p-supersolvability of factorized finite groups

Angel CAROCCA (Received July 3, 1991, Revised September 4, 1991)

1. Introduction

All groups we consider are finite. It is well known that the product of two supersolvable normal subgroups is not supersolvable in general (see Huppert [3]).

In [2]. Baer proved that if G is the product of two supersolvable normal subgroups and the commutator subgroup G' of G is nilpotent, then G is supersolvable.

In [1]. Asaad and Shaalan proved the following generalization of Baer's theorem:

Suppose that H and K are supersolvable subgroups of G, G' is nilpotent and G = HK. Suppose further that H is permutable with every subgroup of K and K is permutable with every subgroup of H. Then G is supersolvable.

Further, they proved the following result:

Suppose that H is a nilpotent, K a supersolvable subgroup of G and G= HK. Suppose further that H is permutable with every subgroup of K and K is permutable with every subgroup of H. Then G is supersolvable.

If H and K are subgroups of a group G such that H is permutable with every subgroup of K and K is permutable with every subgroup of H, we say that H and K are mutually permutable and we say that H and K are totally permutable if every subgroup of H is permutable with every subgroup of K.

The purpose of the present communication is the presentation of some properties of products of mutually permutable subgroups:

THEOREM A. Let G=HK>1 be a group where H and K are mutually permutable. Then H or K contains a nonidentity normal subgroup of G or $F(G)\neq 1$, where F(G) denotes the Fitting subgroup of G.

Further we present a generalization and give independent proofs of the above mentioned results of Asaad and Shaalan in the following sense: 396 A. Carocca

THEOREM B. Let p be a prime number and G = HK a group such that H and K are p-supersolvable subgroups of G. If H and K are mutually permutable and G' is p-nilpotent, then G is p-supersolvable.

THEOREM C. Let p be a prime number and G=HK a group such that H is a p-supersolvable and K a p-nilpotent subgroup of G. If H and K are mutually permutable, then G is p-supersolvable.

2. Preliminary results

We develop a sequence of straightforward lemmas.

2.1 LEMMA. Let G be a p-supersolvable group for some prime number p. Then $\mathbf{O}_{p'}(G) \neq 1$ or $P \subseteq G$, where $\mathbf{O}_{p'}(G)$ denotes the largest normal p'-subgroup of G and $P \in Syl_p(G)$.

For a proof see ([4], p. 691, Th. 6, 6).

2.2 LEMMA. Let G=HK>1 be a group such that H and K are cyclic subgroups of G. If $|H| \ge |K|$, then H contains a nonidentity normal subgroup of G. Moreover, G is supersolvable.

For a proof see ([4]. p. 722, Th. 10. 1).

2.3 LEMMA. The p-solvable group G is p-supersolvable, if and only if, for every maximal subgroup V of G, the index |G:V| is p or relatively prime to p.

This is a famous theorem due to Huppert ([4]. p. 717, Th. 9.2/9.3).

To avoid repetitions in the subsequent proofs, we separate the following facts as common routine steps in certain induction arguments.

- 2.4 Lemma. Let p be a prime number and G a p-solvable group. Suppose that for every $1 \neq S \leq G$ we have G/S is p-supersolvable, but G itself is not p-supersolvable. Then
- (a) G has a unique minimal normal subgroup N and N is a p-group of order greater than p.
- (b) $\Phi(G)=1$ and there is a maximal subgroup V of G such that G=NV and $N \cap V=1$, where $\Phi(G)$ is the Frattini subgroup of G.
- (c) $N = O_p(G) = C_G(N)$.
- (d) If $N \le H \le G$, then $\mathbf{O}_{p'}(H) = 1$.

Proof.

(a) Suppose that S_1 and S_2 are minimal normal subgroups of G such that $S_1 \neq S_2$. By hypothesis, the factor groups G/S_1 and G/S_2 are p-

supersolvable.

Since

$$G \cong G/(S_1 \cap S_2) \lesssim G/S_1 \times G/S_2$$

we have that G is p-supersolvable So, we conclude that the minimal normal subgroup N of G is unique. Therefore, N is an abelian p-group of order |N| > p.

- (b) Suppose that $\Phi(G)>1$. By hypothesis $G/\Phi(G)$ is *p*-supersolvable. Since every maximal subgroup of G contains $\Phi(G)$, there is an index preserving 1-1-correspondence between the maximal subgroups of $G/\Phi(G)$ whith those of G and hence G is *p*-supersolvablye by Lemma 2.3. So $\Phi(G)=1$. Let V be a maximal subgroup of G such that $N \not \leq V$. We have that G=NV and obtain $N \cap V=1$ since N is abelian.
- (c) If $N < C_G(N)$, then $1 \neq C_G(N) \cap V = C_V(N) \triangleleft NV = G$.

Then $C_V(N)$ contains a minimal normal subgroup of G different from N, against (a).

Since $\Phi(G)=1$, we have $\Phi(O_p(G))=1$ (see [4]. p. 269, Th. 3. 3).

So. $O_p(G) \le C_G(N) = N$. It follows $N = O_p(G)$.

(d) Let $H \le G$ such that $N \le H$. If $O_{p'}(H) > 1$, then

$$\mathbf{O}_{p'}(H) \leq \mathbf{C}_{G}(N) = N$$
, a contradiction.

REMARK 1. Let G be a p-supersolvable group, and $N \neq 1$ a normal elementary abelian p-subgroup of G. If $N = C_G(N)$, then p is the largest prime divisor of |G|.

3. Permutable and subnormal subgroups

We develop a sequence of definitions, lemmas and properties concerning permutability and subnormality of subgroups.

3.1 LEMMA. Let G = HK be a group and p a prime number. Then there are subgroups $P \in Syl_p(G)$, $H_p \in Syl_p(H)$ and $K_p \in Syl_p(K)$ such that $P = H_pK_p$.

For a proof see ([4]. p. 676, Th. 4. 7).

- 3.2 Definition. Let G be a group and $X \leq G$.
- (a) X is said to be subnormal in G ($X \leq G$), if there is a chain of subgroups

$$X = G_0 \underline{\triangleleft} G_1 \underline{\triangleleft} ... \underline{\triangleleft} G_r = G.$$

(b) X is said to be quasinormal in G ($X \leq G$), if XH = HX holds for all subgroups $H \leq G$.

REMARK 2. It is well known that if $X \leq_{qn} G$, then $X \leq d \leq G$ (see [6]. p. 213, Th. 7. 1. 2)

- 3. 3 LEMMA. Let G be a group, A, B and X subgroups of G such that $X \le A \cap B$, $X \le A \cap B$, $A \cap B \cap A$ and $A \cap B \cap A$. If AB = BA, then $A \cap A \cap B \cap A$. For a proof see ([6], p. 239, Th. 7. 7. 1).
 - 3.4 DEFINITION. Let G be a group. H and K subgroups of G.
- (a) We say that H and K are mutually permutable, if H is permutable with every subgroup of K and K is permutable with every subgroup of H.
- (b) We say that H and K are totally permutable, if every subgroup of H is permutable with every subgroup of K.

Certainly, if H and K are normal subgroups of G, then H and K are mutually permutable. Also, if H and K are totally permutable, then they are mutually permutable.

Let $G = S_4$ be the symmetric group of degree 4, $H \in Syl_2(G)$ and $K = A_4$ the alternating group. Clearly G = HK, and H and K are mutually permutable, but not totally permutable.

- 3.5 PROPOSITION. Let G = HK be a group such that H and K are mutually permutable.
- (a) If $H \cap K \leq X \leq H$ and $Y \leq K$, then XY = YX. If $H \cap K \leq Y \leq K$ and $X \leq H$, then XY = YX. In particular, if $H \cap K \leq X \leq H$ and $H \cap K \leq Y \leq K$, then X and Y are mutually permutable.
- (b) If $H \cap K = 1$, then H and K are totally permutable.
- (c) $H \cap K \underset{qn}{\leqslant} H$, $H \cap K \underset{qn}{\leqslant} K$ and $H \cap K \underline{\triangleleft} \underline{\triangleleft} G$.

PROOF.

- (a) Let $H \cap K \le X \le H$ and $Y \le K$. We have $XY = X(H \cap K)Y = (HY \cap XK) = (YH \cap KX) = Y(H \cap K)X = YX$.
- (b) By (a). every subgroup of H is permutable with every subgroup of K.
- (c) By (a) it is clear that $H \cap K \leq H$ and $H \cap K \leq K$. Moreover.
- $H \cap K \leq d \leq H$ and $H \cap K \leq d \leq K$, by Remark 2. So, $H \cap K \leq d \leq G$, by Lemma 3.3.
- 3.6 LEMMA (see Maier [7]). Let G = HK be a group such that H and K are totally permutable subgroups of G. If |G| > 1, then H or K

contains a nonidentity normal subgroup of G.

PROOF. Let p denote the largest prime divisor of |G|. Certainly p divides at least one of |H| or |K|. Let x be a p-element of the union set $H \cup K$ of maximal order and suppose $x \in H$, say. Let y be any q-element of K where q is a prime divisor of |K|. Since H and K are totally permutable, we see by Lemma 2.2 that $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ is a supersolvable group.

If $q \neq p$, then $\langle x \rangle$ is the normal Sylow-p-subgroup of $\langle x \rangle \langle y \rangle$ since p > q ([4]. p. 716. Th. 9. 1). If q = p, then $|\langle x \rangle| \geq |\langle y \rangle|$ and there exists a nonidentity normal subgroup of $\langle x \rangle \langle y \rangle$ contained in $\langle x \rangle$ by Lemma 2. 2. In any case, the unique subgroup R of order p in $\langle x \rangle$ is normalized by y. We conclude that K normalizes R. Now, the normal closure $R^G = R^{HK} = R^{KH} = R^H \leq H$ is a nonidentity normal subgroup of G.

- 3.7 LEMMA. Let G be a group and $X \leq_{qn} G$. Then
- (a) X/X_G is nilpotent, where $X_G = \bigcap_{g \in G} X^g$.
- (b) If X is a p-group for some prime p, then X is normalized by $\mathbf{O}^p(G)$, where $\mathbf{O}^p(G)$ denotes the smallest normal subgroup of G with p-factor group; obviously $\mathbf{O}^p(G)$ is the join of all p'-elements of G.

See (Itô-Szép [5])

With these preparations we are able to prove:

THEOREM A. Let G=HK>1 be a group where H and K are mutually permutable. Then H or K contains a nonidentity normal subgroup of G or $F(G)\neq 1$.

PROOF. Let $D=H\cap K$. Suppose that $H_G=1=K_G$. By Lemma 3.6 and Proposition 3.5 (b) we have $D\neq 1$. Since $(D_H)^G=(D_H)^K \leq G$ and $(D_H)^K\leq K$ we have $D_H=1$. So, by Lemma 3.7 (a) D is nilpotent and since $D\leq G$ by Prop. 3.5 (c). we obtain $D\leq F(G)\neq 1$.

COROLLARY 1. Let p be a prime number and G = HK a group such that H and K are mutually permutable. If H and K are p-solvable, then G is p-solvable.

PROOF: By induction on |G|.

For all $N \subseteq G$ we have G/N = (HN/N)(KN/N) and HN/N and KN/N are mutually permutable subgroups of G/N. If $N \ne 1$, then G/N is p-solvable by induction. Now, by Theorem A there is $1 \ne N \subseteq G$, such that $N \le H$ or $N \le K$ or $N \le F(G)$. In any case, N is p-solvable. It follows G

400 A. Carocca

is p-solvable.

REMARK 3. Let G = HK be a group such that H and K are mutually permutable. Then for every subgroup L of G such that $H \le L(\text{or } K \le L)$ we have $L = H(L \cap K)$ (or $L = K(L \cap H)$) where H and $L \cap K$ (or K and $H \cap L$) are mutually permutable, by 3.5 (a).

The Proofs of our Theorems B and C

THEOREM B. Let p be a prime number and G=HK a group such that H and K are p-supersolvable. If H and K are mutually permutable and G' is p-nilpotent, then G is p-supersolvable.

PROOF. Suppose that the Theorem fails, and let G be a minimal counterexample. Lemma 2.4 is obviously applicable. So G contains a unique minimal normal subgroup N which has the properties stated in Lemma 2.4.

Since we may assume that G'>1, we have $N \leq G'$. Since G' is p-nilpotent and $N = C_G(N)$ we obtain that G' is a p-group. So $G' = N \in Syl_p(G)$ and the complements of N in G are cyclic (see [4]. p. 165, Th. 3. 8). Clearly HN < G and KN < G. Hence HN and KN are p-supersolvable by Remark 3.

Let L be a p-complement of HN and R a p-complement of KN. It is easy to check that L and R are cyclic groups of orders dividing p-1. Hence G/N = (LN/N)(RN/N) is an abelian group whose exponent divides p-1. Since G/N acts irreducibely on N we have |N| = p, by ([4]. p. 165, Th. 3. 8.) which means that G is p-supersolvable.

As consequence of Theorem B we have

COROLLARY 2 ([1]. Th. 3.7). Suppose that H and K are supersolvable subgroups of G, G' is nilpotent and G=HK. Suppose further that H and K are mutually permutable. Then G is supersolvable.

To prove the Theorem C. we develop a necessary lemma.

LEMMA (*). Let p be a prime number and G=HK a group such that H and K are p-supersolvable. If H and K are totally permutable, then G is p-supersolvable.

PROOF. Suppose that the Lemma is false, and let G be a counterexample of smallest order. By Corollary 1 G is p-solvable and so Lemma 2. 4 is applicable. So G contains a unique minimal normal subgroup N which has the properties stated in Lemma 2.4.

We can assume $N \le H$ by Lemma 3. 6.

Let $N_1 \le N$ such that $N_1 \le H$ and $|N_1| = p$ and let V be a complement of N in G. We have that $U = V \cap H$ is a complement of N in H. Let $D = N \cap K \le K$. By hypothesis we have DU = UD. So, $D = D(U \cap N) = DU \cap N \le DU$ and $D \le H$. So $D \le G$ and D = 1 or D = N.

If D=1, then $N_1=N_1(K\cap N)=N_1K\cap N\underline{\triangleleft}N_1K$. So $N_1\underline{\triangleleft}G$, a contradiction.

Suppose D=N. We have that $W=K\cap V$ is a complement of N in K. By hypothesis we have $N_1W=WN_1$.

So $N_1 \triangleleft N_1 W$. It follows $N_1 \triangleleft K$ and $N_1 \triangleleft G$.

The above Lemma implies the following

COROLLARY 3 ([1]. Th. 3. 1). Suppose that H and K are supersolvable subgroups of G and G = HK. Suppose further that H and K are totally permutable. Then G is supersolvable.

For a formation-theoretic generalization of our Lemma (*) and Corollary 3 see [7].

THEOREM C. Let p be a prime number and G = HK a group such that H is a p-supersolvable and K a p-nilpotent subgroup of G. If H and K are mutually permutable, then G is p-supersolvable.

PROOF. Suppose that the Theorem is false and let G be minimal counterexample. By corollary 1 G is p-solvable and so Lemma 2.4 is applicable. So G contains a unique minimal normal subgroup N which has the properties stated in Lemma 2.4.

By Proposition 3.5 (b) and our Lemma (*) we have $H \cap K = D \neq 1$.

First we show that $N \not\leq K$. Suppose that $N \subseteq K$. Since K is p-nilpotent and $N = C_G(N)$, K is p-group. By Proposition 3.5 (c) $D \subseteq \subseteq G$. So D^G is a p-subgroup and hence $D \subseteq D^G = N$ and $D = N \cap H \subseteq H$. Let V be a complement of N in G. Then K = NS and $S \cap N = 1$, where $S = K \cap V$. By Proposition 3.5 (a) DS = SD. Therefore $D = D(S \cap N) = SD \cap N \subseteq DS$ and hence $D \subseteq K$. Thus $N = D \subseteq G$. Since $O_{p'}(H) = 1$ and $O_{p'}(H) = 1$ and

Secondly we show that $D_H = 1$. If $D_H > 1$, then $(D_H)^G = (D_H)^{HK} = (D_H)^K \le K$. Thus $N \le (D_H)^G \le K$ which is a contradiction.

402 A. Carocca

Since $D_H=1$, D is nilpotent by Lemma 3.7 (a). Since $D \leq d \leq G$ by Proposition 3.5 (c). D^G is nilpotent. Thus $D \leq D^G = N$. Since $D \leq H \cap K \cap N$, we have $HN \neq G \neq KN$. So HN and KN are p-supersolvable, by Remark 3. Since $C_G(N)=N$, by Lemma 2.1 $H_p \leq H$ and $K_p \leq K$. By Lemma 3.7 (b) D is normalized by every p'-element of H and K.

Since D is a p-group, we have $HK_p \neq G$ or $KH_p \neq G$. Suppose $KH_p \neq G$. By Remark 3 KH_p is p-supersolvable and since $N \leq KH_p$, $O_{p'}(KH_p) = 1$. By Lemma 2.1 $H_pK_p \leq KH_p$.

For $g = hk \in G$, $h \in H$, $k \in K$ we have $(H_p)^g = (H_p)^{hk} = (H_p)^k \le (H_pK_p)^k = H_pK_p$. Therefore, $H_p \le (H_p)^G = N$. So H_p is abelian and hence $D \le H$. So $N = (D)^G = (D)^K \le K$. This is a contradiction.

Thus $HK_p \neq G$, $KH_p = G$ and $H = H_p(H \cap K) = H_p$. So HK_p is a Sylow p-subgroup of G.

For any $g=kh\in G$, $k\in K$, $h\in H$, $K_p^g=K_p^{kh}=K_p^h\leq HK_p$. Therefore $K_p\leq (K_p)^G=N$. So K_p is abelian and hence $D\unlhd K$ and $N\leq H$. Let V be a complement of N in G. Then H=UN and $U\cap N=1$, where $U=H\cap V$. Further $D=D(N\cap U)=N\cap DU\unlhd DU$. So $D\unlhd H$ and N=D, the final contradiction.

Our Theorem C contains

COROLLARY 3 ([1]. Th. 3. 2). Suppose that H is a nilpotent, K a supersolvable subgroup of G and G=HK. Suppose further that H and K are mutually permutable. Then G is supersolvable.

Acknowledgments: The author wishes to express his appreciation to Professors Rudolf Maier and Helder Matos for helpful discussions and to the Referee for his valuable suggestions.

References

- [1] ASAAD. M. and SHAALAN. A. On the Supersolvability of Finite Groups Arch. Math. Vol. 53, 318-326, (1989).
- [2] BAER. R. Classes of Finite Groups and their Properties, Illinois J. Math. 1, 115-187, (1957).
- [3] HUPPERT. B. Monomiale Darstellungen Endlicher Gruppen, Nagoya Math. J. 6, 93-94, (1953).
- [4] ——— Endliche Gruppen I, Springer-Verlag, Berlin/Heidelberg/New York, 1967.
- [5] ITÔ. N. and SZÉP. J. Über die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. **23**, 168-170, (1962).
- [6] LENNOX. J. and STONEHEWER. St. E. Subnormal Subgroups of Groups. Clarendon Press. Oxford (1987).
- [7] MAIER. R. A completeness property of certain formations. To appear in the Bulletin of the London Math. Soc.

Departamento de Matemática Universidade de Brasília 70.910-Brasília-D. F., Brazil.