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Abstract.

In this paper we present a new proof of the uniqueness of the large

Witt systems W_{22} , W_{23} , W_{24} . Their uniqueness is (almost) simultaneously

proved by the same and simple method, and their existence is also shown.

1. Introduction

Although self-contained, this paper is a continuation of our previous

article [3], which was intended as the title shows, but made no mention of
the uniqueness of the Witt systems. Nowadays not a few proofs of their
uniqueness are known (see, e . g . [1], [2], [4], [5, Chap. 20]). The purpose of
this paper is to present an alternative, simple, elementary and unfied proof

of the uniquenesss of the large Witt systems W_{22} , W_{23} , W_{24} . ‘Simple, ele-
mentary’ means that our proof uses only block intersection property BIP
(mentioned later) which is easily shown, not using any knowledge of finite
geometry such as projective planes, coding theory, etc. ‘Simple, unified’
means that the uniqueness of the three systems can be (almost) simultane-
ously proved by the same method. We note also that our uniqueness

proof shows the existence of the three systems (see Remark 3).

DEFINITIONS AND NOTATION. Let \Omega be a set of v points and \mathfrak{B} a collec-
tion of k-subsets (called blocks) of \Omega . The pair D=(\Omega, \mathfrak{B}) is called a
t -design with parameters t , v , k , \lambda ( v>k>t>0 and \lambda>0 ) or, briefly a
t- (v, k, \lambda) design if any t -subset of \Omega is contained in exactly \lambda blocks of \mathfrak{B} .

If D=(\Omega, \mathfrak{B}) is a t-(v, k , \lambda ) design, then, for any s\leq t , the number of

blocks containing any t-subset of \Omega is equal to \lambda_{s}=\lambda(\begin{array}{l}v-st-s\end{array})/(\begin{array}{l}k-st-s\end{array}) , and

in particular, |\mathfrak{B}|=\lambda_{0}=\lambda(\begin{array}{l}vt\end{array})/(\begin{array}{l}kt\end{array}) . Two t -designs with the same parame-
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ters, D=(\Omega, \mathfrak{B}) and D’=(\Omega’, \mathfrak{B}’) are said to be isomorphic if there is a
bij ection \sigma from \Omega onto \Omega’ such that \mathfrak{B}^{\sigma}(:=\{B^{\sigma}|B\in \mathfrak{B}\})=\mathfrak{B}’ A t-(v, k , 1)
design D=(\Omega, \mathfrak{B}) (namely, t design with \lambda=1 ) is called a Steiner system,

and for any t -subset \{a_{1},\cdots,a_{t}\} of \Omega , the block containing it is uniquely

determined. This unique block is called the block defifined by a_{1},\cdots,a_{t} and
denoted by

<a_{1},\cdots,a_{t}> .

Throughout this paper we fix the following notation. W_{22} , W_{23} , W_{24}

denote any 3-(22, 6, 1), 4-(23, 7, 1), 5-(24, 8, 1) designs, respectively. They
are called the large Witt systems, and their existence is proved by quite a
few authors. For v=22,23 or 24, let

W_{v}=(\Omega_{v}, \mathfrak{B}^{(v)}) .

For s-subset S=\{a_{1},\cdots,a_{s}\} of \Omega_{v} , where s\leq 3,4 or 5 according as v=22,23
or 24, respectively, we set

\mathfrak{B}_{S}=\mathfrak{B}_{a_{1},\cdots,a_{S}}=\{B\in \mathfrak{B}^{(v)}|S\subset B\} .

The following well-known property can be easily shown only by using
the parameters of W_{v} (see, e . g . [1, next to the last rows of Figs. 2, 6, 8],
[2, the last row of Fig. 5 and p. 30], [5, the last row of Fig. 2. 14 and p .
641]).

Block Intersection Property (BIP) : For any distinct blocks B , C of
W_{v} , we have

|B\cap C|=0 or 2; 1 or 3; 0, 2 or 4
according as v=22,23,24 , respectively.

Only by using BIP, we are going to prove

THEOREM. Large Witt systems W_{22} , W_{23_{y}}W_{24} are unique up to
isomo7phism .

2. Proof of Theorem.

We begin with the following general proposition.

PROPOSITION. Suppose that for any t- (v, k, \lambda) design D with given
parameters t , v , k , \lambda we have a settled method for labelling all the points
and the blocks of D , more precisely, a settled method according to which
we can label all the points of D1 , 2, \cdots , v and we can explicitly write down
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all the blocks of D by means of 1, 2, \cdots , v. Then, a t- (v, k, \lambda) design (, if
exists ) is unique up to isomorphism.

PROOF. Let D=(\Omega, \mathfrak{B}) and D’=(\Omega’, \mathfrak{B}’) be any two t-(v, k , \lambda ) designs.
According to the method we have, we label the points and the blocks of
both designs. We denote by a_{i} (resp., a_{i}’) the point itself of \Omega (resp., \Omega’ )

labelled i , and by B_{I} (resp., B_{I}’) the block itself of \mathfrak{B}(resp., \mathfrak{B}’) expressed as
I=\{i_{1}, i_{2},\cdots,i_{k}\} . The bijection \sigma:\Omegaarrow\Omega’ defined by a_{i}^{\sigma}=a_{i}’ gives an
isomorphism from D onto D’ since B_{I}=\{a_{i_{1}}, a_{i_{2}},\cdots, a_{i_{k}}\} , B_{I}’=\{a_{i_{1}}’ , a_{i_{2}}’,\cdots ,
a_{i_{k}}’\} and B_{I}^{\sigma}=B_{I}’. \square

Our proof of Theorem is based on the above proposition, and consists
of two parts: What we have to do for the proof of Theorem is that for
any lage Witt systems W_{v} we present a settled method (I) for labelling all
the points of W_{v} and a settled method (II) for writing explicitly down all
the blocks of W_{v} .

In order to present such methods we use only BIP, and methods (I),
(II) will be given in Lemma 1; Corollaries 1, 2, 3, respectively.

LEMMA 1. We have a settled method by which we can label all the
points of :

(i) W_{22}1,2,\cdots,22 and explicitly know \mathfrak{B}_{1}(i. e , the 21 blocks contain-
ing 1) and a block A not containing 1:

(ii) W_{23}0,1,2,\cdots,22 and explicitly know \mathfrak{B}_{0,1}(i. e , the 21 blocks
containing 0 and 1) and two blocks A , A’ satisfying O\in A\yen 1 and 1\in A’ \yen

0;
(iii) W_{24}\infty , 0, 1, 2,\cdots,22 and explicitly know \mathfrak{B}_{\infty,0,1}(i. e , the 21 blocks

containing \infty , 0 and 1) and three blocks A , A’ , A^{rr} satisfying \{\infty, O\}\subset A a\yen l,
\{1, \infty\}\subset A’*0 and \{0, 1\}\subset A’*\infty .

PROOF. Our proof is tabulated in Tables 1 and 2. Three cases W_{22} ,
W_{23} , W_{24} can be treated similarly and the case W_{24} is mainly illustrated in
the following.

Choose any block of W_{24} (resp., W_{23} , W_{22}) and call it B_{1} , and choose
any five (resp., four, three) points of B_{1} and label them pointwise ‘\infty’‘ 0’ ,

(i) ‘2’. ‘3’ (resp., ‘0’, (i) (I), ‘3’; (i) ‘2’. ‘3’). (In the case W_{23} (resp., W_{22} ) delete
or ignore \infty (resp., \infty , 0) throughout the proof.) Label the remaining three
points of B_{1}‘ 4 , 5, 6’ setwise. Choose any point outside B_{1} and label it ‘7’
Set

B_{2}=<\infty , 0, 1, 2, 7> .
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By BIP we have B_{2}\cap B_{1}=\{\infty, 0, 1, 2\} and label setwise the three points in
B_{2}\backslash \{\infty, 0, 1, 2, 7\} , ‘8, 9, 14’. Set

B_{3}=<\infty , 0, 1, 3, 7> .

By BIP we have B_{3}\cap B_{1}=\{\infty, 0, 1, 3\} and B_{3}\cap B_{2}=\{\infty, 0, 1, 7\} , and so the
three points in B_{3}\backslash \{\infty, 0, 1, 3, 7\} are outside B_{1}\cup B_{2} and we label them -11,
12, 13’ setwise. Set

A=<\infty , 0, 2, 3, 7>
and

A’=<\infty , 1, 2, 3, 7> .

(In the case W_{23} , of course, we set A’=<1,2,3 , 7> , but in the case W_{22} we
do not consider A’.) In the same way as above, the three points in A\backslash \{\infty ,
0, 2, 3, 7}(resp.,A’\backslash \{\infty , 1, 2, 3, 7}) are outside B_{1}\cup B_{2}\cup B_{3} (resp., B_{1}\cup B_{2}\cup B_{3}

\cup A) and we label them ‘14, 15, 16’ (resp., ‘17, 18, 19’) setwise. Label any
one of the three points {11, 12, 13} 11’ and set

B_{4}=<\infty , 0, 1, 2, 11> .

Since B_{4}\cap B_{1}=B_{4}\cap B_{2}=\{\infty, 0, 1, 2\} and B_{4}\cap B_{3}=\{\infty, 0, 1, 11\} by BIP, B_{4}

does not contain any point of B_{1}\backslash \{\infty, 0, 1, 2\}=\{3,4,5, 6\} , B_{2}\backslash \{\infty, 0, 1, 2\}=

\{7,8,9, 10\} and B_{3}\backslash \{\infty, 0, 1, 11\} ={3, 7, 12, 13}. By BIP we can write B_{4}\cap A

=\{\infty, 0, 2, x\} . Since A=\{\infty, 0, 2, 3, 7, 14, 15, 16\} and B_{4} contains neither 3
nor 7, x must be one of 14, 15, 16 and we label x‘ 14 ’ Similarly, we can
write B_{4}\cap A’=\{\infty, 1, 2, y\} and y must be one of 17, 18, 19 and we label y
‘17’ Therefore we can write B_{4}=\{\infty, 0, 1, 2, 11, 14, 17, z\} where z\not\in B_{1}\cup B_{2}

\cup B_{3}\cup A\cup A’ and we label z‘ 20’ . (In the case W_{22} , we can write B_{4}=\{1,2 ,
11, 14, y , z} where neither y nor z is contained in B_{1}\cup B_{2}\cup B_{3}\cup A and we
label the one of y , z17’ and the other ‘20’). Set

B_{5}=<\infty , 0, 1, 3, 17> .

As in the case B_{4} , considering the intersections of B_{5} and B_{1} , B_{3} , B_{4} , A’ ,
we obtain that B_{5} does not contain any point of
(B_{1}\cup B_{3}\cup B_{4}\cup A’)\backslash \{\infty, 0, 1, 3, 17\} ={2, 4, 5, 6, 7, 11, 12, 13, 14, 20, 18, 19}.

(In the case W_{22} , A’ and so 18, 19 vanish.)

We can write B_{5}\cap B_{2}=\{\infty, 0, 1, x\} where x is a point of B_{2}\backslash \{\infty, 0, 1\}=

\{2,7,8,9, 10\} , and so x is one of 8, 9, 10 and we label x‘ 8’ . Also, B_{5}\cap A(\supset

\{\infty, 0, 3\}) must contain a point of A\backslash \{\infty, 0, 3\}=\{2,7,14,15, 16\} and so
either of 15, 16 and we label the point in (resp., outside) B_{5}\cap A‘ 15 ’ (resp.,
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16’). Hence we can write B_{5}=\{\infty, 0, 1, 3, 8, 15, 17, y\} where y\not\in B_{1}\cup B_{2}\cup B_{3}

\cup B_{4}\cup A\cup A’ We label y ‘21’ Set
B_{6}=<\infty , 0, 1, 7, 17> .

As usual, considering the intersections of B_{6} and B_{2} , B_{3} , B_{4} , B_{5} , A’ we
obtain that B_{6} does not contain any point of (B_{2}\cup B_{3}\cup B_{4}\cup B_{5}\cup A’)\backslash

\{\infty, 0, 1, 7, 17\}(\supset\{2,3,14, 15\}) . We can write B_{6}\cap B_{1}=\{\infty, 0, 1, x\} where x is
a point of B_{1}\backslash \{\infty, 0, 1\}=\{2,3,4,5, 6\} and so we label x‘ 4 ’ Also, we can
write B_{6}\cap A=\{\infty, 0, 7, y\} where y is a point of A\backslash \{\infty, 0, 7\}=\{2,3,14,15, 16\} ,
so that y must be 16. Therefore we can write B_{6}=\{\infty, 0, 1, 4, 7, 16, 17, z\}

where z\not\in B_{1}\cup\cdots\cup B_{5}\cup A\cup A’ . and we label z‘ 22’ . Setting
B_{7}=<\infty , 0, 1, 2, 15> ,
B_{8}=<\infty , 0, 1, 3, 16> ,
B_{9}=<\infty , 0, 1, 7, 14>

and continuing similar arguments, we can label the unlabelled points and
determine the remaining points contained in these blocks. (See Table 1. In
the case W_{22} , we label the unique point in B_{7}\backslash (B_{1}\cup\cdots\cup B_{6}\cup A) (resp., out-
side B_{1}\cup\cdots\cup B_{7}\cup A ) ‘18’ (resp., 19’).) Thus we have been able to label all
the points and determine explicitly the blocks B_{1} , B_{2},\cdots,B_{9} , A , A’ simultane-
ously. By BIP, these blocks generate blocks B_{10},\cdots,B_{21} , A’ successively
and automatically (see Table 2). \square
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Table 1

Each block of W_{24} (resp., W_{23} , W_{22}) except B_{1} is defined by five (resp.,
four, three) points ‘ O ’ (resp., deleting ‘

\infty ’, ‘
\infty,0 ’), and the remaining three

points of the block are denoted by ‘ O’ ,‘ A’,‘ \blacksquare
’ or ‘v ’.

‘–, indicates that the labelling of the point is finished.
‘\cross ’ indicates that the block does not contain the point.
‘ ( ) ’ indicates the influence of the intersection of the block and A’ (in the

case W_{22} , A’ is unnecessary and deleted).
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Table 2

Each block of W_{24} (resp., W_{23} , W_{22}) is defined as one containing five or
four (resp., four or three, three or two) points ‘0’ (resp., deleting ‘

\infty ’, ‘
\infty ,

0’), and the remaining three or four points of the block are denoted by ‘ V ’

‘\cross ’ indicates that the block does not contain the point.
(A’ is a block only for W_{24} )

REMARK 1. There are various ways to label the points belonging to
blocks B_{1} , B_{2},\cdots,B_{9} , A , A’ Relabelling in the following (from the upper
row to the lower), we obtain the labelling in W_{24} in many papers such as
[2], [3], [6] :

\infty 0 1 234 56 78910111213141516171819202122
\infty 0 1 2317145 4131622191120218 9 6181571012
NOTATION. In the following Lemma 2 and Corollary 1, let I denote

a (v-22)-subset of \Omega_{v} (in particular, I=\phi for v=22). Let p\in\Omega_{v}\backslash I and
set \mathfrak{B}_{I,p}=\mathfrak{B}_{I\cup\{p\}} .

LEMMA 2. Suppose that we fifinish labelling all the points of \Omega_{v} and
that we explicitly know \mathfrak{B}_{I,p} ( i . e. , the 21 blocks containing I and p ) and a
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block A containing I but not containing p . Then, for any two distinct j_{1} ,
j_{2}\in A\backslash I and any k\in\Omega_{v}\backslash (I\cup\{j_{1}, j_{2}\}) we can explicitly know the
block I , j_{1} , j_{2} , k> , namely, the remaining three points of the block.

PROOF. Set

X=<I , j_{1} , j_{2} , k> ,
B_{0}=<I , p , j_{1} , j_{2}, > ,
B_{1}=<I , p , j_{1} , k> ,
B_{2}=<I , p , j_{2} , k> .

We want to determine explicitly the remaining three points of X and our
proof is tabulated in Table 3. Since the blocks B_{0} , B_{1} , B_{2} belong to \mathfrak{B}_{I,p}

and are explicitly known by assumption, we may assume that X is
different from these blocks and B_{0} \yen k, B_{1}\yen j_{2} , B_{2}\yen j_{1} and B_{0} , B_{1} , B_{2} are dis-
tinct. Similarly, we may assume that X\neq A and so that k&A and blocks
X, A , B_{0} , B_{1} , B_{2} are all distinct.

By BIP we have B_{0}\cap A=I\cup\{j_{1}, j_{2}\} and we can write
A=I\cup\{j_{1}, j_{2}\}\cup { a_{0} , a_{1} , a2, a_{3} },
B_{0}=I\cup\{p, j_{1}, j_{2}\}\cup\{b_{0}, c_{0}, d_{0}\} .

By BIP we have B_{1}\cap A=I\cup\{j_{1}, a\} where a is one of a_{0} , a_{1} , a_{2} , a_{3} , and so
we may assume a=a_{1} . As B_{1}\cap B_{0}=I\cup\{p, j_{1}\} , we can write

B_{1}=I\cup\{p, j_{1}, k, a_{1}\}\cup\{b_{1}, c_{1}\}

where b_{1} , c_{1} are outside A\cup B_{0} . Similarly, we can write

B_{2}=I\cup\{p, j_{2}, k, a_{2}\}\cup\{b_{2}, c_{2}\}

where b_{2} , c_{2} are outside A\cup B_{0}\cup B_{1} .
Now, since X\cap A=X\cap B_{0}=I\cup\{j_{1}, j_{2}\} , X\cap B_{1}=I\cup\{j_{1}, k\} and X\cap B_{2}=

I\cup\{j_{2}, k\} , it follows that X does not contain any point of
(A\cup B_{0}\cup B_{1}\cup B_{2})\backslash (I\cup\{j_{1}, j_{2}, k\})= {p, a_{0} , a_{1} , a2, a_{3} , b_{0} , b_{1} , b_{2} , Co , c_{1} , c_{2} , d_{0}}.
We set

B_{3}=<I , p , k , a_{3}> .

As B_{3}\cap B_{1}=B_{3}\cap B_{2}=I\cup\{p, k\} , B_{3} does not contain any point of (B_{1}\cup B_{2})\backslash

(I\cup\{p, k\})= { j_{1} , a_{1} , b_{1} , c_{1} , j_{2} , a2, b_{2} , c_{2}}. Hence B_{3}\cap A=I\cup\{a_{3}, a_{0}\} and we
may write B_{3}\cap B_{0}=I\cup\{p, b_{0}\} . Thus B_{3}\cap(A\cup B_{0}\cup B_{1}\cup B_{2})=I\cup\{p , k , a_{3} , a_{0} ,
b_{0}\} and we set

\{x_{3}\}=B_{3}\backslash (A\cup B_{0}\cup B_{1}\cup B_{2}) .
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Since X does not contain any one of p, a_{3} , a_{0} , b_{0} , we have X\cap B_{3}=I\cup

\{k, x_{3}\} by BIP. Next, we set

B_{4}=<I , p , Xs , c_{0}> ,
B_{5}=<I , p, x_{3} , d_{0}> .

As usual, considering the intersections of B_{4} and B_{0} , B_{3} , by BIP we may
write B_{4}\cap B_{1}=I\cup\{p, d_{1}\} , B_{4}\cap B_{2}=I\cup\{p, d_{2}\} where d_{i} is one of a_{i} , b_{i} , c_{i}

(i=1,2) and B_{4}\cap A=I or I\cup { a_{1} , a2). Thus B_{4}\cap(A\cup B_{0}\cup B_{1}\cup B_{2}\cup B_{3})=I

\cup\{p, x_{3}, c_{0}, d_{1}, d_{2}\} and we set
\{x_{4}\}=B_{4}\backslash (A\cup B_{0}\cup B_{1}\cup B_{2}\cup B_{3}) .

On the other hand, since X does not contain any one of p, Co , a_{1} , b_{1} , c_{1} , a_{2} ,
b_{2} , c_{2} , we obtain X\cap B_{4}=I\cup\{x_{3}, x_{4}\} by BIP. Similarly, we have B_{5}\cap

(A\cup B_{0}\cup B_{1}\cup B_{2}\cup B_{3}\cup B_{4})=I\cup {p, x_{3} , d_{0} , e_{1} , e2} where e_{i} is one of a_{i} , b_{i} , c_{i}

(i=1,2) and we set

\{x_{5}\}=B_{5}\backslash (A\cup B_{0}\cup B_{1}\cup B_{2}\cup B_{3}\cup B_{4}) ,

obtaining X\cap B_{5}=I\cup\{x_{3}, x_{5}\} . Thus we have determined the three points

x_{3},x_{4}\mathfrak{B}_{I,p}.

’
x_{5}\square

of X\backslash (I\cup\{j_{1}, j_{2}, k\}) only by using A and B_{0} , B_{1},\cdots,B_{5} belonging to

Table 3

Each block of W_{24} (resp., W_{23} , W_{22}) except A is defined by five (resp.,
four, three) points‘ O’ , and the remaining three points of the block are denoted
ed by ‘ O’ , ‘ A’ , ‘ V ’ or one of ‘

\triangle ’. ‘
\square

’ in the cases B_{4} , B_{5} .
‘\cross ’ indicates that the block does not contain the point.
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REMARK 2. Lemma 2 asserts that from the 21 blocks belonging to
\mathfrak{B}_{I,p} and a block A with A=<I , j_{1} , j_{2}, *>\yen p , we can explicitly know new
blocks I , j_{1} , j_{2} , k>for any k\in\Omega_{v}\backslash (I\cup\{j_{1}, j_{2}\}) . We say that such new
blocks are (explicitly) known or generated from (primary blocks) \mathfrak{B}_{I,p}

and (an auxiliary block) A.

COROLLARY 1. Assume that we fifinish labelling all the points of \Omega_{v}

and that we explicitly know \mathfrak{B}_{I,p} for some I. p and a block A satisfying I\subset

\^A p . Then, for any distinct points k , l , m of \Omega_{v}\backslash I , we can explicitly
know the block <I. k , l , m> , and hence \mathfrak{B}_{I}(i. e. , the 77 blocks containing
I)–we describe this by saying that \mathfrak{B}_{I} is (explicitly) known or generated

from \mathfrak{B}_{I.p} and A–in particular, all the blocks of W_{22} .

PROOF. Set X=<I , k , l , m> .

Case ( i) |\{k, l, m\}\cap A|=3 or 2: Since we may assume A=<I , k , l, *
>\yen p , by Remark 2 we can know X from \mathfrak{B}_{I,p} and A.

Case ( ii)|\{k, l, m\}\cap A|=1 : We may assume that k\in A and \{l, m\}\cap A

=\phi . Let a\in A\backslash \{k\} . From \mathfrak{B}_{I,p} and A=<I , k , a, *>we can know A_{1}=<

I , k , a , l>and A_{2}=<I , k , a , m>by Remark 2. If A_{1} \yenp (resp., A2 \yenp),

then we can know X from \mathfrak{B}_{I,p} and A_{1} (resp., A2). If A_{1}\ni p and A_{2}\ni p ,

then A_{1}=<I , k , a , p>=A_{2} and so X=A_{1} is explicitly known.
Case (iii) |\{k, l, m\}\cap A|=0 : Let j_{1} , j_{2} be two distinct points of A and

set

A_{1}=<I , j_{1} , j_{2} , k> , A_{2}=<I , j_{1} , j_{2} , l> , A_{3}=<I , j_{1} , i2, m> .

Then, from \mathfrak{B}_{I,p} and A we can know A_{1} , A2 and A_{3} . If at least one of A_{1} ,

A2, A3, say A_{1} dose not contain p, then we can know X from \mathfrak{B}_{I,p} and A_{1}

(note that |\{k , l , m\}\cap A_{1}|\geq 1 and replace A with A_{1} in cases ( i ), ( ii) ). If
all A_{1} , A2, A_{3} contain p, then A_{1}=A_{2}=A_{3}=<I , j_{1} , j_{2} , p>and so X=A_{1} is
explicitly known. \square

COROLLARY 2. Let v=24 or 23 and i_{2}\in\Omega_{v} . In the case v=24 , let i_{1}

be a point of \Omega_{24}\backslash \{i_{2}\} and in the case v=23 , let i_{1}=\phi . Also, let p\in\Omega_{v}\backslash \{i_{1} ,
i_{2}\} . Assume that we fifinish labelling all the points of \Omega_{v} and that we
explicitly know \mathfrak{B}_{i_{1},iz,p} ( i . e. , the 21 blocks containing i_{1} , i_{2} , p ) and two
blocks A , A’ satisfying \{i_{1}, i_{2}\}\subset A \yenp and \{i_{1}, p\}\subset A’ \yen i_{2} . Then, for any

four distinct points j , k , l , m of \Omega_{v}\backslash \{i_{1}\} , we can explicitly know the block
<i_{1} , j , k , l , m> , and hence \mathfrak{B}_{i_{1}} ( i . e. , the 253 blocks containing i_{1})–we

describe this by saying that \mathfrak{B}_{i_{1}} is (explicitly) known or generated from
\mathfrak{B}_{i_{1},i_{2},p} and A , A’– in particular, all the blocks of W_{23} .
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PROOF. Set X=<i_{1} , j , k , l , m> . By Corollary 1, we can know \mathfrak{B}_{i_{1},i_{2}}

(resp. \mathfrak{B}_{i_{1},p} ) from \mathfrak{B}_{i_{1},i_{2},p}(=\mathfrak{B}_{i_{1},p,i_{2}}) and A (resp. A’). In particular, we
explicitly know \mathfrak{B}_{i_{1},j,p}(\subset \mathfrak{B}_{i_{1},p}) . If i_{2}\in X or p\in X , then X\in \mathfrak{B}_{i_{1},i_{2}} or X\in

\mathfrak{B}_{i_{1},p} , and so X is explicitly known. Thus we may assume X\cap\{i_{2}, p\}=\phi ,
in particular, \{j, k, l, m\}\cap\{i_{2}, p\}=\phi . Set

A_{1}=<i_{1} , j , k , l , i_{2}> , A_{2}=<i_{1} , j , k , m, i_{2}> .

Both are contained in \mathfrak{B}_{i_{1},i_{2}} and so explicitly known. If A_{1}\ni p and A_{2}\ni p ,
then A_{1}=<i_{1} , j , k , p, i_{2}>=A_{2}\ni m and so A_{1}=X , which is a contradiction,
for i_{2}\in A_{1} and i_{2}\not\in X . Thus A_{1}*p or A_{2}*p . If A_{1} \yen p (resp. A_{2}*p), then
by Remark 2 we can know X from \mathfrak{B}_{i_{1},j,p} and A_{1} (resp. A). \square

COROLLARY 3. Let i_{1} , i_{2} , p be the fifixed three distinct points of \Omega_{24} .
Assume that we fifinish labelling all the points of \Omega_{24} and that we explicitly
know \mathfrak{B}_{i_{1},i_{2},p} ( i . e.f the 21 blocks containing i_{1} , i_{2} , p ) and three blocks A , A’
A \prime\prime satisfying \{i_{1}, i_{2}\}\subset A \yenp, \{p, i_{1}\}\subset A’\yen i_{2} , \{i_{2}, p\}\subset A

\prime\prime \yen i_{1} . Then, for any
fifive distinct points j, k , l , m , n of \Omega_{24} , we can explicitly know the block <j ,
k , l , m , n> , and hence all the blocks of W_{24} .

PROOF. Set X=<j , k , l , m, n> . By Corollary 2, we can know \mathfrak{B}_{i_{1}}

(resp. \mathfrak{B}_{p} ) from \mathfrak{B}_{i_{1},i_{2},p}(=\mathfrak{B}_{p,i_{1},i_{2}}) and A, A’ (resp. A’, A’). In particu-
lar, we explicitly know \mathfrak{B}_{j,k,p}(\subset \mathfrak{B}_{p}) . As in the proof of Corollary 2, we
may assume X\cap\{i_{1}, p\}=\phi and we set

A_{1}=<j , k , l , m , i_{1}> , A_{2}=<j , k , l , n , i_{1}> ,

having A_{1} \yen p or A_{2} \yen p and being able to know X from \mathfrak{B}_{j,k,p} and A_{1} or
A2. \square

PROOF OF THEOREM. Set v=22 , I=\phi , p=1 in Corollary 1; v=23 , i_{1}=

\phi , i_{2}=0 , p=1 in Corollary 2; v=24 , i_{1}=\infty , i_{2}=0 , p=1 in Corollary 3.
Then, the assumptions (and so the conclusions) of Corollaries 1, 2, 3 hold
by Lemma 1. Thus the desired methods (I), (II) are presented and the
proof of Theorem is complete. \square

REMARK 3. Our proof of the uniqueness of the large Witt systems
W_{22} , W_{23} , W_{24} presented above also shows the existence of them. In fact,
for instance, the existence of W_{22} is shown as follows. Set \Omega=\{1,2,\cdots,22\} ,

and make 6-subsets of \Omega , B_{1} , B_{2},\cdots , B_{9} , A given explicitly in Table 1 and
(automatically) B_{10},\cdots , B_{21} given explicitly in Table 2. Then, as seen in
Corollary 1, for any three distinct points k , l , m of \Omega , there is a unique<k ,
l , m> , the 6-subset of \Omega containing k, l , m (this uniqueness follows from
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the fact that all the<k , l , m>satisfy BIP). Letting \mathfrak{B} denote the set of all
the< k , l , m> , we see that (\Omega, \mathfrak{B}) is a 3\cdot(22, 6, 1) design.

REMARK 4. We have seen in Table 2 that B_{1},\cdots , B_{9} , A, (A’) generate

B_{10},\cdots , B_{21} , (A’) , and in Lemma 1 and Corollaries 1, 2, 3 that B_{1},\cdots , B_{21} , A ,

(A’, A’) generate all the blocks. In conclusion, the blocks B_{1} , B_{2},\cdots , B_{9} , A

in W_{22} , added A’ in W_{23} and W_{24} , enable us to label all the points and
generate all the blocks, and so we may call these blocks labelling-blocks,
generating blocks, propagating blocks, basis blocks or determining-blocks of
W_{v} , v=22,23,24 . We note also that even only B_{1},\cdots,B_{9} enable us to label

all the points and generate B_{10},\cdots , B_{21}–this shows the uniqueness of the
2-(21, 5, 1) design if we ignore \infty , 0, 1–, but do not generate the other
blocks. When heterogeneous A, A’ are added, generative power heightens
extremely.
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