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A variant of a Yamaguchi’s result
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Introduction

Yamaguchi extended the classical F. and M. Riesz theorem to a trans-
formation group such that a compact abelian group acts on a locally com-
pact Hausdorff space. In fact, he proved the following theorem.

THEOREM A. [5, Theorem 2. 4] Let (G, X) be a transformation group
in which G is a compact abelian group and X is a locally compact Haus-

dorff space. Let \sigma be a positive Radon measure on X that is quasi-invar-
iant and let \Lambda be a Riesz set in \overline{G} . Let \mu be a measure in \mathscr{M}(X) with
spec \mu\subset\Lambda . Then spec \mu_{a} and spec \mu_{s} are both contained in spec \mu , where
\mu=\mu_{a}+\mu_{s} is the Lebesgue decomposition of \mu with respect to \sigma.

Let us recall that a subset \Lambda of \overline{G} is a Riesz set if \mathscr{M}_{\Lambda}(G)\subset L^{1}(G)

(where \mathscr{M}_{\Lambda}(G) denotes the space of measures in \mathscr{M}(G) whose Fourier
transforms vanish off \Lambda). With this terminology, the classical F. and M.
Riesz theorem asserts that N is a Riesz subset of Z.

Godefroy introduced and studied the notion of nicely placed and
Shapiro sets [2]. Let us recall the definitions.

DEFINITION 1. [2]
1. A subset \Lambda of \overline{G} is said nicely placed if the unit ball of L_{\Lambda}^{1}(G) is

closed in measure.
2. A subset \Lambda of \overline{G} is said Shapiro if every subset of \Lambda is nicely

placed.

The Alexandrov’s example shows that there exists a Riesz subset \Lambda of Z
which is not nicely placed [2]: take \Lambda=\bigcup_{n=0}^{\infty}D_{n} , where D_{n}=\{k2^{n}|k|\leq 2^{n} . k
\neq 0\} . On the other hand of course Z is nicely placed in Z but not Riesz in
Z.
But Godefroy proved that every Shapiro set is a Riesz set [2].

Our aim is to show that the conclusion of theorem A also holds for
another class of subsets \Lambda of \overline{G} : the nicely placed subsets. More precise-
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1y , we will prove the following theorem:

THEOREM 2. Let (G, X) be a transformation group in which G is a
compact abelian group and X is a locally compact Hausdorff space. Let \sigma

be a positive Radon measure on X which is quasi-invariant and let \Lambda be a
nicely placed subset of \hat{G}. If \mu is in \mathscr{M}(X) with spec \mu contained in \Lambda

then spec \mu_{a} and spec \mu_{s} are both contained in \Lambda {where \mu=\mu_{a}+\mu_{s} is the
Lebesgue decomposition of \mu with respect lo\sigma).

This result is better than the one of [1],
The proof follows Yamaguchi’s ideas [4], [5], see also [6].

Preliminaries and notation

In what follows G will be a compact abelian group and X a locally
compact Hausdorff space. We say that (G, X) is a transformation group
if there exists a continuous map from G\cross X onto X:(g, x) -arrow g\cdot x such
that :

e\cdot x=x, g . (h\cdot x)=(g\cdot h)\cdot x (1)

for g, h in G and x in X.
Let us remark that for g\in G , the map \theta_{g} : Xarrow X defined by \theta_{g}(x)=g\cdot x is
a homeomorphism (This directly comes from (1)).
A trivial example is (G, X) where G is a compact abelian subgroup of a
locally compact group X.

A Borel measure \sigma on X is called \underline{quasi}-invariant if |\sigma|(F)=0(F is a
Borel subset of X) implies |\sigma|(g\cdot F)=0 , for all g in G .

We will denote by \mathscr{M}(X) the space of regular bounded Borel measures on
X and by K(X) the space of continuous functions on X with compact
support. We denote by \overline{\mu} the Fourier transform of \mu . For a closed sub-
group H of G , H^{\perp} is the annihilator of H. The usual notion of convolu-
tion can be generalized in the following way [3], [4]:
For \mu in \mathscr{M}(X) and \lambda in \mathscr{M}(G) , we define \lambda

\star\mu in \mathscr{M}(X) by:

( \lambda\star\mu)(f)=\int_{X}\int_{G}f(g\cdot x)d\lambda(g)d\mu(x) , for f\in K(X) .

We can now define the spectrum of a measure \mu in \mathscr{M}(X)[4] : let J(\mu) be
the set of all f in L^{1}(G) with f\star\mu=0 .
The spectrum of \mu (denoted by spec \mu ) is \bigcap_{f\in J(\mu)}\hat{f}^{-1}(0) .
We have that s\in spec\mu if and only if (sm_{G})\star\mu\neq 0[4](m_{G} is the Haar
measure on G).
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Let \pi:Xarrow X/G be the canonical map.
Yamaguchi introduced in [4] the conditions called (D. I) and (D. II ).

(D. I) For any \mu\in \mathscr{M}^{+}(X) , put \eta=\pi(\mu) . Then there exists a family
\{\lambda_{x}\}_{x_{\in XG}}of measures in \mathscr{M}^{+}(X) with the following properties:

1. \dot{x}arrow\lambda_{x}(f) is \eta- integrable for each bounded Baire function f on
X,

2. ||\lambda_{x}||=1 ,

3. supp (\lambda_{x})\subset\pi^{-1}(\dot{x}) ,

4. \mu(f)=\int_{x/c}\lambda_{x}(f)d\eta(\dot{x}) , for each bounded Baire function f on X.

(D. II ) Let \nu\in \mathscr{M}^{+}(X/G) . Suppose \{\lambda_{x}^{l}.\}_{x\in x/G}(i=1,2) are families of mea-
sures in \mathscr{M}(X) with the following properties:

1. \dot{x}arrow\lambda_{x}^{i}(f) is a 1\nearrow- integrable function for each bounded Baire func-
tion f on X(i=1,2) ,

2. supp (\lambda_{x}^{i})\subset\pi^{-1}(\dot{x}) (i=1,2) ,

3. \int_{x/c}\lambda_{X}^{1}(f)d1\nearrow(\dot{x})=\int_{X/G}\lambda_{x}^{2}(f)d\nu(\dot{x}) for all bounded Baire functions

f on X.
Then we have \lambda_{x}^{1}=\lambda_{x}^{2}\downarrow J^{-a.a}.\dot{x}\in X/G .

Let \mu\in \mathscr{M}(X) and \eta\in \mathscr{M}^{+}(X/G) . An \eta -disintegration of \mu is a family
\{\lambda_{x}\}_{x\in X/G} of measures in \mathscr{M}(X) satisfying (1)’ : \dot{x} -arrow\lambda_{x}(f) is \eta- integrable
for each bounded Baire function f on X and (3)-(4) in (D. I). If in addi-

tion, \eta=\pi(|\mu|) and ||\lambda\chi ||=1 for all \dot{x}\in X/G , then following [4] we call
\{\lambda_{x}\}_{x\in X/G} a canonical disintegration of \mu .
a canonical disintegration of \mu .
For x\in X , we put G_{x}=\{g\in G:g\cdot x=x\} , we define the map B_{x} : Garrow G\cdot x

by B_{x}(g)=g\cdot x , we put \dot{x}=\pi(x) and m_{x}=B_{x}(m_{G}) . We also consider the
map \overline{B}_{x} : G/G_{x}arrow G- x defined by: \overline{B}_{x}(g+G_{x})=g\cdot x .

LEMMA 3. Let H be a closed subgroup of G, and \Lambda be a nicely
placed subset of \hat{G}. Let (f_{n}) be a bounded sequence in L_{\Lambda\cap H^{\perp}}^{1}(G/H) such
that (f_{n}) converges to f in m_{G/H^{-}} measure. Then spec f is contained in \Lambda

\cap H^{\perp} . In particular, \Lambda\cap H^{\perp}is a nicely placed subset of H^{\perp} .

PROOF. Let q:Garrow G/H be the quotient map. We have that (f_{n}\circ q)

is a bounded sequence in L^{1}(G) . Moreover,

(f_{n}\circ q)^{\wedge}(\gamma)=\{_{0}^{\hat{f}_{n}(\gamma)} ifif \gamma\in(G/H)^{\Lambda}=H^{\perp}\gamma\in\hat{G}\backslash H^{\perp}.\}



486 Catherine Finet and Vale’rie Tardivel-Nachef

Thus, spec(f_{n}\circ q)\subset\Lambda\cap H^{\perp} .
Moreover (f_{n}\circ q) converges to f\circ q in m_{G^{-}}measure Then spec(f\circ q) is
contained in \Lambda and spec f is contained in \Lambda\cap H^{\perp} .

\blacksquare

LEMMA 4. Let G be metrizable and \sigma be a measure in \mathscr{M}^{+}(X) which
is quasi-invariant. If(G, X) satisfies conditions (D. I) and (D. II), then the
conclusion of theorem 2 holds.

PROOF. Let \mu be in \mathscr{M}(X) with spec \mu contained in \Lambda . By [4,
Lemma 2. 7] we may assume that \eta=\pi(|\mu|)<<\pi(\sigma) . Let\{\lambda_{x}\}_{x\in X/G} be a
canonical disintegration of |\mu| . Let h be an unimodular Baire function on
X with \mu=h|\mu| .
We define \mu_{x}\in \mathscr{M}(X) by \mu_{x}=h\lambda_{x} . Then \{\mu_{x}\}_{x\in X/G} is a canonical disinte-
gration of \mu . For each \dot{x}\in X/G , let \lambda_{x}=\lambda_{x}^{a}+\lambda_{x}^{s} and \mu_{x}=\mu_{x}^{a}+\mu_{x}^{s} be the
Lebesgue decomposition of \lambda_{x} and \mu_{x} with respect to m_{x} . Then \mu_{x}^{a}=h\lambda_{x}^{a}

and \mu_{x}^{s}=h\lambda_{x}^{6} . Since spec \mu\subset\Lambda , [4, Lemma 2. 6] implies that

spec \mu_{x}\subset\Lambda \eta-a.a.\dot{x}\in X/G . (2)

Let x\in\pi^{-1}(\dot{x}) and \xi_{x}\in \mathscr{M}(G/G_{x}) such that \overline{B}_{x}(\xi_{x})=\mu_{x} . Then by (2) and
[4, Proposition 1. 2] \xi_{x}\in \mathscr{M}_{\Lambda\cap G_{\chi}^{\perp}}(G/G_{x})\eta-a.a.\dot{x}\in X/G .
Let \xi_{x}=\xi_{x}^{a}+\xi_{x}^{6} be the Lebesgue decomposition of \xi_{x} with respect to m_{G/Gx} .
As G/G_{x} is a metrizable compact abelian group, there exists an identity
approximation (f_{n}) in the unit ball of L^{1}(G/G_{x}) such that

\{

f_{n}\star\xi_{X}^{a}arrow\xi_{x}^{a} in L^{1}-norm
f_{n}\star\xi_{x}^{s}arrow 0 in m_{G/G_{X}}-measure (see [2]).

Then,
f_{n}\star\xi_{x}arrow\xi_{x}^{a} in m_{G/G_{X}}-measure and spec f_{n}\star\xi_{x} is contained in \Lambda\cap G_{x}^{\perp}\eta-a.a .
\dot{x}\in X/G . From Lemma 3 it follows that spec \xi_{\chi}^{a} is also contained in \Lambda\cap

G_{x}^{\perp}\eta-a.a.\dot{x}\in X/G .
By [4, Propositions 1. 5 and 1. 2] it follows that

spec \mu_{x}^{a}\subset\Lambda \eta-a.a.\dot{x}\in X/G . (3)

By [4, Lemma 2. 8], the functions:
\dot{x}arrow\lambda_{x}^{a}(f) , \dot{x}arrow\lambda_{x}^{s}(f)

are \eta-measurable for each bounded Baire function f on X. Hence, the
functions

\dot{x}arrow\mu_{x}^{a}(f) , \dot{x}arrow\mu_{x}^{s}(f)
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are \eta-measurable for each bounded Baire function f on X.
We can then define \omega_{1},\omega_{2}\in \mathscr{M}^{+}(X) and \mu_{1},\mu_{2}\in \mathscr{M}(X) as follows:

\omega_{1}(f)=\int_{x/c}\lambda_{x}^{a}(f)d\eta(\dot{x}) , \omega_{2}(f)=\int_{X/G}\lambda_{x}^{s}(f)d\eta(\dot{x})

\mu_{1}(f)=\int_{x/c}\mu_{x}^{a}(f)d\eta(\dot{x}) , \mu_{2}(f)=\int_{X/G}\mu_{x}^{s}(f)d\eta(\dot{x})

for f\in K(X) .
One has \mu_{1}<<\omega_{1} and \mu_{2}<<\omega_{2} .
By [4, Lemma 2. 5] it follows that

\omega_{1}<<\sigma , \omega_{2}\perp\sigma .

And also,

\mu_{1}<<\sigma , \mu_{2}\perp\sigma .

Since \mu=\mu_{1}+\mu_{2} , one has : \mu_{1}=\mu_{a} . Let \gamma\not\in\Lambda and f\in K(X) , then,

\gamma\star\mu_{a}(f)=\gamma\star\mu_{1}(f)=\int_{X/G}\gamma\star\mu_{x}^{a}(f)d\eta(\dot{x})

=0 . (by (3))

Hence spec \mu_{a}\subset\Lambda .
\blacksquare

In [4], Yamaguchi introduced conditions (C. I) and (C. II).

(C. I) For any closed subgroup H of G with H^{\perp} countable and any
\mu\in \mathscr{M}^{+}(X/H) , put \eta=\pi(\mu) , where \pi:X/Harrow Y=X/H/G/H(\cong X/

G) is the canonical map. Then there exists a family \{\lambda_{y}\}_{y\in Y} of
measures in \mathscr{M}^{+}(X/H) with the following properties:

1. yarrow\lambda_{y}(f) is \eta-measurable for each bounded Baire function f
on X/H,

2. ||\lambda_{y}||=1 ,

3. supp(\lambda_{y})\subset\pi^{-1}(y) ,

4. \mu(f)=f_{Y}\lambda_{y}(f)d\eta(y) for each bounded Baire function f on X/H.

(C. II) Let H be any closed subgroup of G with H^{\perp} countable. Let Y and
\pi be as in (C. I). Let \eta\in \mathscr{M}^{+}(Y) , and let \{\lambda_{y}^{1}\}_{y\in Y} and \{\lambda_{\mathcal{Y}}^{2}\}_{y\in Y} be fam-
ilies of measures in \mathscr{M}(X/H) satisfying the following properties:

1. yarrow\lambda_{y}^{i}(f) is \eta-integrable for each bounded Baire function f on
X/H(i=1,2) ,

2. supp(\lambda_{\mathcal{Y}}^{i})\subset\pi^{-1}(y) (i=1,2) ,
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3. f_{Y}\lambda_{y}^{1}(f)d\eta(y)=f_{Y}\lambda_{y}^{2}(f)d\eta(y) for all bounded Baire functions f on
X/H.

Then \lambda_{y}^{1}=\lambda_{y}^{2} \eta-a.a.y\in Y

REMARK. [4] When X is a metric space then (G, X) satisfies (C. I)
and (C. II ).

LEMMA 5. Assume that (G, X) satisfies conditions (C. I) and (C. II )
then the conclusion of theorem 2 holds.

PROOF. In fact, we may suppose that \sigma is a measure in \mathscr{M}^{+}(X) that
is quasi-invariant [4].
We will prove that spec \mu_{s}\subset\Lambda . We may assume that \mu_{s}\neq 0 . Suppose
there exists \gamma_{0}\in(spec\mu_{s})\backslash \Lambda . Then \gamma_{0}\star\mu_{s}\neq 0 . By [4, Lemmas 2. 11 and 2.
13] there exists a countable subgroup \Gamma of \hat{G} with \gamma_{0}\in\Gamma such that

\{

\pi(\gamma_{0}\star\mu_{s})\neq 0 ,
\pi(|\mu_{s}|)\perp\pi(\sigma) ,

where \pi:Xarrow X/\Gamma^{\perp} is the quotient map.
Then \pi(\mu_{s}) is the singular part of \pi(\mu) with respect to \pi(\sigma) . The mea-
sure \pi(\sigma) is also quasi-invariant. The group \Gamma is countable and (G/\Gamma^{\perp} ,
X/\Gamma^{\perp}) satisfies conditions (D. I) and (D. II). Since spec \pi(\mu)\subset\Gamma\cap\Lambda(cf . [4,
Lemma 2. 10]), Lemmas 3 and 4 imply spec \pi(\mu_{s})\subset\Gamma\cap\Lambda . By [4, Lemma 2.
9],

\pi(\gamma_{0}\star\mu_{s})=q(\gamma_{0})\star\pi(\mu_{s})

=\gamma_{0}\star\pi(\mu_{s}) ,

where q:Garrow G/\Gamma^{\perp} is the canonical map and \gamma_{0}\in spec\pi(\mu_{s}) ; hence \gamma_{0}\in\Gamma

\cap\Lambda .
This gives the contradiction.

\blacksquare

PROOF OF THEOREM 2. We may suppose that X is a \sigma-compact
locally compact Hausdorff space and \sigma is a quasi -invariant measure in
\mathscr{M}^{+}(X) .

We will prove that spec \mu_{s}\subset\Lambda . We may suppose that \mu_{s}\neq 0 . Suppose
there exists \gamma_{0}\in(spec\mu_{s})\backslash \Lambda . Then \gamma_{0}\star\mu_{s}\neq 0 .
By [5, Lemma 3. 1], there exists an equivalence relation “–,, on X such
that:

(1) X/- is a ( \sigma-compact) metrizable, locally compact Hausdorff space
with respect to the quotient topology;
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(2) (G, X/ -) becomes a transformation group by the action g\cdot\tau(x)=

\tau(g\cdot x) for g\in G and x\in X , where \tau:Xarrow X/- is the canonical map;

(3) \tau(\gamma_{0}\star\mu_{s})\neq 0 ;

(4) \tau(|\mu_{s}|)\perp\tau(\sigma) .

By (4) \tau(\mu_{s}) is the singular part of \tau(\mu) .
By [5, Lemma 2. 2], spec \tau(\mu)\subset spec\mu\subset\Lambda .
\tau(\sigma) is a quasi-invariant measure in \mathscr{M}^{+}(X/ -) and since X/- is metr-
izable, (G, X/-) satisfies conditions (C. I) and (C. II).

Lemma 5 implies that spec \tau(\mu_{s})\subset\Lambda .
But

\tau(\gamma_{0}\star\mu_{s})=\gamma_{0}\star\tau(\mu_{s})

\neq 0 . (by (3))

And \gamma_{0}\in spec\tau(\mu_{s})\subset\Lambda . This gives the contradiction.
\blacksquare
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