A variant of a Yamaguchi's result

Catherine FINET and Valérie TARDIVEL-NACHEF (Received November 5, 1991, Revised May 19, 1992)

Introduction

Yamaguchi extended the classical F. and M. Riesz theorem to a transformation group such that a compact abelian group acts on a locally compact Hausdorff space. In fact, he proved the following theorem.

THEOREM A. [5, Theorem 2.4] Let (G, X) be a transformation group in which G is a compact abelian group and X is a locally compact Hausdorff space. Let σ be a positive Radon measure on X that is quasi-invariant and let Λ be a Riesz set in \hat{G} . Let μ be a measure in $\mathcal{M}(X)$ with spec $\mu \subset \Lambda$. Then spec μ_a and spec μ_s are both contained in spec μ , where $\mu = \mu_a + \mu_s$ is the Lebesgue decomposition of μ with respect to σ .

Let us recall that a subset Λ of \hat{G} is a Riesz set if $\mathscr{M}_{\Lambda}(G) \subset L^{1}(G)$ (where $\mathscr{M}_{\Lambda}(G)$ denotes the space of measures in $\mathscr{M}(G)$ whose Fourier transforms vanish off Λ). With this terminology, the classical F. and M. Riesz theorem asserts that N is a Riesz subset of \mathbb{Z} .

Godefroy introduced and studied the notion of nicely placed and Shapiro sets [2]. Let us recall the definitions.

DEFINITION 1. [2]

1. A subset Λ of \widehat{G} is said nicely placed if the unit ball of $L^{1}_{\Lambda}(G)$ is closed in measure.

2. A subset Λ of \hat{G} is said Shapiro if every subset of Λ is nicely placed.

The Alexandrov's example shows that there exists a Riesz subset Λ of \mathbb{Z} which is not nicely placed [2]: take $\Lambda = \bigcup_{n=0}^{\infty} D_n$, where $D_n = \{k2^n, |k| \le 2^n, k \ne 0\}$. On the other hand of course \mathbb{Z} is nicely placed in \mathbb{Z} but not Riesz in \mathbb{Z} .

But Godefroy proved that every Shapiro set is a Riesz set [2].

Our aim is to show that the conclusion of theorem A also holds for another class of subsets Λ of \hat{G} : the nicely placed subsets. More precise-

^oThis work was supported by CGRI-FNRS-CNRS-grant.

ly, we will prove the following theorem :

THEOREM 2. Let (G, X) be a transformation group in which G is a compact abelian group and X is a locally compact Hausdorff space. Let σ be a positive Radon measure on X which is quasi-invariant and let Λ be a <u>nicely placed</u> subset of \hat{G} . If μ is in $\mathscr{M}(X)$ with spec μ contained in Λ then spec μ_a and spec μ_s are both contained in Λ (where $\mu = \mu_a + \mu_s$ is the Lebesgue decomposition of μ with respect to σ).

This result is better than the one of [1]. The proof follows Yamaguchi's ideas [4], [5], see also [6].

Preliminaries and notation

In what follows G will be a compact abelian group and X a locally compact Hausdorff space. We say that (G, X) is a transformation group if there exists a continuous map from $G \times X$ onto $X: (g, x) \to g \cdot x$ such that:

$$e \cdot x = x, g \cdot (h \cdot x) = (g \cdot h) \cdot x \tag{1}$$

for g, h in G and x in X.

Let us remark that for $g \in G$, the map $\theta_g : X \to X$ defined by $\theta_g(x) = g \cdot x$ is a homeomorphism (This directly comes from (1)).

A trivial example is (G, X) where G is a compact abelian subgroup of a locally compact group X.

A Borel measure σ on X is called <u>quasi-invariant</u> if $|\sigma|(F)=0(F)$ is a Borel subset of X) implies $|\sigma|(g \cdot F)=0$, for all g in G.

We will denote by $\mathscr{M}(X)$ the space of regular bounded Borel measures on X and by K(X) the space of continuous functions on X with compact support. We denote by $\hat{\mu}$ the Fourier transform of μ . For a closed subgroup H of G, H^{\perp} is the annihilator of H. The usual notion of convolution can be generalized in the following way [3], [4]:

For μ in $\mathcal{M}(X)$ and λ in $\mathcal{M}(G)$, we define $\lambda \star \mu$ in $\mathcal{M}(X)$ by :

$$(\lambda \star \mu)(f) = \int_X \int_G f(g \cdot x) d\lambda(g) d\mu(x), \text{ for } f \in K(X).$$

We can now define the spectrum of a measure μ in $\mathcal{M}(X)$ [4]: let $J(\mu)$ be the set of all f in $L^1(G)$ with $f \star \mu = 0$.

The spectrum of μ (denoted by spec μ) is $\bigcap_{f \in J(\mu)} \hat{f}^{-1}(0)$.

We have that $s \in \text{spec } \mu$ if and only if $(sm_G) \star \mu \neq 0$ [4] $(m_G \text{ is the Haar measure on } G)$.

Let $\pi: X \to X/G$ be the canonical map.

Yamaguchi introduced in [4] the conditions called (D. I) and (D. II).

- (D. I) For any $\mu \in \mathscr{M}^+(X)$, put $\eta = \pi(\mu)$. Then there exists a family $\{\lambda_x\}_{x \in x \in G}$ of measures in $\mathscr{M}^+(X)$ with the following properties:
 - 1. $\dot{x} \rightarrow \lambda_{\dot{x}}(f)$ is η -integrable for each bounded Baire function f on X,
 - $2. \|\lambda_{\dot{x}}\|=1,$
 - 3. supp $(\lambda_{\dot{x}}) \subset \pi^{-1}(\dot{x})$,
 - 4. $\mu(f) = \int_{X/G} \lambda_{\dot{x}}(f) d\eta(\dot{x})$, for each bounded Baire function f on X.
- (D. II) Let $\nu \in \mathscr{M}^+(X/G)$. Suppose $\{\lambda_x^i\}_{x \in x/G}$ (i=1,2) are families of measures in $\mathscr{M}(X)$ with the following properties :
 - 1. $\dot{x} \rightarrow \lambda_x^i(f)$ is a ν -integrable function for each bounded Baire function f on X (i=1, 2),
 - 2. supp $(\lambda_{\dot{x}}^{i}) \subset \pi^{-1}(\dot{x})$ (i=1,2),
 - 3. $\int_{X/G} \lambda_{\dot{x}}^{1}(f) d\nu(\dot{x}) = \int_{X/G} \lambda_{\dot{x}}^{2}(f) d\nu(\dot{x}) \text{ for all bounded Baire functions}$ f on X.

Then we have $\lambda_{\dot{x}}^1 = \lambda_{\dot{x}}^2 \nu^- a.a. \ \dot{x} \in X/G.$

Let $\mu \in \mathscr{M}(X)$ and $\eta \in \mathscr{M}^+(X/G)$. An $\underline{\eta}$ -disintegration of μ is a family $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ of measures in $\mathscr{M}(X)$ satisfying (1)': $\dot{x} \to \lambda_{\dot{x}}(f)$ is η -integrable for each bounded Baire function f on X and (3)-(4) in (D. I). If in addition, $\eta = \pi(|\mu|)$ and $||\lambda_{\dot{x}}|| = 1$ for all $\dot{x} \in X/G$, then following [4] we call $\{\lambda_{\dot{x}}\}_{\dot{x}\in X/G}$ a canonical disintegration of μ .

a canonical disintegration of μ .

For $x \in X$, we put $G_x = \{g \in G : g \cdot x = x\}$, we define the map $B_x : G \to G \cdot x$ by $B_x(g) = g \cdot x$, we put $\dot{x} = \pi(x)$ and $m_{\dot{x}} = B_x(m_G)$. We also consider the map $\tilde{B}_x : G/G_x \to G \cdot x$ defined by $: \tilde{B}_x(g+G_x) = g \cdot x$.

LEMMA 3. Let H be a closed subgroup of G, and Λ be a nicely placed subset of \hat{G} . Let (f_n) be a bounded sequence in $L^1_{\Lambda \cap H^1}(G/H)$ such that (f_n) converges to f in m_{G/H^-} measure. Then spec f is contained in Λ $\cap H^{\perp}$. In particular, $\Lambda \cap H^{\perp}$ is a nicely placed subset of H^{\perp} .

PROOF. Let $q: G \to G/H$ be the quotient map. We have that $(f_n \circ q)$ is a bounded sequence in $L^1(G)$. Moreover,

$$(f_n \circ q)^{\wedge}(\gamma) = \begin{cases} \hat{f}_n(\gamma) & \text{if } \gamma \in (G/H)^{\wedge} = H^{\perp} \\ 0 & \text{if } \gamma \in \widehat{G} \setminus H^{\perp}. \end{cases}$$

Thus, $\operatorname{spec}(f_n \circ q) \subset \Lambda \cap H^{\perp}$. Moreover $(f_n \circ q)$ converges to $f \circ q$ in m_G -measure. Then $\operatorname{spec}(f \circ q)$ is contained in Λ and spec f is contained in $\Lambda \cap H^{\perp}$.

LEMMA 4. Let G be metrizable and σ be a measure in $\mathscr{M}^+(X)$ which is quasi-invariant. If (G, X) satisfies conditions (D. I) and (D. II), then the conclusion of theorem 2 holds.

PROOF. Let μ be in $\mathscr{M}(X)$ with spec μ contained in Λ . By [4, Lemma 2.7] we may assume that $\eta = \pi(|\mu|) < <\pi(\sigma)$. Let $\{\lambda_{\dot{x}}\}_{\dot{x} \in X/G}$ be a canonical disintegration of $|\mu|$. Let h be an unimodular Baire function on X with $\mu = h|\mu|$.

We define $\mu_{\dot{x}} \in \mathcal{M}(X)$ by $\mu_{\dot{x}} = h\lambda_{\dot{x}}$. Then $\{\mu_{\dot{x}}\}_{\dot{x} \in X/G}$ is a canonical disintegration of μ . For each $\dot{x} \in X/G$, let $\lambda_{\dot{x}} = \lambda_{\dot{x}}^a + \lambda_{\dot{x}}^s$ and $\mu_{\dot{x}} = \mu_{\dot{x}}^a + \mu_{\dot{x}}^s$ be the Lebesgue decomposition of $\lambda_{\dot{x}}$ and $\mu_{\dot{x}}$ with respect to $m_{\dot{x}}$. Then $\mu_{\dot{x}}^a = h \lambda_{\dot{x}}^a$ and $\mu_{\dot{x}}^s = h \lambda_{\dot{x}}^s$. Since spec $\mu \subset \Lambda$, [4, Lemma 2.6] implies that

spec
$$\mu_{\dot{x}} \subseteq \Lambda$$
 η -a.a. $\dot{x} \in X/G$. (2)

Let $x \in \pi^{-1}(\dot{x})$ and $\xi_{\dot{x}} \in \mathcal{M}(G/G_x)$ such that $\widetilde{B}_x(\xi_{\dot{x}}) = \mu_{\dot{x}}$. Then by (2) and [4, Proposition 1.2] $\xi_{\dot{x}} \in \mathcal{M}_{\Lambda \cap G_x^{\pm}}(G/G_x) \eta - a.a. \dot{x} \in X/G$.

Let $\xi_{x} = \xi_{x}^{a} + \xi_{x}^{s}$ be the Lebesgue decomposition of ξ_{x} with respect to $m_{G/G_{x}}$. As G/G_{x} is a metrizable compact abelian group, there exists an identity approximation (f_{n}) in the unit ball of $L^{1}(G/G_{x})$ such that

$$\begin{cases} f_n \star \hat{\xi}^a_x \to \hat{\xi}^a_x \text{ in } L^1\text{-norm} \\ f_n \star \hat{\xi}^s_x \to 0 \text{ in } m_{G/G_x}\text{-measure (see [2]).} \end{cases}$$

Then,

 $f_n \star \xi_{\dot{x}} \to \xi_{\dot{x}}^a$ in $m_{G/Gx}$ -measure and spec $f_n \star \xi_{\dot{x}}$ is contained in $\Lambda \cap G_x^{\perp} \eta$ -a.a. $\dot{x} \in X/G$. From Lemma 3 it follows that spec $\xi_{\dot{x}}^a$ is also contained in $\Lambda \cap G_x^{\perp} \eta$ -a.a. $\dot{x} \in X/G$.

By [4, Propositions 1.5 and 1.2] it follows that

spec
$$\mu_x^a \subset \Lambda \quad \eta$$
-a.a. $\dot{x} \in X/G.$ (3)

By [4, Lemma 2.8], the functions :

$$\dot{x} \to \lambda^a_{\dot{x}}(f), \quad \dot{x} \to \lambda^s_{\dot{x}}(f)$$

are η -measurable for each bounded Baire function f on X. Hence, the functions

$$\dot{x} \rightarrow \mu^a_{\dot{x}}(f), \quad \dot{x} \rightarrow \mu^s_{\dot{x}}(f)$$

are η -measurable for each bounded Baire function f on X. We can then define $\omega_1, \omega_2 \in \mathscr{M}^+(X)$ and $\mu_1, \mu_2 \in \mathscr{M}(X)$ as follows:

$$\omega_1(f) = \int_{X/G} \lambda_{\dot{x}}^a(f) d\eta(\dot{x}), \qquad \omega_2(f) = \int_{X/G} \lambda_{\dot{x}}^s(f) d\eta(\dot{x})$$

$$\mu_1(f) = \int_{X/G} \mu_{\dot{x}}^a(f) d\eta(\dot{x}), \qquad \mu_2(f) = \int_{X/G} \mu_{\dot{x}}^s(f) d\eta(\dot{x})$$

for $f \in K(X)$. One has $\mu_1 < < \omega_1$ and $\mu_2 < < \omega_2$. By [4, Lemma 2.5] it follows that

$$\omega_1 < < \sigma, \quad \omega_2 \perp \sigma.$$

And also,

$$\mu_1 < < \sigma, \quad \mu_2 \perp \sigma.$$

Since $\mu = \mu_1 + \mu_2$, one has: $\mu_1 = \mu_a$. Let $\gamma \notin \Lambda$ and $f \in K(X)$, then,

$$\gamma \star \mu_a(f) = \gamma \star \mu_1(f) = \int_{X/G} \gamma \star \mu_x^a(f) d\eta(\dot{x})$$
$$= 0. \quad \text{(by (3))}$$

Hence spec $\mu_a \subset \Lambda$.

- In [4], Yamaguchi introduced conditions (C. I) and (C. II).
- (C. I) For any closed subgroup H of G with H[⊥] countable and any μ∈M⁺(X/H), put η=π(μ), where π: X/H → Y=X/H/G/H(≅X/G) is the canonical map. Then there exists a family {λ_y}_{y∈Y} of measures in M⁺(X/H) with the following properties:
 - 1. $y \rightarrow \lambda_y(f)$ is η -measurable for each bounded Baire function f on X/H,
 - 2. $\|\lambda_{y}\| = 1$,
 - 3. supp $(\lambda_y) \subset \pi^{-1}(y)$,
 - 4. $\mu(f) = \int_{Y} \lambda_y(f) d\eta(y)$ for each bounded Baire function f on X/H.
- (C. II) Let *H* be any closed subgroup of *G* with H^{\perp} countable. Let *Y* and π be as in (C. I). Let $\eta \in \mathscr{M}^+(Y)$, and let $\{\lambda_y^1\}_{y \in Y}$ and $\{\lambda_y^2\}_{y \in Y}$ be families of measures in $\mathscr{M}(X/H)$ satisfying the following properties:
 - 1. $y \rightarrow \lambda_y^i(f)$ is η -integrable for each bounded Baire function f on X/H(i=1,2),
 - 2. supp $(\lambda_{y}^{i}) \subset \pi^{-1}(y)$ (i=1,2),

3. ∫_Yλ¹_y(f)dη(y)=∫_Yλ²_y(f)dη(y) for all bounded Baire functions f on X/H.
Then λ¹_y=λ²_y η-a.a.y∈Y.

REMARK. [4] When X is a metric space then (G, X) satisfies (C. I) and (C. II).

LEMMA 5. Assume that (G, X) satisfies conditions (C. I) and (C. II) then the conclusion of theorem 2 holds.

PROOF. In fact, we may suppose that σ is a measure in $\mathscr{M}^+(X)$ that is quasi-invariant [4].

We will prove that spec $\mu_s \subset \Lambda$. We may assume that $\mu_s \neq 0$. Suppose there exists $\gamma_0 \in (\text{spec } \mu_s) \setminus \Lambda$. Then $\gamma_0 \star \mu_s \neq 0$. By [4, Lemmas 2.11 and 2. 13] there exists a countable subgroup Γ of \hat{G} with $\gamma_0 \in \Gamma$ such that

$$\begin{cases} \pi(\gamma_0 \star \mu_s) \neq 0, \\ \pi(|\mu_s|) \perp \pi(\sigma). \end{cases}$$

where $\pi: X \to X/\Gamma^{\perp}$ is the quotient map.

Then $\pi(\mu_s)$ is the singular part of $\pi(\mu)$ with respect to $\pi(\sigma)$. The measure $\pi(\sigma)$ is also quasi-invariant. The group Γ is countable and $(G/\Gamma^{\perp}, X/\Gamma^{\perp})$ satisfies conditions (D. I) and (D. II). Since spec $\pi(\mu) \subset \Gamma \cap \Lambda(\text{cf. } [4, \text{Lemma 2. 10}])$, Lemmas 3 and 4 imply spec $\pi(\mu_s) \subset \Gamma \cap \Lambda$. By [4, Lemma 2. 9],

$$\pi(\gamma_0 \star \mu_s) = q(\gamma_0) \star \pi(\mu_s) = \gamma_0 \star \pi(\mu_s),$$

where $q: G \to G/\Gamma^{\perp}$ is the canonical map and $\gamma_0 \in \text{spec } \pi(\mu_s)$; hence $\gamma_0 \in \Gamma \cap \Lambda$.

This gives the contradiction.

PROOF OF THEOREM 2. We may suppose that X is a σ -compact locally compact Hausdorff space and σ is a quasi -invariant measure in $\mathscr{M}^+(X)$.

We will prove that spec $\mu_s \subset \Lambda$. We may suppose that $\mu_s \neq 0$. Suppose there exists $\gamma_0 \in (\text{spec } \mu_s) \setminus \Lambda$. Then $\gamma_0 \star \mu_s \neq 0$.

By [5, Lemma 3.1], there exists an equivalence relation " \sim " on X such that :

(1) X/\sim is a (σ -compact) metrizable, locally compact Hausdorff space with respect to the quotient topology;

(2) $(G, X/\sim)$ becomes a transformation group by the action $g \cdot \tau(x) = \tau(g \cdot x)$ for $g \in G$ and $x \in X$, where $\tau : X \to X/\sim$ is the canonical map;

(3)
$$\tau(\gamma_0 \star \mu_s) \neq 0$$
;

(4)
$$\tau(|\mu_s|) \perp \tau(\sigma).$$

By (4) $\tau(\mu_s)$ is the singular part of $\tau(\mu)$. By [5, Lemma 2.2], spec $\tau(\mu) \subset \text{spec } \mu \subset \Lambda$. $\tau(\sigma)$ is a quasi-invariant measure in $\mathscr{M}^+(X/\sim)$ and since X/\sim is metrizable, $(G, X/\sim)$ satisfies conditions (C. I) and (C. II). Lemma 5 implies that spec $\tau(\mu_s) \subset \Lambda$. But

$$\tau(\gamma_0 \star \mu_s) = \gamma_0 \star \tau(\mu_s)$$

= 0. (by (3))

And $\gamma_0 \in \text{spec } \tau(\mu_s) \subset \Lambda$. This gives the contradiction.

References

- [1] C. FINET, V. TARDIVEL, Lacunary sets on transformation groups. Preprint.
- [2] G. GODEFROY, On Riesz subsets of abelian discrete groups. Isr. J. Math. 61 (1988), 301 -333.
- [3] S. L. GULICK, P. S. LIN, A. C. VAN ROOIJ, Group algebra modules II. Canad. J. Maths. 19(1967), 151-173.
- [4] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups. Hokkaido Math. J. 17 (1988), 289-32.
- [5] H. YAMAGUCHI, The F. and M. Riesz theorem on certain transformation groups II. Hokkaido Math. J. 19 (1990), 345-359.
- [6] H. YAMAGUCHI, A property of spectrums of measures on certain transformation groups. Hokkaido Math. J. 20 (1991), 109-121.

Université de Mons-Hainaut Institut de Mathématique et d'Informatique 15, Avenue Maistriau, 7000 MONS-BELGIQUE Université Paris 7

Université Paris 6, Equipe d'Analyse U. A. 754 au C.N.R.S. Tour 46-00, 4ème étage, 4, place Jussieu 75252 PARIS CEDEX 05-FRANCE Université Catholique de l'Ouest