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\S 1. Introduction

In the present paper we study the lifespan of solutions to initial value
problems for nonlinear wave equations of the form

\partial_{t}^{2}u(x, t)-\Delta u(x, t)=A|u(x, t)|^{p} . (x, t)\in R^{n}\cross[0^{ },\infty) ,
(1. 1) u(x, 0)=f(x) , \partial_{t}u(x, 0)=g(x) , x\in R^{n}-

where p and A are positive constants and n=2,3 .
F. John [6] has proved the following remarkable results in three

space dimensions. The global classical solution to (1. 1) exists for small
initial data with compact support provided p>p_{0}(3)=1+\sqrt{2} , and the life-
span of classical solution to (1. 1) is finite provided 1<p<p_{0}(3) , f=0, g>0
(also see F. John [7], p. 32). Here p_{0}(n) stands for the positive root of the
quadratic q(n, p)=0 where

(1. 2) q(n, p)= \frac{n-1}{2}p^{2}-\frac{n+1}{2}p-1

and the lifespan of a solution u to (1. 1) means the largest T such that
u(x, t)\in C^{2}(R^{n}\cross[0, T)) . He also proved in [6] that the lifespan T_{\epsilon} of
solutions to (1. 1) with f(x)=\epsilon\varphi(x) and g(x)=\epsilon\phi(x) is equivalent to \epsilon^{-2}

for p=2 . Recently H. Lindblad [9] has refined this result by showing that
the following limit exists for 1<p<p_{0}(3) :

\lim_{\epsilonarrow+0}\epsilon^{-p(p-1)/q(3,p)}T_{\epsilon} .

R. T. Glassey [3] has proved in two space dimensions that the global solu-
tion to (1. 1) exists for small initial data with compact support provided
p>p_{0}(2) . R. T Glassey [4] proved that if 1<p<p_{0}(2) then the lifespan of
a solution to (1, 1) is finite. Moreover, J. Schaeffer [10] proved that the
lifespan is finite for critical values p=p_{0}(2) and p_{0}(3) .

The main aim of this paper is to look for the upper and lower bounds
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for the lifespan in two space dimensions.

THEOREM 1. Let u_{\epsilon} be a C^{2}- solution to (1. 1) with initial data f(x)
=\epsilon\varphi(x) and g(x)=\epsilon\phi(x) , where \epsilon>0 , \varphi\in C_{0}^{3}(R^{2}) and \phi\in C_{0}^{2}(R^{2}) . Then
there exist positive constants \epsilon_{0} and C depending only on p, A, \varphi and \emptyset

such that the lifespan T_{\epsilon} of u_{\epsilon} satisfies the following inquality for 0<\epsilon<\epsilon_{0} :
T_{\epsilon}\geq\exp(C\epsilon^{-(p-1)}) for p=p_{0}(2) ,
\epsilon^{p-1}T_{\epsilon}^{-q(2,p)/p}\log T_{\epsilon}\geq C for 2\leq p<p_{0}(2) , p\neq 3 ,
\epsilon^{2}T_{\epsilon}^{1/3}(\log T_{\epsilon})^{2}\geq C for p=3.

THEOREM 2. Let u_{\epsilon} be a C^{2}- solution to (1. 1) with initial data
f(x)=0 and g(x)=\epsilon\phi(x) , where \epsilon>0 , \phi(x)\geq 0 , \not\equiv 0 and \emptyset\in C^{2}(R^{2}) . Then
there exists a positive constant C depending only on p, A and \emptyset such that
the lifespan T_{\epsilon} of u_{\epsilon} has an upper bound:

T_{\epsilon}\leq C\epsilon^{p(p-1)/q(2,p)} for 1<p<p_{0}(2) .

We give here some remarks. Firstly, H. Lindblad [9] has proved for
p=2 that if \int_{R^{2}}\phi(x)dx=0 then \lim_{\epsilonarrow 0}\epsilon T_{\epsilon} exists and if \int_{R^{2}}\phi(x)dx\neq 0 then
\lim_{\epsilonarrow 0}a(\epsilon)^{-1}T_{\epsilon} exists, where a(\epsilon) is defined by a(\epsilon)^{2}\epsilon^{2}\log(a(\epsilon)+1)=0 . His
results are much sharper than ours. Secondly, making use of the method
proving Theorem 1 or the one in K. Kubota [8], we can prove simply the
existence of global solutions in R. T. Glassey [3] (see Appendix). Third-
ly, we do not know the results of lower bounds of T_{\epsilon} for 1<p<2 . Finally
the assumption of Theorem 2 does not require that the support of initial
data is compact.

When the supports of initial data is non compact and p>p_{0}(3) , F.
Asakura [2] has proved in three space dimensions the following results.
Let D^{a}f(x) , D^{\beta}y(x)=O(|x|^{-1-\chi}) as |x|arrow\infty(|\alpha|\leq 3, |\beta|\leq 2) . Then the
global solution to (1. 1) exists for small initial data provided x>2/(p-1) .
Moreover, he also proved that the lifespan of a solution to (1. 1) is finite if
0<x<2/(p-1) and initial data satisfy

(1. 3) f(x)=0 and g(x)\geq\epsilon(1+|x|)^{-1-\kappa}

The next aim of this paper is to show that, in two space dimensions,
the lifespan is finite under the same assumption above. For global exis-
tence of solutions, see K. Kubota [8]

THEOREM 3. Let u_{\epsilon} be a C^{2}- solution to (1. 1) with intial data satisfy-
ing (1. 3). Then there exists a positive constant C depending only on A, p
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and \chi such that the lifespan T_{\epsilon} of u_{\epsilon} has an upper bound:

T_{\epsilon}\leq C\epsilon^{(\kappa-\frac{2}{p-1})^{-1}} for p>1 and 0<x< \frac{2}{p-1} .

We state here the relations between the upper bounds of T_{\epsilon} in TheO-
rem 2 and Theorem 3. Let 1<p<p_{0}(2) , then we have

\frac{1}{2}+\frac{1}{p}<\frac{2}{p-1} ,

because

\frac{q(2,p)}{p(p-1)}=\frac{1}{2}+\frac{1}{p}-\frac{2}{p-1}<0 .

Therefore the upper bound in Theorem 2 (3) is better than one in Theorem
3 (2) provided 1/2+1p\leq x<2/(p-1)(0<x<1/2+1/p) , respectively.

In \S 2, we define the norm to be used and formulate an a priori esti-
mate which plays an important role in the proof of the existence theorem.
Making use of a priori estimate, we prove Theorem 1, employing the iter-
ation method in F. John [6]. In \S 3, we prove a priori estimate mentioned
above. Theorem 2 will be proved in \S 4 by making use of the methods in
F. John [6] and R. Agemi [1]. Theorem 3 will be also proved in \S 5 by the
same method as in \S 4. In Appendix, we give a simple proof of the global
existence theorem for p>p_{0}(2) .

After this work was completed, we were informed of a recent work of
K. Tsutaya [11] closely related to our Theorem 3. He also proved the
global existence mentioned before Theorem 3 by using different way from
K. Kubota [8].

\S 2. Proof of Theorem 1

Let initial data f(x)=\epsilon\varphi(x) and g(x)=\epsilon\psi(x) be supported in |x|<k .
Then we find from [7], Appendix (also see [1]) that a C^{z_{-}}solution u to (1.

1) with p\geq 1 is unique and

(2. 1) u(x, t)=0 for |x|>t+k .

Considering this fact, we difine the norm for a continuous function
u(x, t) in Q_{T}=R^{2}\cross[0, T) satisfying (2. 1):

(2. 2) ||u||= \sup_{x,t}N(|x|, t)()\in Q_{T}|u(x, t)| ,

where
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(2. 3) N(r, t)=k^{-(p+2)/2p}(t+r+2k)^{1/2}(t-r+2k)^{1/p} , 2\leq p\leq p_{0}(2) .

As is well known, a solution to (1. 1) has to satisfy the integral equa-
tion of the from

(2. 4) u(x, t)=u_{0}(x, t)+AL(|u|^{p})(x, t) ,

where

(2. 5) L(|u|^{p})(x, t)= \frac{1}{2\pi}\int_{0}^{t}d\tau\int_{0}^{t-\tau}\frac{\rho d\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}\int_{|\omega|=1}|u|^{p}(x+\rho\omega, \tau)dS_{\omega}

and u_{0} is a solution to a linear wave equation

\partial_{t}^{2}u_{0}(x, t)-\Delta u_{0}(x, t)=0 ,(2. 6)
u_{0}(x, 0)=\epsilon\varphi(x) , \partial_{t}u_{0}(x, 0)=\epsilon\phi(x) .

By definition of the operator L , we see that if u satisfies (2. 1), then
L(|u|^{p}) has the same property of u .

Now we can formulate an a priori estimate which is a core in the
proof of Theorem 1.

LEMMA 2. 1. There exists a positive constant C depending only on p
such that, for any continuous function u(x, t) satisfying (2. 1),

(2. 7) ||L(|u|^{p})||\leq Ck^{2}M(k, p, T)||u||^{p} for 2\leq p\leq p_{0}(2) ,

where

(2. 8) M(k, p, T)=
-( \frac{T+2k}{k})^{-q(2,p)/p}\log\frac{T+2k}{k} for p\neq 3 ,

( \frac{T+2k}{k})^{1/3}(\log\frac{T+2k}{k})^{2} for p=3 .

Let X denotes the Banach space of functions u(x, t) for which the
D^{a}u are continuous in Q_{T} for |\alpha|\leq 2 and satisfy (2. 1) and ||D^{a}u||<\infty .
Here D^{a} stands for the space differentiation D_{x_{1}}^{a_{1}}D_{x_{2}}^{a_{2}} .

We shall look for a solution u to (1. 1) in X, employing the classical
iteration method:

(2. 9) u_{n+1}=u_{0}+AL(|u_{n}|^{p}) , n\in N .

It follows from Lemma 1 in [3], p. 236 that a solution u_{0} to (2. 6) satisfies
(2. 10) |D^{a}u_{0}(x, t)|\leq C(\varphi, \phi,)\epsilon(t+r+2k)^{-1/2}(t-r+2k)^{-1/2}

for |\alpha|\leq 2 and t\geq 0 , where a positive constant C(\varphi, \phi) depends on D^{a}\phi

and D^{\beta}\varphi for |\beta|\leq 3 . Hence we find from (2. 2), (2. 3) and (2. 10) that
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(2. 11) ||D^{a}u_{0}||\leq C(\varphi, \phi)k^{-1}\epsilon ,

which implies u_{0}\in X . Here we have used the fact that p\geq 2 and t-r
+2k>k .

Assume the a priori estimate (2. 7). Then F. John [6] proved that the
sequence \{u_{n}\} defined by (2. 9) converges in X if u_{0} satisfies the inequality
(56e) in [6], p. 24. Applying the inequality to our case, we know that
\{u_{n}\} converges in X if

(2. 12) ACk^{2}M(k, p, T)||u_{0}||^{p-1} \leq\frac{1}{p_{2^{p}}} , ||u_{0}||< \frac{1}{2}

for 2\leq p\leq p_{0}(2) . Therefore we find from (2. 8) (2. 11) that (2. 12) holds if

ACk^{2}( \frac{T+2k}{k})^{-q(2,p)/p}\log\frac{T+2k}{k}\epsilon^{p-1}(k^{-1}C(\varphi, \phi))^{p-1}\leq\frac{1}{p_{2^{p}}} for p\neq 3 ,

ACk^{2}( \frac{T+2k}{k})^{1/3}(\log\frac{T+2k}{k})^{2}\epsilon^{2}(k^{-1}C(\varphi, \phi))^{2}\leq\frac{1}{24} for p=3

and

C( \varphi, \phi)k^{-1}\epsilon<\frac{1}{2} .

Thus Theorem 1 is proved by taking \epsilon_{0} small.

\S 3. Proof of the a priori estimate

Let u be a continuous function in Q_{T}=R^{2}\cross[0, T) satisfying (2. 1).

Then L(|u|^{p}) satisfies (2. 1) and hence we can assume hereafter that

(3. 1) r<t+k , r=|x| ;

It follows from (2. 2) and (2. 5) that

|L(|u|^{p})(x, t)|

(3. 2)
\leq\frac{||u||^{p}}{2\pi}\int_{0}^{t}d\tau\int_{0}^{t-\tau}\frac{\rho d\rho}{\sqrt{(t-\tau)^{2}-\rho^{2}}}\int_{|\omega|=1}N(|x+\rho\omega|, \tau)^{-p}dS_{\omega} .

The integral over the unit circle in (3. 2) is equal to

2 \int_{0}^{\pi}N((|x|^{2}+\rho^{2}+2\rho|x|\cos\theta)^{1/2}, \tau)^{-p}d\theta

=2 \int_{-1}^{1}(1-\eta^{2})^{-1/2}N((r^{2}+\rho^{2}+2\rho r\eta)^{1/2}. \tau)^{-p}d\eta .

Changing the variable \eta for

\lambda=(r^{2}+\rho^{2}+2\rho r\eta)^{1/2} ,
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we find that the integral becomes

4 \int_{|\rho-r|}^{\rho+r}\lambda N(\lambda, \tau)^{-p}h(\lambda, \rho;r)^{-1/2} .

where

(3. 3) h(\lambda, \rho;r)=(\rho^{2}-(\lambda-r)^{2})((\lambda+r)^{2}-\rho^{2}) .

Therefore we get from (3. 2)

(3. 4)

In what follows, we can assume that

(3. 5) \lambda<\tau+k ,

because of (2. 1).

Inverting the order of the (\rho, \lambda)- integral, we find that the integral in
(3. 4) is equal to

\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\lambda N(\lambda, \tau)^{-p}d\lambda\int_{|\lambda-r|}^{t-\tau}\frac{\rho d\rho}{\sqrt{((t-\tau)^{2}-\rho^{2})h(\lambda,\rho,r)}}.
(3. 6)

+ \int_{0}^{t-r}d\tau\int_{0}^{t-\tau-r}\lambda N(\lambda, \tau)^{-p}d\lambda\int_{|\lambda-r|}^{\lambda+r}\frac{\rho d\rho}{\sqrt{((t-\tau)^{2}-\rho^{2})h(\lambda,\rho.r)}}.
=I_{1}(r, t)+I_{2}(r, t) ,

where the last equality gives the difinitions of I_{1} and I2, and we regard I2
as zero for t<r .

It follows from (2. 2), (3. 4) and (3. 6) that the a priori estimate (2. 7)
in Lemma 2. 1 is valid provided

(3. 7) I_{j}(r, t)\leq C(p)k^{2}M(k, p, T)N(r, t)^{-1} for j=1.2 ,

where M is defined in (2. 8) and we denote here and hereafter by C(p)
various positive constants depending only on p.

Firstly, we investigate the integral I_{1} . In the interval of the \rho- inte-
gral, we have

\lambda+r-\rho\geq\lambda+r-t+\tau ,(3. 8)
\lambda+r+\rho\geq\lambda+r+|\lambda-r|\geq 2\lambda or 2 r .

Since
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(3. 9) \int_{a}^{b}\frac{\rho d\rho}{\sqrt{\rho^{2}-a^{2}}\sqrt{b^{2}-\rho^{2}}}=\frac{1}{2}B(\frac{1}{2},
\frac{1}{2})=\frac{\pi}{2} for 0\leq a<b ,

it follows from (3. 3), (3. 6), (3. 8) and (3. 9) with a=|\lambda-r| , b=t-\tau that

\int_{|\lambda-r|}^{t-\tau}\frac{\rho d\rho}{\sqrt{((t-\tau)^{2}-\rho^{2})h(\lambda,\rho,r)}}.\leq\frac{\pi}{2\sqrt{2}(\sqrt{r}or\sqrt{\lambda})\sqrt{\tau+\lambda-t+r}}

Thus we get

(3. 10) I_{1}(r. t) \leq\frac{\pi}{2\sqrt{2}}\int_{0}^{t}d\tau\int_{|r-t+\tau|}^{r+t-\tau}\frac{\lambda N(\lambda,\tau)^{-p}}{(\sqrt{r}or\sqrt{\lambda})\sqrt{\tau+\lambda-t+r}}d\lambda .

Introducing new variables of integration

\alpha=\tau+\lambda , \beta=\tau-\lambda

and extending the domain of (\alpha, \beta)- integration, we find from (3. 5) and (3.
10) that

(3. 11) I_{1}(r ,

We shall prove (3. 7) for I_{1} in the following two cases.

CASE 1: 4r>t+r+2k .

Since 2\lambda=\alpha-\beta<\alpha+k in the domain of integration and, by definition,

(3. 12) N(\lambda, \tau)=k^{-(p+2)/2p}(\alpha+2k)^{1/2}(\beta+2k)^{1/p} .

we get from (3. 11)

(3. 13) I_{1}(r .

Note that \alpha-(t-r)\leq\alpha+k , because of (3. 1). Then the integration by
parts yields

(3. 14)
\leq 2\sqrt{2r}(t+r+2k)^{(2-p)/2}+(p-2)\int_{t-r}^{t+r}(\alpha+2k)^{(1-p)/2}d\alpha .

Let 3<p\leq p_{0}(2) . Then it follows from (3. 14) that the \alpha- integral in (3.
L3) is dominated by

2 \sqrt{2}(t+r+2k)^{(3-p)/2}+\frac{2(p-2)}{p-3}(t-r+2k)^{(3-p)/2}
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\leq 2(\sqrt{2}+\frac{p-2}{p-3})(t-r+2k)^{(3-p)/2} .

Therefore, it follows from this, (1. 2), (2. 3) and (3. 13) that

I_{1}(r, t) \leq C(p)k^{(p+2)/2}(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2}\log\frac{t-r+2k}{k}

(3.15) =C(p)N(r, t)^{-1}k^{(p+2)(p-1)/2p}(t-r+2k)^{-q(2,p)/p} \log\frac{t-r+2k}{k}

\leq C(p)k^{2}N(r, t)^{-1}(\frac{T+2k}{k})^{-q(2,p)/p}\log\frac{T+2k}{k} ,

which is (3. 7) for I_{1} .
Let 2\leq p<3 . Then it follows from (3. 14) that the \alpha^{-} integral in (3. 13)

is dominated by

2( \sqrt{2}+\frac{p-2}{3-p})(t+r+2k)^{(3-p)/2}\leq 2(\sqrt{2}+\frac{p-2}{3-p})(2t+3k)^{(3-p)/2} .

Therefore, we get

I_{1}(r, t) \leq C(p)k^{(p+2)/2}(t+r+2k)^{-1/2}(T+2k)^{(3-p)/2}\log\frac{T+2k}{k}

\leq C(p)k^{2}N(r, t)^{-1}(\frac{T+2k}{k})^{-q(2,p)/p}\log\frac{T+2k}{k} .

Let p=3 . Then, in the same way as above, the \alpha^{-} integral in (3. 13)
is dominated by

2 \sqrt{2r}(t+r+2k)^{-1/2}+\log\frac{t+r+2k}{t-r+2k}\leq 2\sqrt{2}+\log\frac{2t+3k}{k} .

Therefore, we get

I_{1}(r, t) \leq C(3)k^{5/2}(t+r+2k)^{-1/2}(\log\frac{T+2k}{k})^{2}

\leq C(3)k^{2}N(r, t)^{-1}(\frac{T+2k}{k})^{1/3}(\log\frac{T+2k}{k})^{2}

Thus we have proved (3. 7) for I_{1} in Case 1.

CASE 2: 4r<t+r+2k , i.e., t+r+2k<2(t-r+2k) .
In this case, we choose \sqrt{\lambda} in a denominator of the integrand in (3.

11). The we have

(3. 16) I_{1}(r ,
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The \alpha- integral in (3. 16) is dominated, in the same way as in Case 1, by

(3. 17) 2 \sqrt{2r}(t+r+2k)^{(1-p)/2}+(p-1)\int_{t-r}^{t+r}(\alpha+2k)^{-p/2}d\alpha .

Let 2<p\leq p_{0}(2) . Since (t+r+2k) is equivalent to (t-r+2k) in Case
2, we find from (3. 17) that the \alpha- integral in (3. 16) is dominated by

C(p)(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2} .

Therefore we have

I_{1}(r, t) \leq C(p)k^{(2+p)/2}(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2}\log\frac{t-r+2k}{k}

\leq C(p)k^{2}N(r, t)^{-1}(\frac{T+2k}{k})^{-q(2,p)/p}\log\frac{T+2k}{k} .

Let p=2 . Then the \alpha- integral in (3. 16) is dominated by

2 \sqrt{2r}(t+r+2k)^{-1/2}+\log\frac{t+r+2k}{t-r+2k}\leq 2\sqrt{2}+\log 2

Therefore, we have

I_{1}(r, t) \leq C(2)k^{2}\log\frac{T+2k}{k}

\leq C(2)k^{2}N(r, t)^{-1}(\frac{T+2k}{k})\log\frac{T+2k}{k} .

Thus the proof of (3. 7) for I_{1} is finished.
Next we investigate the intergral I2 defined for t>r . In the domain

of the integraion, we have

t-\tau-\rho\geq t-\tau-(\lambda+r)=t-r-\alpha

t-\tau+\rho\geq t-\tau+|\lambda-r|\geq 2r or t-r-\beta .

It follows from this, (3. 3) and (3. 9) with a=|\lambda-r| , b=\lambda+r that

\int_{|\lambda-r|}^{\lambda+r}\frac{\rho d\rho}{\sqrt{((t-\tau)^{2}-\rho^{2})h(\lambda,\rho.r)}}.\leq\frac{\pi}{2(\sqrt{2r}or\sqrt{t-r-\beta})\sqrt{t-r-\alpha})} .

Hence we have from this and (3. 6)

(3. 18) I_{2}(r, t) \leq\frac{\pi}{2}\int_{0}^{t-r}d\tau\int_{0}^{t-\tau-r}\frac{\lambda N(\lambda,\tau)^{-p}d\lambda}{(\sqrt{2r}or\sqrt{t-r-\beta})\sqrt{t-r-\alpha})} .

Extending the domain of (\alpha, \beta)- intergral, we find from (3. 5) and (3. 18)
that
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I_{2}(r, t) \leq\frac{\pi}{4}\int_{0}^{t-r}d\alpha\int_{-k}^{t-r}\frac{\lambda N(\lambda,\tau)^{-p}d\beta}{(\sqrt{2r}or\sqrt{t-r-\beta})\sqrt{t-r-\alpha}} .

Since 2\lambda=\alpha-\beta<\alpha+k , we get from this and (3. 12)

(3. 19) I_{2}(r, t) \leq\frac{\pi k^{(2+p)/2}}{8\sqrt{2r}}\int_{0}^{t-r}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\int_{-k}^{t-r}(\beta+2k)^{-1}d\beta

or

(3. 20) I_{2}(r, t) \leq\frac{\pi k^{(2+p)/2}}{8}\int_{0}^{t-r}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\int_{-k}^{t-r}\frac{(\beta+2k)^{-1}}{\sqrt{t-r-\beta}}d\beta .

We first show that, for 2\leq p\leq p_{0}(2) ,

(3. 21) \int_{0}^{t-r}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\leq C(p)(t-r+2k)^{(3-p)/2} .

In fact, let 0<t-r<k , i.e., 3k>t-r+2k . Then, by integration by parts,
the \alpha^{-} integral is dominated by

2 \sqrt{t-r}(2k)^{(2-p)/2}\leq 2(\frac{2}{3})^{(2-p)/2}(t-r+2k)^{(3-p)/2}

where we have used the fact that p\geq 2 . Let t-r>k which implies t-r>
(t-r+2k)/4 . Then, breaking the integral up into two pieces, we get

\int_{0}^{(t-r)/2}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\leq\sqrt{2}(t-r)^{-1/2}\int_{0}^{(t-r)/2}(\alpha+2k)^{(2-p)/2}d\alpha

\leq\frac{4\sqrt{2}}{4-p}(t-r+2k)^{(3-p)/2} ,

because p_{0}(2)<4 . On the complement,

\int_{(t-r)/2}^{(t-r\rangle}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\leq(\frac{t-r}{2}+2k)^{(2-p)/2}\int_{(t-r)/2}^{t-r}\frac{d\alpha}{\sqrt{t-r-\alpha}}

\leq\sqrt{2}2^{(p-2)/2}(t-r+2k)^{(3-p)/2} .

Next we show in a similar way to the above that

(3. 22) \int_{-k}^{(t-r)}\frac{(\beta+2k)^{-1}}{\sqrt{t-r-\beta}}d\beta\leq C(t-r+2k)^{-1/2}\log\frac{t-r+2k}{k} .

In fact, let 0<t-r<k . Then, by integration by parts, the \beta-integral is
dominated by

2\sqrt{t-r+k}k^{-1}\leq 6(t-r+2k)^{-1/2} .

Let k<t-r . Then, breaking the integral up into two pieces, we get



The lifespan of classical solutions to nonlinear wave equations
in two space dimensions 527

\int_{-k}^{(t-r)/2}\frac{(\beta+2k)^{-1}}{\sqrt{t-r-\beta}}d\beta\leq\sqrt{2}(t-r)^{-1/2}\int_{-k}^{(t-r)/2}(\beta+2k)^{-1}d\beta

\leq 2\sqrt{2}(t-r+2k)^{-1/2}\log\frac{t-r+4k}{2k} .

On the complement,

\int_{(t-r)/2}^{t-r}\frac{(\beta+2k)^{-1}}{\sqrt{t-r-\beta}}d\beta\leq(\frac{t-r}{2}+2k)^{-1}\int_{(t-r)/2}^{t-r}\frac{1}{\sqrt{t-r-\beta}}d\beta

\leq 2\sqrt{2}(t-r+2k)^{-1/2} .

When 4r>t+r+2k , it follows from (3. 19) and (3. 21) that

(3. 23) I_{2}(r, t) \leq C(p)k^{(2+p\rangle/2}(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2}\log\frac{T+2k}{k} .

When 4 r<t+r+2k , i.e. , t+r+2k<2(t-r+2k) , we obtain (3. 23) from
(3. 20), (3. 21) and (3. 22). Thus the estimate (3. 7) for I2 follows from (3.
23), by the same way as in (3. 15). Therefore, the proof of Lemma 2. 1 is
completed.

\S 4 Proof of Theorem 2

Let u(x, t) be a C^{2}-solution to (1. 1) in R^{2}\cross[0, T) with the initial
data defined in the statement of Theorem 2. In this section we shall show
that if T exceeds a certain constant we get a contradiction. This implis
that the lifespan of u has an upper bound which is expressed by such a
constant.

By the assumption of Theorem 2 on \emptyset , there exists a x_{0}\in R^{2} such that

(4. 1) \phi(x_{0})>0 .

Throughout this section we use the following notation. Let \overline{v} be the
spherical mean of v\in C^{0}(R^{2}\cross[0^{ },\infty)) at a point xo with radius r :

(4. 2) \overline{v}(r, t)=\frac{1}{2\pi}\int_{|\omega|=1}v(x_{0}+r\omega, t)dS_{\omega} .

Then (4. 1) yields

(4. 3) \overline{\phi}(0)>0 .

Hence one can find \delta>0 so small that

(4. 4) \overline{\phi}(2\delta)>0 .

As in section 2, we know that u satisfies the integral equation (2. 4).

Here we employ the following lemmas.
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LEMMA 4. 1. Let u_{0} be a solution to (2. 6) with \varphi(x)=0 . Then

(4. 5) \overline{u_{0}}(r, t)\geq\frac{\epsilon}{2\pi\sqrt{r}}\int_{|t+r|}^{t+r}\sqrt{\lambda}\overline{\phi}(\lambda)d\lambda for 0<t\leq 2r.

LEMMA 4. 2. Let u be the solution to (1. 1) with f(x)=0, g(x)\geq 0

and p>1 .
Then

(4. 6) \overline{u}(r, t)\geq\frac{A}{2\pi\sqrt{r}}\iint_{\tau_{r,t}}\sqrt{\lambda}|\overline{u}|^{p}(\lambda, \tau)d\lambda d\tau

for 0<t-r\leq r, where

(4. 7) T_{r,t}=\{(\lambda, \tau)\in R^{2} : t-r\leq\tau+\lambda\leq t+r, \tau-\lambda\leq t-r, \tau\geq 0\} .

These lemmas are due to R. Agemi [1].
Lemma 4. 2 follows from the proof of (2. 11) in [1]. Applying its

argument to u_{0} , we readily get Lemma 4. 1. For the sake of complete-
ness, we shall review proofs of these lemmas.

PROOF OF LEMMA 4. 2: It follows from (2. 4) that

(4. 8) \overline{u}(r, t)=\overline{u_{0}}(r, t)+\overline{AL(|u|^{p})}(r, t) .

Since the assumption that f(x)=0, g(x)\geq 0 yields \overline{u_{0}}\geq 0 , we have

(4. 9) \overline{u}(r, t)\geq\overline{AL(|u|^{p})}(r. t) .

We now employ the following fundamental identity for iterated spherical
means by F. John [5], p. 81 ;

\frac{1}{(2\pi)^{2}}\int_{|\eta|=1}\int_{|\omega|=1}v(r\eta+\rho\omega)dS_{\omega}dS_{\eta}

(4. 10)

where h(\lambda, \rho; r) is defined by (3. 3).
right hand side of (4. 9), we get

(4. 11) \overline{u}(r_{r}

Applying (4. 10) with v=|u|^{p} to the

Here we have used the Jensen’s inequality

\overline{|u|^{p}}\geq|\overline{u}|^{p} for p>1 .

Note that
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t-\tau-r\leq r for 0<t-r\leq r and \tau\geq 0 .

Then, inverting the order of (\lambda, \rho)- integral, we find that the right hand
side of (4. 11) equals to

Hence it follows from this and (4. 11) that

\overline{u}(r, t)

(4. 12)

\geq\frac{2A}{\pi}\int_{0}^{t}d\tau\int_{|t-\tau-r|}^{t-\tau+r}\lambda|\overline{u}|^{p}(\lambda, \tau)d\lambda\int_{|\lambda-r|}^{t-r}\overline{\sqrt{h(\lambda,\rho}}\cdot

. r )
((t-\tau^{\backslash 2},-\rho^{2})\rho d\rho .

In the domain of (\rho, \lambda)- integral of (4. 12), we know that

(4. 13) h(\lambda, \rho; r)\leq 12r\lambda((t-\tau)^{2}-(\lambda-r)^{2}) for 0<t-r\leq r .

In fact, \rho\leq t-\tau implies

\rho^{2}-(\lambda-r)^{2}\leq(t-\tau)^{2}-(\lambda-r)^{2} .

Since \lambda\leq t+r , \rho\leq t-\tau and t\leq 2r , we have

\lambda+r+\rho\leq t+r+r+t-\tau\leq 2t+2r\leq 6r .

Moreover, \rho\geq|\lambda-r| yields

\lambda+r-\rho\leq\lambda+r-|\lambda-r|\leq\lambda+r+\lambda-r=2\lambda .

Thus we get (4. 13). Using the fact that

1_{|\lambda-\gamma|}^{t-r}\frac{\rho d\rho}{\sqrt{(t-r)^{2}-\rho^{2}}}=\sqrt{(t-\tau)^{2}-(\lambda-r)^{2}} .

we obtain (4. 6) by (4. 12) and (4. 13).

PROOF OF LEMMA 4. 1: As is well known, a solution to (2. 6) with
\varphi(x)=0 is expressed in the form

(4. 14) u_{0}(x, t)= \frac{1}{2\pi}\int_{0}^{t}\frac{\rho d\rho}{\sqrt{t^{2}-\rho^{2}}}\int_{|\omega|=1}\epsilon\psi(x+\rho\omega)dS_{\omega} .

Applying (4. 10) with v=\phi to the right hand side of (4. 14), we get
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(4. 15) \overline{u_{0}}(r ,

As in the proof of Lemma 4. 2, inverting the order of (\lambda, \rho)-integral yields
for 0<t-r\leq r

(4. 16) \overline{u_{0}}(r, t)=\frac{2\epsilon}{\pi}\int_{|t-r|}^{t+r}\lambda\overline{\phi}(\lambda)d\lambda\int_{|\lambda-r|}^{t}\frac{\rho d\rho}{\sqrt{h(\lambda,\rho,r)(t^{2}-\rho^{2})}}. \cdot

Replacing t-\tau by t in (4. 13), we obtain (4. 5) by same way as in the
proof of Lemma 4. 2.

Now, define the region

(4. 17) S=\{(r, t)\in R^{2} ; 3\delta\leq t+r, \delta\leq t-r\leq 2\delta\} ,

where \delta is the one in (4. 4). Then it follows from (4. 4), (4. 5) and (4. 17)

(4. 18) \overline{u_{0}}(r, t)\geq\frac{C’\epsilon}{\sqrt{r}} for (r, t)\in S and t\leq 2r ,

where C’ is a constant defined by

(4. 19) C’= \frac{1}{2\pi}\int_{28}^{38}\sqrt{\lambda}\overline{\phi}(\lambda)d\lambda .

Since (2. 4) yields

(4. 20) \overline{u}(r, t)\geq\overline{u_{0}}(r, t) ,

we have

(4. 21) \overline{u}(r, t)\geq\frac{C’\epsilon}{\sqrt{r}} for (r, t)\in S and t\leq 2r .

Let \Sigma denote the set

(4. 22) \Sigma=\{(r, t)\in R^{2} : 3\delta\leq t-r\leq r\} .

For (r. t)\in\Sigma we introduce the sets
S_{r,t}=\{(\lambda, \tau) ; t-r\leq\lambda, \tau+\lambda\leq t+r, \delta\leq\tau-\lambda\leq 2\delta\} ,(4. 23)
R_{r,t}=\{(\lambda, \tau);t-r\leq\lambda, \tau+\lambda\leq t+r, 3\delta\leq\tau-\lambda\leq t-r\} ,

We note that for (r, t)\in\Sigma

(4. 24) S_{r,t} , R_{r,t}\subset T_{r,t} , S_{r,t}\subset S , R_{r,t}\subset\Sigma .

Hence it follows from (4. 6), (4. 21) and (4. 24) that
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\overline{u}(r, t)\geq\frac{A}{2\pi\sqrt{r}}\iint_{Sr,t}\sqrt{\lambda}(\frac{C’\epsilon}{\sqrt{\lambda}})^{p}d\lambda d\tau for (r, t)\in\Sigma .

Changing the variables by

(4. 25) \alpha=\tau+\lambda , \beta=\tau-\lambda ,

we have for (r, t)\in\Sigma

\overline{u}(r, t)\geq\frac{A(C’)^{p}}{4\pi\sqrt{r}}\epsilon^{p}\int_{8}^{28}d\beta\int_{2(t-r)+\beta}^{t+r}(\frac{\alpha-\beta}{2})^{(1-p)/2}d\alpha .

Since p>1 and \alpha-\beta\leq\alpha\leq t+r\leq 3r ,

\overline{u}(r, t)\geq\frac{A(C’)^{p}}{4\pi}(\frac{2}{3})^{(p-1)/2}\epsilon^{p}r^{-p/2}\int_{8}^{28}(3r-t-\beta)d\beta .

Here we find that for (r, t)\in\Sigma

3r-t-\beta\geq r-\beta\geq r-2\delta\geq r/3 .

Hence

\overline{u}(r, t)\geq\frac{\delta A(C’)^{p}}{12\pi}(\frac{2}{3})^{(p-1)/2}\epsilon^{p}r^{(2-p)/2} .

Therefore we obtain for (r, t)\in\Sigma

(4. 26) \overline{u}(r, t)\geq\{

C_{0}\epsilon^{p}r^{-1/2}(t-r-s)^{(3-p)/2} if 1<p<3 ,
C_{0}\epsilon^{p}r^{-(p-2)/2} if 3\leq p<p_{0}(2) ,

where we set s=3\delta and

(4. 27) C_{0}= \frac{\delta A(C’)^{p}}{12\pi}(\frac{2}{3})^{(p-1)/2}

Now, assume that \overline{u} has more general estimate

(4. 28) \overline{u}(r, t)\geq Cr^{-q}(t-r-s)^{a}(t-r)^{-b} for (r, t)\in\Sigma

with C>0 , q\geq 1/2 , a\geq 0 , b\geqq 0 . Then it follows from (4. 6), (4. 24), (4. 25)

and (4. 28) that for (r, t)\in\Sigma

\overline{u}(r, t)\geq\frac{A}{2\pi\sqrt{r}}\int\int_{Rr.t}\sqrt{\lambda}|\overline{u}(\lambda, \tau)|^{p}d\lambda d\tau

\geq\frac{AC^{p}}{2\pi\sqrt{r}}\int\int_{R_{r,t}}\lambda^{1/2-pq}(\tau-\lambda-s)^{pa}(\tau-\lambda)^{-pb}d\lambda d\tau

\geq\frac{AC^{p}}{4\pi\sqrt{r}}\int_{s}^{t-r}d\beta\int_{2(t-r)+\beta}^{t+r}(\frac{\alpha-\beta}{2})^{1/2-pq}(\beta-s)^{pa}\beta^{-pb}d\alpha .
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We divide the estimate for \overline{u} into the following two cases.
CASE 1 : t-r\geq r/2 .

Since pq>q>1/2 and

\alpha-\beta\leq\alpha\leq t+r\leq 3r\leq 6(t-r)

for ( r, t)\in\Sigma in this case, we have

\overline{u}(r. t)\geq\frac{3^{1/2-pq}AC^{p}}{4\pi\sqrt{r}(t-r)^{pb+pq-1/2}}\int_{s}^{t-r}(\beta-s)^{pa}(3r-t-\beta)d\beta .

By 3 r-t\geq r\geq t-r , \beta- integral is replaced gy

\int_{s}^{t-r}(\beta-s)^{pa}(t-r-\beta)d\beta=\frac{(t-r-s)^{pa+2}}{(pa\dagger 1)(pa\dagger 2)} .

Hence

\overline{u}(r, t)\geq\frac{3^{1/2-pq}AC^{p}(t-r-s)^{pa+2}}{4\pi(pa+2)^{2}\sqrt{r}(t-r)^{pb+pq-1/2}} .

CASE 2: t -r\leq/2 .
Since t+r\geq 2r\geq 4(t-r) and 2(t-r)+\beta\leq 3(t-r) for (r, t)\in\Sigma in this

case, we have

\overline{u}(r, t)\geq\frac{AC^{p}}{4\pi\sqrt{r}}\int_{s}^{t-r}(\beta-s)^{pa}\beta^{-pb}d\beta\int_{3(t-r)}^{4(t-r)}(\frac{\alpha}{2})^{1/2-pq}d\alpha

\geq\frac{2^{1/2-pq}AC^{p}}{4\pi\sqrt{r}(t-r)^{p_{b+}pq-3/2}}\int_{s}^{t-r}(\beta-s)^{pa}d\beta

2^{1/2-pq}AC^{p}(t-r-s)^{pa+1}
\geq\overline{4\pi(pa+1)\sqrt{r}(t-r)p^{p_{b+}pq-3/2}}

\geq\frac{3^{1/2-pq}AC^{p}(t-r-s)^{pa+2}}{4\pi(pa+2)^{2}\sqrt{r}(t-r)^{p_{b+}pq-1/2}} .

Combining these two cases, we obtain

(4. 29) \overline{u}(r, t)\geq C^{*}r^{-1/2}(t-r-s)^{a^{*}}(t-r)^{-b^{*}} for (r, t)\in\Sigma ,

where

a^{*}=pa+2 , b^{*}=pb+pq- \frac{1}{2} ,
(4. 30)

C^{*}= \frac{D_{q}C^{p}}{(pa\dagger 2)^{2}} ,
D_{q}= \frac{3^{1/2-pq}A}{4\pi}

Using the values
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q= \frac{1}{2} , a= \frac{3-p}{2} , b=0 , C=C_{0}\epsilon^{p} if 1<p<3 ,

(4. 31)
q= \frac{p-2}{2} , a=b=0, C=C_{0}\epsilon^{p} if 3\leq p<p_{0}(2)

corresponding to (4. 26), we have (4. 29) with

a^{*}= \frac{p(3-p)}{2}+2 , b^{*}= \frac{p-1}{2} , C^{*}= \frac{D_{1/2}(C_{0}\epsilon^{p})^{p}}{(p(3-p)/2+2)^{2}} if 1<p<3 ,

(4. 32)
a^{*}=2 , b^{*}= \frac{p(p-2)-1}{2} , C^{*}= \frac{D_{(p-2)/2}(C_{0}\epsilon^{p})^{p}}{4} if 3\leq p\leq p_{0}(2)

Define the sequences \{a_{l}\} , \{b_{l}\} , \{C_{l}\}(l\in N) by

a_{l+1}=pa_{l}+2 , b_{l+1}=pb_{l}+ \frac{p-1}{2} , C_{l+1}= \frac{D_{1/2}C_{l}^{p}}{(pa_{l}+2)^{2}} ,
(4. 33)

a_{1}=a^{*}- b_{1}=b^{*} . C_{1}=C^{*} as given in (4. 32).

Then (4. 29) will hold with q=1/2 , a^{*}=a_{l} , b^{*}=b_{l} , C^{*}=C\ell for l\in N .

Solving the above sequences we have

a_{l}=( \frac{3-p}{2}+\frac{2}{p-1})p^{l}-\frac{2}{p-1} , b_{l}= \frac{1}{2}p^{l}-\frac{1}{2} if 1<p<3 ,

(4. 34)
a_{l}= \frac{2}{p-1}p^{l}-\frac{2}{p-1} , b_{l}=\frac{p-2}{2}p^{l}-\frac{1}{2} if 3\leq p<p_{0}(2) .

If 1<p<3 , then

pa_{l}+2=( \frac{3-p}{2}+\frac{2}{p-1})p^{1+1}-\frac{2}{p-1} .

\leq\frac{2}{p-1}(p^{l+2}-1)\leq 2(l+2)p^{l+1} .

If 3\leq p<p_{0}(2) , then

pa_{l}+2= \frac{2}{p-1}(p^{l+1}-1)\leq 2(l+2)p^{l+1} .

Hence it follows from (4. 33) that

C_{l\dagger 1} \geq\frac{D_{1/2}C_{l}^{p}}{4(l+2)^{2}p^{2l+2}} for 1<p<p_{0}(2) ,

which implies that

C_{l} \geq\exp[p^{l}(\frac{1}{p}\log C_{1}-\sum_{j=1}^{1-1}[mathring]_{[mathring]_{[mathring]_{\frac{21g(j+2)+2(j+1)1gp+1g4D_{1/2}^{-1}}{p^{j+1}}}}})]

For sufficiently large l we have
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(4. 35) C_{l}\geq\exp[p^{l}(p^{-1}\log C_{1}-S(p))] for 1<p<p_{0}(2) ,

where

(4. 36) S(p)= \sum_{j=1}^{\infty}\frac{2\log(j+2)+2(j+1)\log p+\log 4D_{1/2}^{-1}}{p^{j+1}} .

We note that S(p) is finite because p>1 and each term is positive for
sufficiently large l. Therefore it follows from (4. 29), (4.33), (4.34) and (4.
35) that for (r, t)\in\Sigma

(4. 37) \overline{u}(r, t)\geq\frac{\sqrt{t-r}}{\sqrt{r}(t-r-s)^{2/(p-1)}}\exp[p^{l}J(r, t)] ,

where

(4. 38) J(r, t)=p^{-1}\log C_{1}-S(p)+

+\{

( \frac{3-p}{2}+\frac{2}{p-1})\log(t-r-s)-\frac{1}{2}\log(t-r) if 1<p<3 ,

\frac{2}{p-1}\log(t-r-s)-\frac{p-2}{2}\log(t-r) if 3\leq p<p_{0}(2) .

If there exists a point (r, t)\in\Sigma such that

(4. 39) J(r, t)>0 ,

then we have \overline{u}(r, t)=\infty letting l arrow\infty , which implies that u cannot be a
C^{2}-solution to (1. 1). This contradicts the assumption that u is a C^{2_{-}}solu-
tion to (1. 1), so that we shall look for (r, t)\in\Sigma which satisfies (4. 39)
In view of (4. 38), if t-r\geq 2s , (4. 39) follows from

( \frac{2}{p-1}-\frac{p-2}{2})\log(t-r)>-\frac{1}{p}\log C_{1}+S(p)+\frac{2p}{p-1}\log 2

for 1<p<p_{0}(2) .

Hence the definition of C_{1} , (4. 33), gives the following sufficient condition
to (4. 39),\cdot

\frac{q(2,p)}{1-p}\log(t-r)>logC’\epsilon^{-p} for 1<p<p_{0}(2) ,

where q(2, p) is defined by (1. 2) and we set

(4. 40) C’=(5^{2}D_{1}^{-1})^{1/p}C_{0}^{-1}e^{S(p)+2p/(p-1)} .
C_{0} is defined by (4. 27). Here we have used the following fact which fol-
lows from the definition of D_{q} , (4. 30).

(4. 41) D_{1/2}\geq D_{q} for q\geq 1/2 .
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Recall that q(2, p)<0 for 1<p<p_{0}(2) . Therefore, setting t=2r , we find
that (4. 39) follows from

t>C\epsilon^{p(p-1)/q(2,p)} for 1<p<p_{0}(2) ,

where

C=2(C’)^{(1-p)/q(2,p)}

Thus we conclude that T has to satisfy

T\leq C\epsilon^{p(p-1)/q(2,p)} .

This completes the proof of Theorem 2.

\S 5. Proof of Theorem 3

In this section we shall prove Theorem 3 by using the same argument
as in the proof of Theorem 2.

Let u(x, t) be a C^{2}-solution to (1. 1) in R^{2}\cross[0, T) with initial data
satisfying (1. 3). In the definition of the spherical mean, (4. 2), we set x_{0}=

0 . Define the set

(5. 1) \Sigma^{r}=\{(r, t)\in R^{2} ; s<t-r\leq r\}

for some fixed constant s>0 . By virture of Lemma 4. 1, (4. 5), we have
for (r, t)\in\Sigma’

\overline{u_{0}}(r, t)\geq\frac{\epsilon}{2\pi\sqrt{r}}\int_{t-r}^{t+r}\sqrt{\lambda}\overline{\phi}(\lambda)d\lambda

\geq\frac{\epsilon}{2\pi\sqrt{r}}\int_{t-r}^{t+r}\sqrt{\lambda}(1+\lambda)^{-\kappa-1}d\lambda

\geq\frac{1}{2\pi}(\frac{s}{1+s})^{\kappaarrow 1}\frac{\epsilon}{\sqrt{r}}\int_{t-r}^{t+r}\lambda^{-k-1/2}d\lambda

If 0<x\leq 1/2 , then

\overline{u_{0}}(r, t)\geq\frac{1}{2\pi}(\frac{s}{1+s})^{\kappa+1}\frac{\epsilon}{\sqrt{r}(t+r)^{\kappa+1/2}}\int_{t-r}^{t+r}d\lambda

\geq\frac{1}{3\pi}(\frac{s}{1+s})^{\kappa+1}\frac{\epsilon}{r^{\kappa}} .

If x>1/2 , then

\overline{u_{0}}(r, t)\geq\frac{1}{\pi(2x-1)}(\frac{s}{1+s})^{\kappa+1}\frac{\epsilon}{\sqrt{r}(t-r)^{\kappa-1/2}}[1-(\frac{t-r}{t+r})^{\kappa-1/2}]

\geq\frac{1}{\pi(2x-1)}(\frac{s}{1+s})^{\kappa+1}\frac{\epsilon}{\sqrt{r}(t-r)^{\kappa-1/2}}\min\{1 , x- \frac{1}{2}\}(1-\frac{t-r}{t+r})
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\geq\frac{1}{3\pi}\min\{\frac{2}{2x-1},1\}(\frac{s}{1+s})^{\kappa+1}\frac{\epsilon}{\sqrt{r}(t-r)^{\kappa-1/2}} .

Hence we obtain for (r, t)\in\Sigma’

(5. 2) \overline{u_{0}}(r, t)\geq

- \frac{C_{0}\epsilon}{r^{\kappa}} if 0<x \leq\frac{1}{2} ,

- \frac{C_{0}\epsilon}{\sqrt{r}(t-r)^{\kappa-1/2}} if x> \frac{1}{2} ,

where C_{0} is a constant defined by

(5. 3) C_{0}= \frac{1}{3\pi}\min\{|\frac{2}{2x-1}| , 1 \}(\frac{s}{1+s})^{\kappa+1}

For (r, t)\in\Sigma’ we find that

r^{\kappa}\leq r^{\kappa+1/2}(t-r-s)^{-1/2} .

Therefore it follows (4. 20) and (5. 2) that

(5. 4) \overline{u}(r-t)\geq

- \frac{C_{0}\epsilon(t-r-s)^{1/2}}{r^{\kappa+1/2}} if 0<x \leq\frac{1}{2} ,

\backslash \frac{C_{0}\epsilon}{\sqrt{r}(t-r)^{\kappa-1/2}} if x> \frac{1}{2} .

Now, as in the proof of Theorem 2, assume that \overline{u} has more general
estimate (4. 28). Hence we have (4. 29) (4. 30) for (r, t)\in\Sigma’ Using the
values

q=x+ \frac{1}{2} , a= \frac{1}{2} , b=0 , C=C_{0}\epsilon if 0<x \leq\frac{1}{2} ,
(5. 5)

q= \frac{1}{2} , a=0 , b=x- \frac{1}{2} , C=C_{0}\epsilon if x> \frac{1}{2}

corresponding to (5. 4), we obtain (4. 29) with

a^{*}= \frac{p}{2}+2 , b^{*}=px+ \frac{p-1}{2} , C^{*}= \frac{D_{\kappa+1/2}(C_{0}\epsilon)^{p}}{(p/2+2)^{2}} if 0<x \leq\frac{1}{2} ,
(5. 6)

a^{*}=2 , b^{*}=px- \frac{1}{2} , C^{*}= \frac{D_{1/2}(C_{0}\epsilon)^{p}}{4} if x> \frac{1}{2} ,

Define the sequence \{a_{l}\} , \{b_{l}\} , \{C_{l}\}(l\in N) by (4. 33) in which (4. 32) is
replaced by (5. 6). Solving these sequences we get
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a_{l}=( \frac{2}{p-1}+\frac{1}{2})p^{l}-\frac{2}{p-1} , b_{l}=(x+ \frac{1}{2})p^{l}-\frac{1}{2} if 0<x \leq\frac{1}{2} ,
(5. 7)

a_{l}= \frac{2}{p-1}p^{l}-\frac{2}{p-1} , b_{l}=xp^{l}- \frac{1}{2} if x> \frac{1}{2} ,

If 0<x\leq 1/2 , then

pa_{l}+2=( \frac{2}{p-1}+\frac{1}{2})p^{l+1}-\frac{2}{p-1} \leq 2(l+2)p^{l+1} .

If x>1/2 , then

pa_{l} \dagger 2=\frac{2}{p-1}(p^{l+1}-1)\leq 2(l+2)p^{l+1} .

Thus, in the same manner as the proof of Theorem 2, the estimate for \overline{u} ,
(4. 37), in which J is replaced by J’ holds for (r, t)\in\Sigma’ J’(r, t) is
defined by

(5. 8) J’(r, t)=p^{-1}\log C_{1}-S(p)+

+\{_{\frac{(\frac{2}{p-12}}{p-1}1og(t-r-s)-x1og(t-r)ifx>\frac{1}{2}}^{+\frac{1}{2})1og(t-r-s)-(x+\frac{1}{2})\log(t-r)}

,

if 0<x \leq\frac{1}{2}
’

where S(p) is the one in (4. 36).
J’(r, t)>0 which lead to the contradiction as in section 4 follows from

( \frac{2}{p-1}-x)\log(t-r)>\log C’\epsilon^{-1} for (r, t)\in\Sigma’ and t-r\geq 2s ,

where

C’=((p/2+2)^{2}D_{1}^{-1})^{1/p}C_{0}^{-1}e^{S(p)+2p/(p-1)}

becuase (4. 41) is still valid in this section though C_{0} is defined by (5. 3).
Therefore, setting t=2r , we find that J’(r, t)>0 for (r, t)\in\Sigma^{r} follows
from

t>C\epsilon^{(\kappa-\frac{2}{p-1})^{-1}} for p>1 and 0<x< \frac{2}{p-1} ,

where

C=2(C’)^{(\kappa-\frac{2}{p-1})^{-1}}

Thus we conclude that T has to satisfy
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T\leq C\epsilon^{(\kappa-\frac{2}{p-1})- 1}

This completes the proof of Theorem 3.

Appendix

In Appendix, we give a simple proof of the global existance of solu-
tions to (1. 1) with p>p_{0}(2) . Following R. T. Glassey [3], we define the
norm for a continuous function u(x, t) in R^{2}\cross[0^{ },\infty) satisfying (2. 1):

(A. 1) ||u||= \sup_{0,\infty}N(|x|, t)|u(x, t)|(_{X,f})\in R^{2}\cross\iota) ’

where

N(r. t)=

(A. 2)
\{_{k^{-1}(t+r+2k)^{12}(t-r+2k)^{12}(1og\frac{forp>t-r+3k}{k})^{-1}}^{k^{-q-1/2}(t+r+2k)^{1/2}(t-r+2k)^{q}p_{0}(2)},,’ p\neq 4forp=4

and

q= \frac{p-3}{2} for p_{0}(2)<p<4 ,
(A. 3)

q= \frac{1}{2} for p>4 .

We notice that the norm is slightly modified the one in [3].
We shall show the following lemma which assures, by the method in

\S 2, the global in time existence of solutions to (1. 1) with small initial
data.

LEMMA A. 1. There exists a positive constant C depending only on p
such that

(A. 4) ||L(|u|^{p})||\leq Ck^{2}||u||^{p}, p>p_{0}(2) ,

for any continutus function u in R^{2}\cross[0^{ },\infty) satisfying (2. 1).

PROOF: The proof will be done by same method as in \S 3. In order
to show the a priori estimate (A. 4), it is enough to prove, instead of (3.
7),

(A. 5) I_{j}(r, t)\leq Ck^{2}N(r, t)^{-1} for j=1,2 ,

where the I_{j} are defined in (3. 6).
We first treat the integral I_{1} . When 4r>t+r+2k , we get, instead of

(3. 13),
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(A. 6) I_{1}(r ,

for p\neq 4

The \beta- integral for p=4 is

(A. 7) \int_{-k}^{t-r}(\beta+2k)^{-2}(\log\frac{\beta+3k}{k})^{4}d\beta

Since p>p_{0}(2)>3 , it follows from (3. 14) that the \alpha^{-} integral in (A. 6) is
dominated by

2( \sqrt{2}+\frac{p-2}{p-3})(t-r+2k)^{(3-p)/2} .

Note that pq>1 for p>p_{0}(2) . Then the \beta- integral in (A. 6) is dominated
by

\int_{-k}^{\infty}(\beta+2k)^{-pq}d\beta=\frac{k^{1-pq}}{pq-1} .

The \beta- integral (A. 7) is also dominated by

Ck^{-8} \int_{-k}^{\infty}(\beta+2k)^{-2+8}d\beta=\frac{Ck^{-1}}{1-\delta}

for some small \delta>0 and for some C>0 . Hence we get

(A. 8) I_{1}(r, t)\leq C(p)k^{1+p/2}(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2} .

Since
(t-r+2k)^{(4-p)/2}\leq k^{(4-p)/2} for p>4 ,

\log\frac{t-r+3k}{k}>\log 2 for p=4,

we conclude from (A. 8) that (A. 5) for I_{1} is valid.
When 4r<t+r+2k , we get, instead of (3. 16)

(A. 9) I_{1}(r ,

for p\neq 4

The \beta- integral becomes (A. 7) for p=4. Since p>p_{0}(2)>2 and (t+r+2k)
is equivalent to (t-r+2k) , it follows from (3. 14) that the a-integral in
(A. 9) is dominated by

C(p)(t+r+2k)^{-1/2}(t-r+2k)^{(3-p)/2} .
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Hence we also conclude in the same way as above that (A. 5) for I_{1} is
valid.

Next we treat the integral I2. Making use of the method deriving (3.
21), we find that the \alpha- integral in (3. 19) or (3. 20) is dominated by

C(p)(t-r+2k)^{(3-p)/2} for p_{0}(2)<p<4 ,

(A. 10) C(p)(t-r+2k)^{-1/2} \log\frac{t-r+3k}{k} for p=4 ,

C(p)k^{(4-p)/2}(t-r+2k)^{-1/2} for p>4 .

When 4 r>t+r+2k , we get, instead of (3. 19),

(A. 11) I_{2}(r, t) \leq\frac{\pi k^{pq+p/2}}{8\sqrt{2r}}\int_{0}^{t-r}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\int_{-k}^{t-r}(\beta+2k)^{-pq}d\beta

for p\neq 4 .

The \beta- integral becomes (A. 7) for p=4. Since the \beta- integral in (A. 11) is
dominated by C(p)k^{1-pq} , we find from (A. 10) and (A. 11) that (A. 5) for I2
is valid.

When 4 r<t+r+2k , i.e., t+r+2k<2(t-r+2k) , we get, instead of
(3. 20),

(A. 12) I_{2}(r, t) \leq\frac{\pi}{8}k^{pq+p/2}\int_{0}^{t-r}\frac{(\alpha+2k)^{(2-p)/2}}{\sqrt{t-r-\alpha}}d\alpha\int_{-k}^{t-r}\frac{(\beta+2k)^{-pq}}{\sqrt{t-r-\beta}}d\beta

for p\neq 4

The \beta- integral for p=4 is

(A. 13) \int_{-k}^{t-r}\frac{(\beta+2k)^{-2}}{\sqrt{t-r-\beta}}(\log\frac{\beta+3k}{k})^{4}d\beta .

Making use of the method deriving (3. 22), we find that the \beta- integral are
dominated by

(A. 14) C(p)k^{1-pq}(t+r+2k)^{-1/2} .

We give here the proof of (A. 14) for the critical case where p=4 and t

-r>k , which implies t-r>(t-r+2k)/4 . We find that, for some C>0
and some small \delta>0 , the integral (A. 13) is dominated by

Ck^{-8} \int_{-k}^{t-k}\frac{(\beta+2k)^{-2+8}}{\sqrt{t-r-\beta}}d\beta

Then, breaking the integral up into two pieces, we get
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Ck^{-8} \int_{-k}^{(t-r)/2}\frac{(\beta+2k)^{-2+8}}{\sqrt{t-r-\beta}}d\beta\leq\sqrt{2}Ck^{-8}(t-r)^{-1/2}\int_{-k}^{\infty}(\beta+2k)^{-2+8}d\beta

\leq\frac{2\sqrt{2}Ck^{-1}}{1-\delta}(t-r+2k)^{-1/2}

\leq\frac{4Ck^{-1}}{1-\delta}(t+r+2k)^{-1/2} .

On the complement,

Ck^{-8} \int_{(t-r)/2}^{t-r}\frac{(\beta+2k)^{-2+8}}{\sqrt{t-r-\beta}}d\beta\leq Ck^{-8}(\frac{t-r}{2}+2k)^{-2+8}\int_{(t-r)/2}^{t-r}\frac{d\beta}{\sqrt{t-r-\beta}}

\leq Ck^{-8}2^{2-8}(t-r+2k)^{8-3/2} .
\leq C\sqrt{2}2^{2-8}k^{-1}(t+r+2k)^{-1/2} .

Here we have used that (t-r+2k)^{8-1}\leq k^{8-1} . Therefore, we conclude
from (A. 10), (A. 12) and (A. 14) that (A. 5) for I2 is valid. Thus the
proof of Lemma A. 1 is completed.
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