ar p—lp =1 bi=xp 5 if x>,
If 0<x<1/2, then
j)ag+2:<—2~+i>1)“1——2— <2(f+2)1§“1
p—1 2 p»—1 ’
If x>1/2, then
pa4+2—— P —1)<2(£+2)p'L.

p—1

Thus, in the same manner as the proof of [Theorem 2, the estimate for i,
(4.37), in which J is replaced by J’, holds for (r,t)ES". J'(r,t) is
defined by

(5.8)  J'(r,t)=p'logC:—S(p)+

<——%—+ >log(t—r s)— < i) log(t—7r) if O<x£i,
n p—1 2 2 2
log(t—r—s)—xlog(t—7») if x>%,

2
p—1
where S(p) is the one in (4. 36).
J'(r, t)>0 which lead to the contradiction as in section 4 follows from

(1)3—1 —x) log(t—7)>logC’e™ for (r,t)EZ and t—r=2s,

where
C'=((p/2+2)?DrH)VeCyles®r+2e/p-1)

becuase (4.41) is still valid in this section though C, is defined by (5. 3).
Therefore, setting ¢=27, we find that J'(»,¢)>0 for (r,)EZ" follows
from

£>Ce* 5" for »>1 and O<x<p21,
where

C=2(C)* 7",
Thus we conclude that T has to satisfy
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T < Ce 5",
This completes the proof of [Theorem 3.
Appendix

In Appendix, we give a simple proof of the global existance of solu-
tions to (I1.1) with p>po(2). Following R.T.Glassey [3], we define the
norm for a continuous function u(x, ¢) in R*X[0, c0) satisfying (2.1):

(A1) lull= sup N(x|, t)|ulx, t)],
(x,6)ER?*[0,00)

where

N(r, t)=
(A.2) 7Vt +r +2R)V(t—r+2k)T for p>po(2), p+4

Rt +r+2R)(t—vr +2/@)”2<logﬂ;—%>_1 for p=4

and
q=—p;3 for po(2)<p<d,
(A.3) )
1=5 for p>4.
We notice that the norm is slightly modified the one in [3].
We shall show the following lemma which assures, by the method in
§ 2, the global in time existence of solutions to (1.1) with small initial
data.

LEMMA A.1.  There exists a positive constant C depending only on p
such that

(A.4)  |L(uI<CRul?, p>po(2),
for any continutus function u in R*X[0, o) satisfying (2. 1).

PROOF: The proof will be done by same method as in §3. In order
to show the a priori estimate (A.4), it is enough to prove, instead of (3.

7)7
(A.5)  I(r,t)<CE’N(»,t)"" for j=1, 2,

where the [; are defined in (3. 6).
We first treat the integral /. When 47> ¢+ +2k, we get, instead of
(3.13),
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pq+p/2 t+r (2-p)/2 t—r
L(r, )< ”gm ™~ (% da [ (B+2k)""dB
for p+4

(A. 6)

The B-integral for p=4 is
A [ (8+2rr (1og B +3k) a8

Since p>po(2)>3, it follows from (3. 14) that the a-integral in (A.6) is
dominated by

(f+ )(t —r+2k)P",

Note that pg>1 for p>po (2). Then the B-integral in (A.6) is dominated
by

kl -pq
[ (B t2ryas=——1.
The B-integral (A.7) is also dominated by

Ck‘

Ch- / (B+2k)2dp=

for some small 6 >0 and for some C>0. Hence we get
(A.8)  L(r, )< C)R*2(t+r+2k) "Vt —r +2k) P2
Since

(t — +2k)(4—P)/2 < k(4—P)/2 for p> 4,
Io t—r+3k
£k

we conclude from (A.8) that (A.5) for [, is valid.
When 47 <t+7r+2k, we get, instead of (3. 16)

>log?2 for p=4,

T (1-p)/2 -7
(a9 i nsFeree [T gy [ (g rom) g

for p+4

The B-integral becomes (A.7) for p=4. Since p>po(2)>2 and (¢ +7»+2k)
is equivalent to (t—#+2k), it follows from (3.17) that the a-integral in
(A.9) is dominated by

Cp)t+r+2k)y V¥t —r+2k)C P2
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Hence we also conclude in the same way as above that (A.5) for [ is
valid.
Next we treat the integral .. Making use of the method deriving (3.
21), we find that the e-integral in (3.19) or (3.20) is dominated by
Cp)t—r+2R) P2 for p(2)<p<Ad,
(A.10) CO)(t—r+2k)~12 logj:~7}€—+§£ for p=4,
Cp)RP2(t—r+2k)" for p>4.

When 47> ¢t+»+2k, we get, instead of (3.19),

pq+p/2 t—r (2-p)/2 t—r
(A 11)  L(r, 1)< ”gm (“f;_zﬁ)__ da [ (B+2k)
for p+4.

The B-integral becomes (A.7) for p=4. Since the B-integral in (A.11) is
dominated by C(p)k'"?? we find from (A.10) and (A.11) that (A.5) for L
is valid.

When 4r<t+r+2k, ie., t+7r+2k<2(t—r+2k), we get, instead of
(3.20),

Ty pa+pi2 t-r ((1/‘}‘2/8)(2_‘0)/2 t- 7w
(A12)  B(r, )= fhee [T — g [ PR dg
for p+4

The A-integral for p=4is

a3 [ ff% (1og ¢k >4d,8.

Making use of the method deriving (3.22), we find that the A-integrals are
dominated by

(A.14) C(Op)k' P (t+r+2k)"2

We give here the proof of (A.14) for the critical case where p=4 and ¢
—» >k, which implies t—»>(t—»+2k)/4. We find that, for some C>0
and some small §>0, the integral (A.13) is dominated by

i s

Then, breaking the integral up into two pieces, we get
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Ck f(t 2 (8+2k) —2te d,8<x/_Ck a(t ) 1/2/ (B+2k) 2+sdB

Jt—r—R
_ZﬁCk‘ (t—r+2k)2
1-6
_4101"_ (t+7+28)V2
On the complement,
s [T M‘i < )2” et dB
Ck (t-riz Jt—r— ap=Ck 2 —2k (t-mi2 Jt—r—_

< Ck 2%t —r+2k)° %2,
< CV2227 kWt +r+2k)712

Here we have used that (¢—#»+2k)°'<k’'. Therefore, we conclude
from (A.10), (A.12) and (A.14) that (A.5) for L is valid. Thus the
proof of Lemma A.1 is completed.
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