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Simple graded Lie algebras of finite depth
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Introduction
In this paper we classify the infinite dimensional simple graded Lie

algebras of finite depth over an algebraically closed field K of characteris-
tic zero.

A graded Lie algebra (GLA)
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is a Lie algebra \mathfrak{g} endowed with

a gradation \{\mathfrak{g}_{p}\}_{p\in Z} such that dim \mathfrak{g}_{p}<\infty and [\mathfrak{g}_{p}, \mathfrak{g}_{q}]\subset \mathfrak{g}_{p+q} . It is called
simple if the underlying Lie algebra \mathfrak{g} is simple. We say a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

is of finite depth if the negative part \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} is finite dimensional. Note

that a GLA of finite depth having at least dimension two and no proper
graded ideal is simple (see \S 1). Note also that a simple GLA is necessar-
ily transitive (a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is called transitive if for x\in \mathfrak{g}_{p}(p\geq 0) ,

[x, \mathfrak{g}_{-}]=0 implies x=0).
Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a simple GLA of finite depth. According to Cartan’s

classification of the simple infinite transitive pseudogroups, or rather
according to its algebraic version, i . e. , classification of the primitive
infinite Lie algebras, completed by many authors (in particular, Singer-
Sternberg [SS65], Kobayashi-Nagano [KN66], Guillemin-Quillen-Sternberg
[GQS66], MorimotO-Tanaka [MT70] ) , we see that the underlying Lie alge-
bra \mathfrak{g} is isomorphic to one of the following series of simple Lie algebras:

1) W(m) : the Lie algebra of all the polynomial vector fields \sum_{i=1}^{m}P_{i}\partial/

\partial x_{i} with P_{i}\in K[x_{i},\ldots,x_{m}] .
2) S(m) : the subalgebra of W(m) consisting of the vector fields

which preserve the differential form dx_{1}\wedge\ldots\wedge dx_{m}(m\geq 2) ;
3) H(n) : the subalgebra of W(m) consisting of vector fields which

preserve the differential form \sum_{i=1}^{n}dx_{i}\wedge dx_{n+i} , m=2n :
4) K(n) : the subalgebra of W(m) consisting of vector fields which

preserve the differential form dx_{m}- \sum_{i=1}^{n}x_{i+n}dx_{i}(m=2n+1) up to the

multicative factors in K[x_{1},\ldots,x_{m}] .
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(Thus our initial problem is reduced to determining all the possible grada-

tions of the above Lie algebras.)
It is well-known that each of them has a standard gradation, that is, a

primitive gradation uniquely determined up to isomorphism (we say a gra-
dation \{\mathfrak{g}_{p}\}_{p\in Z} is primitive if \bigoplus_{p\geq 0}\mathfrak{g}_{p} is maximal subalgebra of \mathfrak{g} ). There also

exist other gradations defined as follows ([Kac70]): Let s=(s_{1},\ldots,s_{m}) be an
m-tuple of positive integers. We define the subspaces \mathfrak{g}_{k}(k\in Z) of the

Lie algebras (1)-(4) to consist of the vector fields \sum_{i=1}^{m}P_{i}\partial/\partial x_{i} such that each

polynomial P_{i} is a linear combination of monomials x_{1}^{a_{1}}\ldots x_{m}^{a_{m}} with \sum_{i=1}^{m}\alpha_{i}s_{i}=

s_{i}+k . Then the family of subspaces \{\mathfrak{g}_{k}\}_{k\in Z} defines a gradation on W(m)

and S(m) for each s, and on H(n) (resp. K(n)) if and only if (s_{1},\ldots,s_{m})=

(t_{1},\ldots, t_{n}, \mu-t_{1},\ldots,\mu-t_{n}) (resp. (s_{1},\ldots,s_{m})=(t_{1},\ldots,t_{n}, \mu-t_{1},\ldots,\mu-t_{n} , \mu) ) for an
(n+1)- tuple (t, \mu)=(t_{1},\ldots,t_{n}, \mu) with \mu\geq 2 . We will denote by W(m:s) ,

S(m:s) , H(n:t:\mu) , K(n:t:\mu) the GLAs equipped with the above grada-
tion. Note that the standard gradations are obtained by letting s_{1}=\ldots=s_{m}

=1 for W(m) , S(m) , and t_{1}=\ldots=t_{n}=1 , \mu=2 for H(n) , K(n) .
Viewed geometrically, non-standard gradations on the Lie algebras

(1)-(4) might seem rather artificial, however they are closely related with
the geometry of differential systems developed by N. Tanaka. For exam-
ple, if we let s_{1}=\ldots=s_{l}=1 and s_{l+1}=\ldots=s_{n} for some l\geq 1 (or resp. t_{1}=\ldots .
=t_{n}=1) , then we have the GLAs W(n:s) (or resp. K(n:t:\mu) ) that
appear in higher order contact geometry (cf. [Yam82], [Yam83]). More
generally all the gradations introduced as above on the Lie algebras
(1)-(4) can be interpreted geometrically by using the notion, due to T
Morimoto, of weighted jet bundles associated with differential systems.

Now our main theorem may be stated as follows (which was announ-
ced in [Yat89] ) :

THEOREM. Any infifinite dimensional simple GLA of fifinite depth over
an algebraically closed fifield K of characteristic zero is isomorphic to one of
the following GLAs : W(n : s) , S(n : s) , H(n : t : \mu) , K(n : t : \mu) .

In [Kac70]. V. G. Kac conjectured that any simple GLA of finite
growth over an algebraically closed field of characteristic zero is isomor-
phic to one of the GLAs (1)-(4) , finite dimensional simple GLAs of type
(s_{1},\ldots,s_{n}) , affine Lie algebras with the gradation of type (s_{1},\ldots,s_{n}) and a Lie
algebra of Witt. Thus our result gives an answer to a particular case of
Kac’s conjecture.
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Now let us explain the outline of the proof of the theorem and
describe breifly the contents of this paper.

Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be an infinite dimensional simple GLA of finite depth.

Let E be the derivation of \mathfrak{g} defining the gradation (i. e. , Ex=px for all x
\in \mathfrak{g}_{p}) . First we shall construct a standard gradation \{G_{k}\}_{k\in Z} on \mathfrak{g} such
that each G_{k} is E-stable. The existence of a primitive gradation is
assured by the Cartan’s classification. In order to construct an E-stable
one, we follow [But67], slightly generalizing her arguement to fit in our
purpose. Then again by Cartan’s classification, we can identify \mathfrak{g}=\bigoplus_{k\in Z}G_{k}

with a simple infinite Lie algebra of Cartan type with the standard grada-
tion. We shall then determine how the element E is expressed explicitly
in \bigoplus_{k\in Z}G_{k} , by using the detailed structure of \bigoplus_{k\in Z}G_{k} and the method of root
systems, to obtain finally our result.

In Section 1, we prepare basic notions and facts needed in the sequel.
In particular, we prove some fundamental properties of reductive GLAs.
Then we construct an E-stable primitive gradation as mentioned above.

Section 2 is devoted to the proof of the main theorem.
In Section 3, from some geometric motiviation, we study the prolonga-

tion of the associated truncated GLAs to GLAs of Cartan type and finite
dimensional simple GLAs.

\S 1. Preliminaries.

This section contains some definitions and results used throughout the
paper. Throughout the entire paper the ground field K is assumed to be
an algebraically closed field of characteristic zero. Each homogeneous
component of a graded vector space considered in this paper is assumed to
be of finite dimension. We use the following notation : 30(d) denotes the
centralizer of \mathfrak{d} in (l, 3(\{)) denotes the center of Q , Der t) denotes the deriva-
tion algebra of c\downarrow and Z denotes the ring of integers.

1. 1. Graded Lie algebras.

A graded Lie algebra (GLA) in a graded vector space \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

equipped with a Lie bracket such that [\mathfrak{g}_{p}, \mathfrak{g}_{q}]\subset \mathfrak{g}_{p+q} . Also the family of
subspaces \{\mathfrak{g}_{p}\}_{p\in Z} of \mathfrak{g} is called a gradation on \mathfrak{g} . Two GLAs \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} and
\mathfrak{g}’=\bigoplus_{p\in Z}\mathfrak{g}_{\acute{p}} are considered to be isomorphic if there exists an isomorphism \varphi :
\mathfrak{g}arrow \mathfrak{g}’ such that \varphi(\mathfrak{g}_{p})\subset \mathfrak{g}_{\acute{p}}. A GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is called transitive if for x\in
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\mathfrak{g}_{p}(p\geq 0) , [x, \mathfrak{g}-]=0 implies x=0 , where \mathfrak{g}_{-}=\bigoplus_{p<0}\mathfrak{g}_{p} , and irreducible if the

\mathfrak{g}_{0}-module \mathfrak{g}_{-1} is so. Moreover a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is said to be of finite depth if

dim \mathfrak{g}-<\infty . In particular, if \mathfrak{g}_{-\mu}\neq\{0\} and \mathfrak{g}_{p}=\{0\} for p<-\mu , then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

is said to be of depth \mu . In this paper we will always assume \mu\geq 1 .

REMARK. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a GLA of finite depth such that dim \mathfrak{g}\geq 2 .

F or \mathfrak{g} to be simple, it is neccesary and sufficient that \mathfrak{g} has no graded ideal.
In fact, the condition is obviously neccesary. Conversely, let Q be a non-
zero ideal of \mathfrak{g} . As in the proof of Proposition 1. 6.1 in [Wei78], we set \mathfrak{a}_{p}^{\#}

= { x\in \mathfrak{g}_{p} : \exists x_{i}\in \mathfrak{a}_{i} , i<p , with x+\Sigma x_{i}\in(l}. Then (l^{\#}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{\#} is a graded ideal

of \mathfrak{g} . If \mathfrak{a}^{\#} is equal to \mathfrak{g} , then so does Q. This proves our assertion.

Next let us define a truncated graded Lie algebra (truncated GLA)

and its prolongation ([MOr88]). Let k\in Z\cup\{\infty\} . A graded vector space
\mathfrak{g}(k)=C+\mathfrak{g}pp\leq k is called a truncated GLA of order k if one has a bracket oper-

ation (skew-symmetric bilinear mapping) [ . ] : \mathfrak{g}_{p}\cross \mathfrak{g}_{q}arrow \mathfrak{g}_{p+q} for p , q , p

+q\leq k such that the Jacobi identity holds whenever it makes sense. A
transitive truncated GLA and a truncated GLA of finite depth are defined
as in the case of GLAs. Note that a truncated GLA of order \infty is just a
GLA. If \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is a GLA, then for each integer k , Trun_{k}(\mathfrak{g}):=\bigoplus_{p\leq k}\mathfrak{g}_{p}

becomes a truncated GLA of order k with respect to the induced bracket
operation, which is called the associated truncated GLA of order k to the
GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} . Let \mathfrak{g}(k)=\bigoplus_{p\leq k}\mathfrak{g}_{p}(k\geq-1) be a transitive truncated GLA of

finite depth. Then there exists, uniquely up to isomorphism, a transitive
GLA Pro1\mathfrak{g}(k) of finite depth satisfying the following conditions ([Tan70]):

(i) Trun_{k}(Pro1\mathfrak{g}(k))=\mathfrak{g}(k) .
(ii) If \mathfrak{h} is a transitive GLA and if there exists an isomorphism \emptyset of

Trun k(\mathfrak{h}) onto \mathfrak{g}(k) , then there exists a monomorphism \varphi of \mathfrak{h} into Prol
\mathfrak{g}(k) such that \varphi|Trun_{k}(\mathfrak{h})=\phi .

We call the transitive GLA Prol \mathfrak{g}(k) the prolongation of \mathfrak{g}(k) . We
say also that a transitive GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} of finite depth is the prolongation

of Trun_{k}(\mathfrak{g}) if \mathfrak{g}=Pro1Trun_{k}(\mathfrak{g}) . Note that \mathfrak{g} can be always identified with
a graded subalgebra of Prol Trun_{k}(\mathfrak{g}) . Finally let E be an element of a
Lie algebra Der_{0}(\mathfrak{g}) of all the derivations preserving the gradation of a
GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} such that [E, x]=px for all x\in \mathfrak{g}_{p} . We call this element E

the defining element of a GLA \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} .
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1. 2. Gradations of finite dimensional simple Lie algebras.

Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a finite dimensional simple GLA. Then its defining
element E is contained in \mathfrak{g}_{0} . Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}_{0} . Let \Delta

be a root system of (\mathfrak{g}, \mathfrak{h}) . We will usually denote by e_{a} the root vector
corresponding to a root \alpha\in\Delta . Given a \mathfrak{h} -stable subspace Q of \mathfrak{g} , we set
\Delta(\mathfrak{a})=\{\alpha\in\Delta:e_{a}\in 0\} . In particular we set \Delta_{p}=\Delta(\mathfrak{g}_{p}) and \Sigma=\bigcup_{p\geq 0}\Delta_{p} .
Since \Delta=\Sigma\cup(-\Sigma) , there are a simple root system \Pi=\{\alpha_{1},\ldots,\alpha_{1}\} of(\mathfrak{g}, \mathfrak{h})

and an l -tuple of non-negative integers (s_{1}, \ldots,s_{1}) such that \Delta_{p}=

\{\alpha=\Sigma_{i}k_{i}\alpha_{i}\in\Delta:\Sigma_{i}s_{i}k_{i}=p\} (cf. [BOu75]). The l-tuple (s_{1},\ldots,s_{1}) of non-
negative integers is determined only by the gradation of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} up to the
ordering of (\alpha_{1},\ldots,\alpha_{1}) . In what follows, we assume that the ordering of
(\alpha_{1},\ldots,\alpha_{l}) is as in the table of [BOu68]. Moreover we assume that s_{io}>s_{\mu(i_{0})}

for all the automorphisms \mu of the Dynkin diagram such that s_{i}\neq s_{\mu(i)} for
some i , where i_{0}= \min\{i:s_{i}\neq s_{\mu(i)}\} . Then the above gradation of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

is called the gradation of type (s_{1},\ldots,s_{1}) . Furthermore for k>0 , a finite
dimensional simple GLA \mathfrak{g}=\bigoplus_{p\in z}\mathfrak{g}_{p} is called of general type of order k if \mathfrak{g}_{-}

=\mathfrak{g}_{-k} , and of contact type of order k if \mathfrak{g}_{-}=\mathfrak{g}_{-2k}\oplus \mathfrak{g}_{-k} and dim \mathfrak{g}_{-2k}=1 .
The classification of finite dimensional simple GLAs of general type or of
contact type can be easily done by using the Dynkin diagram. Here we
remark that \mathfrak{g}_{0} is reductive in \mathfrak{g} and \mathfrak{g}_{p} is contragredient to \mathfrak{g}_{-p} as a
\mathfrak{g}_{0}-module.

Now we state a few properties of reductive GLAs, which we will use
later on.

LEMMA 1. Let \mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{p} be a fifinite dimensional reductive GLA of
depth \mu\geq 1 , and \mathfrak{U}^{=}\bigoplus_{p\in Z}\mathfrak{u}_{p} be a graded subalgebra of \mathfrak{l} .

(1) Let \mathfrak{n} be a nilpotent subalgebra of \mathfrak{l} with \mathfrak{n}n_{\mathfrak{U}}=\{0\} and [\mathfrak{U}, \mathfrak{n}]\subset \mathfrak{n} .
If \mathfrak{U} is reductive and \mathfrak{U}0 contains a Cartan subalgebra of \mathfrak{l} , then there exists
a nilpotent subalgebra \mathfrak{n}_{+} of \mathfrak{l} such that \mathfrak{n}_{+}+_{\mathfrak{U}}+\mathfrak{n} is a direct sum, [\mathfrak{U}, \mathfrak{n}_{+}]\subset

\mathfrak{n}_{+} and \mathfrak{n}_{+} is contragredient to \mathfrak{n} as a n-module.
(2) Let r=\bigoplus_{p\in Z}c_{p} be the radical of \mathfrak{U} . Suppose that Trun_{k}(\mathfrak{l})=Trun_{k}(\mathfrak{U})

(k\geq-1) and \mathfrak{U}0 contains a Cartan subalgebra of I. Then r_{p}=\{0\} for p\geq

-k, p\neq 0 , and r_{0}=a(\mathfrak{l}) .
(3) Suppose that \mathfrak{l}_{-}=_{\mathfrak{U}-} and \mathfrak{U} is reductive. Then [\mathfrak{l}, \mathfrak{l}]=[\mathfrak{U}, u] .

PROOF. (1) Let \mathfrak{s}=[\mathfrak{l}, \mathfrak{l}] ; then \mathfrak{s} is graded, which we write \mathfrak{s}=\bigoplus_{p\in Z}\mathfrak{s}_{p} .
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Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{l} contained in \mathfrak{U}0 ; then \mathfrak{h}=(\mathfrak{h}\cap \mathfrak{s})\oplus 3(\mathfrak{l}) and
\mathfrak{h}\cap \mathfrak{s} is a Cartan subalgebra of \mathfrak{s} . Let \Delta be a root system of (\mathfrak{s}, \mathfrak{s}\cap \mathfrak{h}) .
Since \mathfrak{n} is nilpotent, it follows that -\alpha\not\in\Delta(\mathfrak{n}) if \alpha\in\Delta(\mathfrak{n}) . Let \sigma be an
automorphism of \mathfrak{s} such that \sigma(e_{a})=e_{-a} and \sigma(h)=-h for h\in \mathfrak{h}\cap \mathfrak{s} . If we
put \sigma(z)=-z for z\in a(\mathfrak{l}) , then we can extend \sigma an automorphism on I.
Then we may put \sigma(\mathfrak{n})=\mathfrak{n}_{+} .

(2) If \alpha\in\Delta(\tau_{p}) for p\geq-k , then -\alpha\in\Delta(r_{-p}) because t is the ideal of
\mathfrak{U} and Trun_{k}(\mathfrak{l})=Trun_{k}(\mathfrak{U}) , so t contains a three dimensional simple subal-
gebra of \mathfrak{l} , which is a contradiction. Thus we have c_{0}\subset \mathfrak{h} and r_{p}=\{0\} for p
\geq-k , p\neq 0 . If there exists a non-zero element h\in\tau_{0} such that \alpha(h)\neq 0 for
some \alpha\in\Delta , then we can similarly reach a contradiction. Hence r_{0}=a(\mathfrak{l}) .

(3) Since \mathfrak{U} and \mathfrak{l} are reductive, we see that dim \mathfrak{l}_{-p}=\dim \mathfrak{l}_{p} and dim

\mathfrak{U}p^{=\dim}\square

\mathfrak{U}

-p for p\neq 0 . Further since \mathfrak{U}p^{=\mathfrak{l}_{p}} for p<0 , we have [\mathfrak{l}, \mathfrak{l}]=[\mathfrak{U}, \mathfrak{U}] .

1. 3. Graded Lie algebras of Cartan type.

In this subsection we describe Lie algebras of Cartan type and their
gradations.

Let A(m) denote the monoid (under addition) of all m-tuples of non-
negative integers. For 1\leq i\leq m let \epsilon_{i} denote the m-tuple (\delta_{i1},\ldots,\delta_{im}) . For

\alpha , \beta\in A(m) define (\begin{array}{l}\alpha\beta\end{array})=(\begin{array}{l}\alpha_{1}\beta_{1}\end{array})\ldots(\begin{array}{l}\alpha_{m}\beta_{m}\end{array}) and \alpha!=\Pi\alpha_{i}! . For t=(t_{1},\ldots,t_{m}) an

m-tuple of positive integers and \alpha\in A(m) we set || \alpha||_{t}=\sum_{i=1}^{m}t_{i}\alpha_{i} . Also for
s^{(i)}=(sf^{i)},\ldots,s_{m}^{(i)}) an m_{i}-tuple of positive integers (i=1,\ldots,n) we denote by

(s^{(1)},\ldots,s^{(n)}) the \sum_{i=1}^{n}m_{i}-tuple (sf^{1)},\ldots,s_{m_{1}}^{(1)},\ldots,sf^{n)},\ldots,s_{m_{n}}^{(n)}) . Further we write 1_{m}

(or 1 if no confusion arises) for them-tuple (1,\ldots,1) , and for a positive inte-
ger k we denote the m-tuple (k,\ldots,k) by k1 . Let \mathfrak{A}(m)=K[x_{1},\ldots,x_{m}] . For

a\in A(m) define x^{(a)}=(\Pi x_{i}^{ai})/\alpha !. Then x^{(a)}x^{(\beta)}=(\begin{array}{l}\alpha+\beta\alpha\end{array})x^{(a+\beta)} . For any

m-tuple s of positive integers we define a gradation of \mathfrak{A}(m) by \mathfrak{A}(m:s)_{p}=

\{\Sigma a_{a}x^{(a)}:||\alpha||_{s}=p\} . Let D_{i} denote the i-th partial derivative defined by

D_{i}x^{(a)}=x^{(a-\epsilon_{i})} for \alpha\in A(m) ,

where we put x^{(\beta)}=0 if \beta\not\in A(m) .
Let W(m)=Der\mathfrak{A}(m)=\{\Sigma u_{i}D_{i} : u_{i}\in \mathfrak{A}(m)\} . The Lie algebra W(m)

is called the general algebra. For s=(s_{1},\ldots,,s_{m}) an m-tuple of positive

integers W(m) has a gradation \{ W(m:s)_{p}\}_{p\in Z} , where W(m:s)_{p}= \sum_{i=1}^{m}\mathfrak{A}
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(m:s)_{p+s_{k}}D_{k} . We will denote by W(m:s) the GLA W(m) equipped with
this gradation.

We now consider the following three differential forms:
\omega_{S}=dx_{1}\wedge\ldots\wedge x_{m} , m\geq 2 ,

\omega_{H}=\sum_{i=1}^{n}dx_{i}\wedge dx_{i’} for m=2n , n\geq 1 ,

\omega_{K}=dx_{2n+1}-\sum_{i=1}^{n}x_{i’}dx_{i} for m=2n+1 , n\geq 1 ,

where i’=\{
i+n for 1\leq i\leq n

i - n for n<i\leq 2n .

Define subalgebras S(m) , CS\{m), H(n) , CH(n) , K(n)\subset W(m) by

S(m)=\{D\in W(m):D\omega_{S}=0\} ,
CS(m)=\{D\in W(m):D\omega_{S}\in K\omega_{s}\} ,
H(n)=\{D\in W(m):D\omega_{H}=0\} ,
CH(n)=\{D\in W(m):D\omega_{H}\in K\omega_{H}\} ,
K(n)=\{D\in W(m):D\omega_{K}\in \mathfrak{A}(m)\omega_{K}\} ,

(Here the action of D on the differential forms is defined through Lie
derivative.) The Lie algebras S(m) , H(n) , K(n) are called the special
algebra, the Hamiltonian algebra and the contact algebra respectively.
Also for X=W, S, CS , H, CH, K, the Lie algebra X(n) is called a Lie
algebra of Cartan type. Then we can easily prove the following asser-
tions ([Kac70, \S 2]).

PROPOSITION 2. Let s=(s_{1}\ldots.,s_{m}) be an m-tuple of positive integers.
Then

(1) S(m) and CS(m) are graded subalgebras of W(m:s) .
(2) H(n) and CH(n)(m=2n) are graded subalgebras of W(m:s) if

and only if s_{i}+s_{i’}=sj+sj’ .
(3) K(n)(m=2n+1) is a graded subalgebra of W(m:s) if and only

if s_{i}+s_{i’}=s_{2n+1} for i=1 , \ldots , n .

From this proposition we can define the gradations on S(m) , CS\{m) ,
H(n) , CH(n) , K(n) induced by W(m:s) as follows. For X=S or CS ,
and s=(s_{1},\ldots,s_{m}) an m-tuple of positive integers, we set X(m : _{S})_{p}=

W(m:s)_{p}\cap X(m) . Further for X=H, CH, K, t=(t_{1},\ldots,t_{n}) an n-tuple of
positive integers, and positive integer \mu\geq 2 such that t_{i}<\mu , we set X(n :
t:\mu)_{p}=W(m:s)_{p}\cap X(n) , where s=(t, \mu 1-t) for X=H, CH and s=
(t, \mu 1-t, \mu) for X=K. Then we can define a gradation on S(m) , CS\{m) ,
H(n) , CH(n) , K(n) by \{S(m:s)_{p}\}_{p\in Z} , \{CS(m:s)_{p}\}_{p\in Z} , \{H(n:t _{:} _{\mu p})\}_{p\in Z} ,
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\{CH(n:t:\mu)_{p}\}_{p\in Z} , \{K(n:t:\mu)_{p}\}_{p\in Z} respectively. The Lie algebras
S(m) , CS(m) , H(n) , CH(n) and K(n) equipped with this gradation will
be denoted by S(m:s) , CS(m:s) , H(n:t: \mu) , CH(n:t: \mu) , K(n : t :
\mu) respectively, which are called GLAs of Cartan type. In particular, if s
=1 for X=W, S , CS , and if t=1 and \mu=2 for X=H, CH, K, then the
above gradation is called the standard gradation. Here we remark the
following fact: For X=W, S , CS (resp. X=H, CH, K), s=(s_{1},\ldots,s_{m})

(resp. s=(t_{1},\ldots,t_{n} , \mu-t_{1},\ldots,\mu-t_{n} )) coincides with s’=(s_{1}’,\ldots s_{m}’) (resp. s=
(t_{1}^{r},\ldots, t_{n}^{r}, \mu-t_{1}^{r},\ldots, \mu-t_{n}^{r})) as a set if and only if X(m : s) (resp.
X(n:t’ : _{\mu})) is isomorphic to X(m:s’) (resp. X(n:t’ : \mu) ) as a GLA.
In what follows, we will assume that s_{1}\leq\ldots\leq s_{m} for X=W. S , CS , and t_{1}

\leq\ldots\leq t_{n} and t_{i}\leq[\mu/2] for X=H, CH, K. Moreover we remark that for
X=W, S , CS (resp. X=H, CH, K), X(m:s)_{-} (resp. X(n:t : \mu ) ) is
generated by X(m:s)_{-1} (resp. X(n:t:\mu)_{-1} ) if and only if s_{1}=1 (resp. t_{1}

=1) .
To simplify the cal culation on K(n) , we will use another characteri-

zation of K(n) . We define a linear mapping D_{K} : \mathfrak{A}(2n+1) -arrow W(2n+1)

by means of D_{K}(f)= \sum_{j=1}^{2n+1}f_{j}D_{j} , where f_{j}=-D_{i’}f(1\leq j\leq n) , f_{j}=D_{i’}f+x_{j}D_{zn+1}f

(n+1\leq j\leq 2n) and f_{2n+1}=f- \sum_{j=1}^{n}x_{i’}D_{i’}f . For f, g\in A(2n+1) we put [f, g]

=fD_{2n+1}(g)-gD_{2n+1}(f)+D_{K}(f)g . Then we have [D_{K}(f), D_{K}(g)]=[f, g] . In
particular,

[x^{(a\rangle}, x^{(\beta)}]= \sum_{i=1}^{n}\{(\begin{array}{ll}\alpha+\beta-\epsilon_{i}- \epsilon_{i’}\alpha-\epsilon_{i} \end{array})- (\begin{array}{l}\alpha+\beta-\epsilon_{i}-\epsilon_{i’}\beta-\epsilon_{i}\end{array})\}x^{(a+\beta-\epsilon_{i}-\epsilon_{i’})}

+\{(|\beta|’-1)(\begin{array}{l}\alpha+\beta-\epsilon_{2n+1}\beta\end{array})-(|\alpha|’-1)(\begin{array}{l}\alpha+\beta-\epsilon_{2n+1}\alpha\end{array})\}x^{(a+\beta-\epsilon_{2n+1})} ,

where | \alpha|’=\sum_{i=n+1}^{2n}\alpha_{i} . Then the mapping D_{K} is an isomorphism of \mathfrak{A}(2n+1)

onto K(n) , so the bracket [ ] induces the Lie algebra structure on
\mathfrak{A}(2n+1) . In what follows we identify \mathfrak{A}(2n+1) with K(n) . We have
K(n:t : \mu)_{p}=\{x^{(a)} : ||\alpha||_{s}=\mu+p\} for t=(t_{1},\ldots,t_{n}) an n-tuple of positive
integers and a positive integer \mu\geq 2 such that t_{1}\leq\ldots\leq t_{n} and t_{i}\leq[\mu/2] ,

where s=(t, \mu 1-t, \mu) .
Now we state the structures of W(m : 1 ) , S(m : 1 ) , CS(m:1) ,

H(n:1:2) , CH(n:1:2) and K(n:1:2) , which is investigated by many
authors (e . g. , [KN65], [MT70], [Kac68]). Here we describe these results
according to [Kac68].

THEOREM 3. ( [Kac6S , Proposition 19]) Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be one of
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W(n:1)(n\geq 2) , S(n:1) , CS(n:1) , H(n:1:2) , CH(n:1 : 2) , K(n : 1:
2). Then \mathfrak{g}_{0}=\mathfrak{g}_{\acute{0}}\oplus a(\mathfrak{g}_{0}) , where \mathfrak{g}_{\acute{0}} is the semisimple part of \mathfrak{g}_{0} ; the subspace
\mathfrak{g}’=\mathfrak{g}-\oplus \mathfrak{g}_{0}\oplus\bigoplus_{p>0}\mathfrak{g}p is an ideal of codimension one of \mathfrak{g}=CS(n:1)

(resp. CH ( n : 1 : 2)), isomorphic to S(n : 1 ) (resp. H(n : 1 : 2)). The Lie
algebras W (n : 1 ) , S(n : 1 ) , H(n : 1 : 2 ) and K(n : 1 : 2 ) are simple ; their
structures are given by the following table:

. \frac{Car\tan type\mathfrak{g}_{\acute{0}}\mathfrak{g}_{\acute{0}^{-}}modu1e\mathfrak{g}_{k}\dim 3(\mathfrak{g}_{0})}{W(n\cdot 1)A_{n-1}T_{k}(n)\oplus S_{k}(n)1}

S(n:1) A_{n-1} T_{k}(n) 0
H(n:1 : 2) C_{n} P_{k}(n) 0

C_{n} P_{-2}(n)\oplus\ldots\oplus P_{k}(n)(k=even) 1K(n:1:2) P_{-1}(n)\oplus\ldots\oplus P_{k}(n)(k=odd)

In the table, T_{k}(n) and S_{k}(n) are irreducible representations of A_{n-1} with
the following highest weight:

T_{k}(n)0-0-----OO1\underline{k}+1 S_{k}(n)0-0------0-^{k}0

and P_{k}(n) is an irreducible representation of C_{n} :

P_{k}(n)OO-----O\subset Ok+\underline{2}

In particular, the canonical sequence (\mathfrak{g}_{0}, \mathfrak{h}, \Pi, (e_{a})_{a\in\Pi}, F_{\Lambda}) of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

(where \mathfrak{h} is a Cartan subalgebra of \mathfrak{g}_{0} , II is a simple root system of (\mathfrak{g}, \mathfrak{h})

and F_{\Lambda} is the highest weight vector of the \mathfrak{g}_{0}-module \mathfrak{g}_{-1} with respect to (\mathfrak{g}_{0} ,
\mathfrak{h} , \prod)) is described as follows:

Case 1. \mathfrak{g}=W(n:1)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}D_{i}) , e_{a_{i}}=-x_{i+1}D_{i} , F_{\Lambda}=D_{1}

Case 2. \mathfrak{g}=S(n:1)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}D_{i}-x_{i+1}D_{i+1}) , e_{a_{i}}=-x_{i+1}D_{i} , F_{\Lambda}=D_{1}

Case 3. \mathfrak{g}=CS(n:1)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}D_{i}) , e_{a_{i}}=-x_{i+1}D_{i} , F_{\Lambda}=D_{1}

Case 4. \mathfrak{g}=H(n:1:2)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}D_{i}-x_{i’}D_{i’}) , e_{a_{i}}=-x_{i+1}D_{i}+x_{i’}D_{i’+1}(1\leq i\leq n-1) ,
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e_{a_{n}}=-x_{2n}D_{2n} , F_{\Lambda}=D_{1} .
Case 5. \mathfrak{g}=CH(n:1:2)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}D_{i}-x_{i’}D_{i’})\oplus K(\sum_{i=1}^{2n}x_{i}D_{i}) ,

e_{a_{i}}=-x_{i+1}D_{i}+x_{i’}D_{i’+1}(1\leq i\leq n-1) , e_{a_{n}}=-x_{2n}D_{2n} , F_{\Lambda}=D_{1} .
Case 6. \mathfrak{g}=K(n:1:2)

\mathfrak{h}=\sum_{i=1}^{n}K(x_{i}x_{i’}) , e_{a_{i}}=x_{i+1}x_{i} , (1\leq i\leq n) , e_{a_{n}}=-1/2x_{2n}^{2} , F_{\Lambda}=x_{n+1} .

1. 4. Filtered Lie algebras.

Let L be a Lie algebra and t be a finite dimensional Lie algebra.
Assume that the L has a t-module structure and any element of t acts on
L as a derivation. A decreasing sequence \{L^{p}\}_{p\in Z} of t-stable subspaces of
L is called a t-filtration (simply a filtration if t=\{0\} ) on L if [L^{p}L^{q}]\subset

L^{p+q} and dim L^{p}/L^{p+1}<\infty . The Lie algebra L with this t-filtration is
called a t-fitered Lie algebra (FLA), which we write (L, \{L^{p}\}_{p\in Z}) . Given a
t-filtration \{L^{p}\}_{p\in Z} on L, c1ear1y\cap L^{p} is a t-stable ideal of L ; the t-
filtration is called separated if \cap L^{p}=\{0\} , weakly transitive if L^{p+1}=\{x\in
L^{p} : [x, L^{p}]\subset L^{p+a+1} for all a<0} (p\geq 0) , transitive if L is weakly transi-
tive and separated, and of finite depth if L=L^{-\mu} for some \mu\geq 0 . Let (L,
\{L^{p}\}_{p\in Z}) and (L’, \{L^{rp}\}_{p\in z}) be two t-FLAs; a homomorphism h:Larrow L^{r}

is called a t homomorphism of t-FLAs if h(L^{p})\subset L^{\prime p} and h is a t-module
homomorphism.

Let (L, \{L^{p}\}_{p\in Z}) be a t-FLA. Then there exists a unique uniform
topology on L which is compatible with the Lie algebra structure and for
which the \{L^{p}\}_{p\in Z} constitute a fundamental system of neighborhoods of
zero of L. (L, \{L^{p}\}_{p\in Z}) is called complete if L is separated and L is com-
plete with respect to the uniform topology. If we set L^{\Lambda}=\varliminf L/L^{k} and L^{\Lambda}p

=\varliminf L^{p}/L^{k} . then (L^{\Lambda}, \{L^{p}\}_{p\in Z})\wedge is a complete t-FLA called the completion
of (L, \{L^{p}\}_{p\in Z}) and there is a canonical t homomorphism of (L, \{L^{p}\}_{p\in Z})

onto (L^{\Lambda}, \{L^{\Lambda}p\}_{p\in Z}) having as its kernel the c1osure\cap L^{p} of {0} in L.

REMARK. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a transitive GLA of finite depth. We set

L^{p}= \bigoplus_{k\geq p}\mathfrak{g}_{k} . Then (\mathfrak{g}, \{L^{p}\}_{p\in Z}) is a transitive FLA of finite depth and its
completion is identified with ( \prod \mathfrak{g}_{k}, \{\prod_{k\geq p}\mathfrak{g}_{k}\}_{p\in Z}) . If \mathfrak{g}=W(n:t) , S(n:t) ,

CS(n:t) , H(n:t:\mu) , CH(n:t:\mu) or K(n:t:\mu) , then any choice of
t and \mu gives the same topology.
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Let (L, \{L^{p}\}_{p\in Z}) be a t-FLA of finite depth. Let gr(L)= \bigoplus_{p\in Z}gr(L)_{p} be
its associated GLA, where gr(L)_{p}=L^{p}/L^{p+1} and the bracket operation of
gr(L) is defined in the obvious manner. Further the graded t-module
structure on gr(L) is naturally defined. Note that gr(L) is transit\dot{l}ve if
and only if L is weakly transitive. Let (L^{\Lambda}, \{L^{\Lambda}p\}_{p\in Z}) be the completion of
(L, \{L^{p}\}_{p\in Z}) . Then the canonical homomorphism gr(L)arrow gr(L^{\Lambda}) is an
isomorph_{\overline{1}}sm both as a GLA and as a t-module.

1. 5. Construction of filtered Lie algebras.

Let L be a Lie algebra and t be a finite dimensional subalgebra of Der
(L). Suppose that there is a maximal t-stable subalgebra L^{0} of L of finite
codimension. Then the adjoint action of L on itself induces a representa-
tion of L^{0} on L/L^{0}- Let L\supset L^{-1}\supset L^{0} be such that L^{-1}/L^{0} is an irreducible
( L^{0} . t)-submodule of L/L^{0} (that is, it has no proper subspace which are
both L^{0}

- and t-stable). Following Weisfe\overline{l}ler [Wei69] and MorimotO-
Tanaka [MT70], we define a t-filtration of L by L^{i-1}=[L^{i}, L^{-1}]+L^{i} for i
<0 and L^{i+1}=\{x\in L^{i} : [x, L^{-1}]\subset L^{i}\} for i\geq 0 . Then the t-FLA (L, \{L^{p}\}_{p\in Z})

is a weakly transitive t-FLA of finite depth. We call this a t-FLA corre-
sponding to the maximal t-stable subalgebra L^{0} . Let gr(L)= \bigoplus_{p\in Z}gr(L)_{p} be
the associated GLA. Then gr(L) is a transitive GLA such that gr(L)_{-} is
generated by gr(L)_{-1} and (gr(L)_{0}, t) -irreducible.

The following propoition deals with a somewhat more general case
than that considered in [KN65] and [MT70].

PROPOSITION 4. Let (L, \{L^{p}\}_{p\in Z}) be as above. Suppose that L is
infifinite dimensional and transitive. Then:

(a) gr(L)= \bigoplus_{p\in Z}gr(L)_{p} is isomorphic to one of W(n:1) , S(n:1) , CS

(n:1) , H(n:1:2) , CH(n:1:2) , K(n:1 : 2) .
(b) If there exists an element E of gr(L)_{0} such that all the

eigenvalues of adE are negative integers, then gr(L)= \bigoplus_{p\in Z}gr(L)_{p} is isomor-
phic to one of W(n:1) , CS(n:1) , CH(n:1:2) , K(n:1:2) .

PROOF. (a) By assumption, we get a homomorphism tarrow Der_{0}(gr(L)_{-}) ;
we denote by \overline{t} its image. We set gr(L)^{t}= \bigoplus_{p\in Z}gr(L)_{p}^{t} , where gr(L)_{p}^{t}=

gr(L)_{p} for P\neq 0 and gr(L)_{0}^{t}=gr(L)_{0}+\overline{t} (here we consider gr(L)_{0} as a
subalgebra of Der_{0}(gr(L)-)) . Then gr(L)^{t}= \bigoplus_{p\in Z}gr(L)_{p}^{t} is an infinite dimen-
sional irreduc\overline{l}ble transitive GLA of finite depth such that gr(L)_{-} is gener-
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ated by gr(L)_{-1} . Then, by [KN65] and [MT70], the [gr(L)_{-1}, gr(L)_{1}] -

module gr(L)_{-1} is irreducible, so the gr(L)_{0} module gr(L)_{-1} is irreducible.
Now suppose that gr(L)= \bigoplus_{p\in Z}gr(L)_{p} is of depth two and [gr(L)_{-2}, gr(L)_{1}]

=\{0\} . By the similar arguement to the proof of Lemma 4. 1 in [MT70],
we can prove that there exists a one dimensional subspace U of L such
that L=U\oplus L^{-1} , [ U\oplus L^{0}, L^{0}]\subset U\oplus L^{0} and t . U\subset U\oplus L^{0} Then we have
[U\oplus L^{0}. U\oplus L^{0}]\subset U\oplus L^{0} and t ( U\oplus L^{0})\subset U\oplus L^{0} , which contradicts the
maximality of L^{0} . Thus by [KN65] and [MT70], gr(L) is isomorphic to
one of W(n:1) , S(n:1) , CS(n:1) , H(n:1:2) , CH(n:1:2) , K(n:1 :
2).

(b) We have only to prove that gr(L)_{0} has the defining element e of
gr(L)= \bigoplus_{p\in Z}gr(L)_{p} . To do this, it is sufficient to prove that E\in K^{\cross}e

+gr(L)_{\acute{0}} in case gr(L)=W(n:1) , CS(n:1) , CH(n:1:2) , K(n:1:2) ,
where gr(L)_{\acute{0}} is the semisimple part of gr(L)_{0} . We can deduce this from
the following assertion : Let E be an element of \mathfrak{g}\mathfrak{l}(n : K) (resp. c%#(n :
K)) such that all the eigenvalues of E are negative integers. Then E\in
K^{\cross}id+\mathfrak{s}\mathfrak{l}(n:K)(resp. K^{\cross}id+\mathfrak{s}\mathfrak{p}(n:K)) . Indeed, we have E=(E-(1/
n)(trE)id+(1/n)(trE)id, E-(1/n)(trE)id\in \mathfrak{s}\mathfrak{l}(n : K)(resp . \mathfrak{s}\mathfrak{p}(n : K)

and trE<0 . This proves (b). \square

1. 6. Construction of a gradation on a filtered Lie algebra.

The following proposition gives some sufficient condition for the com-
pletion of a transitive t-FLA of finite depth to be isomorphic to the com-
pletion of the associated GLA both as a Lie algebra and as a t-module.

PROPOSITION 5. Let (L, \{L^{p}\}_{p\in Z}) be a transitive t-FLA of finite
depth. We write \mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{p}=gr(L) . Suppose that t is commutative and the
t module L is completely reducible. Moreover suppose that \mathfrak{l}_{0} contains the
defifining element e of \mathfrak{l}=\bigoplus_{p\in Z}\mathfrak{l}_{p} . Let (L^{\Lambda}, \{L^{\Lambda}p\}_{p\in Z}) be the completion of

(L, \{L^{p}\}_{p\in Z}) . Then there are t -stable subspaces \{G_{p}\}_{p\in Z} of L^{\Lambda} such that L^{\Lambda}p

=G_{p}\oplus^{\Lambda}L^{p+1} and [G_{p}, G_{q}]\subset G_{p+q} . In particular, L^{\Lambda}\simeq\Pi G_{p}\simeq\Pi gr(L)_{p} .

PROOF. The proof can be done by an analogical method of [But67],
so we will state only an outline. If we choose \{G_{p}^{0}\}_{p\in Z} such that L^{p}=

G_{p}^{0}\oplus L^{p+1} and t.G_{p}^{0}\subset G_{p}^{0} , then we can identify \mathfrak{l}_{p} with G_{p}^{0} and decompose the
bracket \gamma of L as \gamma=\Sigma_{1\geq 0}\gamma\downarrow 0

) with \gamma_{l}\in Hom(\Lambda^{2}\mathfrak{l}, \mathfrak{l})_{1} , where Hom(\Lambda^{2}\mathfrak{l}, 1)_{1}=

\{\omega\in Hom(\Lambda^{2}\mathfrak{l}, \mathfrak{l}):\omega(\mathfrak{l}_{p}\wedge \mathfrak{l}_{q})\subset \mathfrak{l}p+q+1\} . We define t-stable subspaces \{G_{p}^{k}\}_{k\geq 0}

of L^{p} such that L^{p}=G_{p}^{k}\oplus L^{p+1} inductively as follows: G_{p}^{k}=\{v-(1/
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k)\gamma 2^{k-1)}(e, v):v\in G_{p}^{k-1}\} , where \gamma\downarrow k-1
) is the Hom (\Lambda^{2}\mathfrak{l}_{-}, I)_{1}iVcomponent of the

decomposition of \gamma according to the identification via \{G_{p}^{k-1}\}_{p\in Z} . Then [e ,

v]=pv (mod L^{p+k+1} ) for all v\in G_{p}^{k} . We define \{G_{p}\} as the limit of the

sequence \{G_{p}^{k}\}_{k\geq 0} in L^{\Lambda} . By construction, we have L^{p}=G_{p}\oplus L^{p+1}\wedge\wedge-t . G_{p}\subset G_{p}

and [e, v]=pv for v\in G_{p} . From this fact, we can easily prove that [ G_{p} ,
G_{q}]\subset G_{p+q} . This proves our assertion. \square

REMARK. Proposition 5 was obtained by T. Morimoto [MOr88] in
case t=\{0\} . Moreover, if (L, \{L^{p}\}_{p\in Z}) is of depth one, it is known by
Kobayashi-Nagano [KN66].

\S 2. Main theorem.

We now are ready to obtain our main theorems.

THEOREM 6. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be an infifinite dimensional GLA of fifinite
depth satisfying the following conditions:

(G. 1) \mathfrak{g}_{0} contains the defifining element E of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} .

(G. 2) Every nonzero ideal of \mathfrak{g} contains \mathfrak{g}_{-} .
Let t be a commutative subalgebra of Der_{0}(\mathfrak{g}) such that the t -module \mathfrak{g}

is completely reducible and that E\in t . Further let L^{0} be a maximal t-
stable subalgebra of \mathfrak{g} containing \bigoplus_{p\geq 0}\mathfrak{g}_{p}, and (\mathfrak{g}, \{L^{p}\}_{p\in Z}) be a t-FLA corre-

sponding to the maximal subalgebra L^{0} of \mathfrak{g} . Then there exist t-stable
subspaces \{G_{p}\}_{p\in Z} of L such that L^{p}=G_{p}\oplus L^{p+1} and [G_{p}, G_{q}]\subset G_{p+q} , whence
\mathfrak{g}=\bigoplus_{p\in Z}G_{p}\simeq gr(L) .

PROOF. We put \underline{L}^{p}=\bigoplus_{p\leq k}\mathfrak{g}_{k} . By (G. 2), (\mathfrak{g}, \{\underline{L}^{p}\}_{p\in Z}) is a transitive t-

FLA. Then we can easily prove that two t-filtrations \{L^{p}\}_{p\in Z} and \{L^{p}\}_{p\in Z}

give the same topology, so that the completion of (\mathfrak{g}, \{L^{p}\}_{p\in Z}) is identified
with (II \mathfrak{g}_{p} , \{\prod_{p\leq k}\mathfrak{g}_{k}\}_{p\in Z}). Moreover, by separatedness, we have dim gr(L)

=\infty . Therefore by Proposition 4, gr(L) must be isomorphic to one of
W(n:1) , CS(n:1) , CH(n:1 : 2) , K(n : 1: 2 ) . Thus the t -FLA (\mathfrak{g} ,
\{L^{p}\}_{p\in Z}) satisfies the assumptions of Proposition 5. Hence there exist t-

stable subspaces \{G_{p}\}_{p\in Z} of L^{\Lambda} such that L^{p}=G_{p}\oplus^{\Lambda}\Lambda L^{p+1} and [G_{p}, G_{q}]\subset G_{p+q} ,

where L^{\Lambda}p is the closure of L^{p} in II \mathfrak{g}_{p} . Therefore it is sufficient to prove
that G_{p}\subset \mathfrak{g} . Let x=\Sigma_{p\geq p_{0}}x_{p}\in G_{p} , where x_{p}\in \mathfrak{g}_{p} . Suppose that Card \{p\in

Z:x_{p}\neq 0\}=\infty . We define the sequence \{x^{(k)}\} of G_{p} inductively as fol-

lows: x^{(0)}=x and x^{(k)}=(adE)x^{(k-1)}-(p_{0}+k-1)x^{(k-1)} . Then x^{(k)}\in L^{p_{0}+k+1}\Lambda .
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On the other hand, there is an integer l such that L^{p+1}\supset L^{l}\Lambda ; then for a
sufficient large integer k , we have x^{(k)}\in\underline{L^{l}\Lambda} . which contradicts the fact that
G_{p}\cap L^{\Lambda}p=\{0\} . Hence G_{p}\subset \mathfrak{g} . \square

REMARK 1. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be an infinite dimensional GLA of finite
depth and t be as in Theorem 6. Then the condition (G. 2) is equivalent
to each of the following conditions:

(G. 2)’ Every nonzero t-stable ideal of \mathfrak{g} contains \mathfrak{g}_{-} .
(G. 2)” There exists a maximal t-stable subalgebra L^{0} of \mathfrak{g} of finite

codimension such that L^{0} contains no t-stable ideal of \mathfrak{g} .
(G. 2)”’ Every nonzero ideal of \mathfrak{g} contains \mathfrak{g}\Lambda :=\mathfrak{g}-\oplus\oplus_{p\neq 0}[\mathfrak{g}p, \mathfrak{g}_{-p}]\oplus \mathfrak{g}_{+} ,

where \mathfrak{g}_{+}=\oplus_{p>0}\mathfrak{g}_{p} .
Indeed, suppose that (G. 2)’ holds. We can easily prove that \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}

is transitive, so we may regard Der_{0}(\mathfrak{g}) as a subalgebra of Der_{0}(\mathfrak{g}
-

) . We
set \mathfrak{g}^{t}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{t} , where \mathfrak{g}_{0}^{t}=\mathfrak{g}_{0}+t and \mathfrak{g}_{p}^{t}=\mathfrak{g}_{p} for p\neq 0 (here we regard \mathfrak{g} and t

as subalgebras of the prolongation of \mathfrak{g}_{-} ). Then \mathfrak{g}^{t}=\bigoplus_{p\in z}\mathfrak{g}_{p}^{t} is a GLA satis-
fying (G. 1) and (G. 2). By Theorem 6, \mathfrak{g}^{t} is isomorphic to one of W(n) ,
CS(n) , CH(n) , K(n) . Then the graded ideal \mathfrak{g}\Lambda of \mathfrak{g} is simple, and hence \mathfrak{g}\Lambda

=\mathfrak{g} or \mathfrak{g}^{t}=\mathfrak{g} . This proves that (G. 2)’ implies (G. 2)”’ It follows from the
proof of Theorem 7 that (G. 2) implies (G. 2)” Clearly (G. 2)”’ implies
(G. 2), and (G. 2) implies (G. 2)’ Finally let us show that (G. 2)” implies
(G. 2)”’ Let \{L^{p}\}_{p\in Z} be the t-filtration on \mathfrak{g} corresponding to the maximal
t-stable subalgebra L^{0} of \mathfrak{g} . Now let Q be an ideal of \mathfrak{g} and \{\mathfrak{a}^{p}\}_{p\in Z} be a
filtration on 0 induced by that on \mathfrak{g} . Note that the condition (G. 2) is
equivalent to the condition “every nonzero graded ideal of \mathfrak{g} contains \mathfrak{g}_{-}

”

(see [Wei78]). Thus, since we have already shown that (G. 2) implies (G.
2)”’, we may assume that t1 is graded. We write (l=\bigoplus_{p\in z}\mathfrak{a}_{p} . On the other
hand, by Proposition 4, gr(L)= \bigoplus_{p\in Z}gr(L)_{p} is isomorphic to a certain GLA
of Cartan type with the standard gradation. Thus gr((l)=\{0\} or gr(())=
[gr(L), gr(L)] . If gr(\mathfrak{a})=\{0\} , then []\cap L^{p}=\mathfrak{a}\cap L^{p+1} for all p\in Z , so (l\subset\cap

L^{p}=\{0\} . Thus \mathfrak{a}=\{0\} . Next we suppose gr(L)=[gr(L), gr(L)] . Since
gr(L)_{p}=gr(\mathfrak{a})_{p} and gr(\mathfrak{a})_{0}=[gr(L)_{0}, gr(L)_{0}] , we have L^{p}=\mathfrak{a}^{p}+L^{p+1}(p\neq 0)

and [L^{0}. L^{0}]+L^{1}=\mathfrak{a}^{0}+L^{1} . Moreover we can find a graded subspace Z of
L^{0} such that L^{0}=Z\oplus([L^{0}. L^{0}]+L^{1}) and Z+L^{1}/L^{1}=3(gr(L)_{0}) . Then if we
set L_{k}^{p}=L^{p}\cap \mathfrak{g}_{k} and t1_{k^{=}}^{p}t1^{p}\cap \mathfrak{g}_{k} , then we have L_{k^{=}}^{0}t1_{k}^{0}+L_{k}^{1} for k\neq 0 and L_{0}^{0}=

( (l_{0}^{0}+L_{0}^{1})\oplus Z , which implies \mathfrak{g}_{k}=\Sigma_{p\in Zt1_{k}^{p}} for k\neq 0 and \mathfrak{g}_{0}=\Sigma_{p\in zt1_{0}^{p}}\oplus Z .
Hence \mathfrak{g}\Lambda\subset \mathfrak{a} . This proves our assertion.
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From Theorem 6, we have

THEOREM 71 Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be an infifinite dimensional GLA of fifinite
depth satisfying the conditions (G. 1) and (G. 2) in Theorem 6. Then
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to one of W(n: ^{t}) , CS(n: ^{t}) , CH(n: ^{t} : \mu) , K(n :
t:\mu) .

PROOF. By Theorem 6, \mathfrak{g} is isomorphic to one of W(n) , CS(n) ,
CH(n) , K(n) (as a Lie algebra) and \mathfrak{g} has a standard gradation \{G_{p}\}_{p\in Z}

such that [E, G_{p}]\subset G_{p} . By construction, we have \oplus p<0G_{p}\subset \mathfrak{g}- . We set
\mathfrak{g}_{p}(q)=\mathfrak{g}_{p}\cap G_{q} . then \mathfrak{g}_{p}=\bigoplus_{p\in \mathfrak{g}}\mathfrak{g}_{p}(q) . We first show that E\in \mathfrak{g}_{0}(0) . Since \mathfrak{g}_{0}(0)

is reductive in G_{0} and since the G_{0}-module G_{k} is completely reducible, the
\mathfrak{g}_{0}(0) -module \mathfrak{g}_{-} is completely reducible. Furthermore we can easily prove
that \mathfrak{n}:=\bigoplus_{q>0}\mathfrak{g}_{0}(q) is the largest nilpotency ideal for the \mathfrak{g}_{0}-module \mathfrak{g}- (cf.

[BOu60, \S 4, n^{o}3 ] ) . Therefore the radical of \mathfrak{g}_{0} is a(\mathfrak{g}_{0}(0))\oplus \mathfrak{n} . Now we can
decompose the element E of \mathfrak{g}_{0} as follows: E=E_{1}+E_{2} , E_{1}\in a(\mathfrak{g}_{0}(0)) , E_{2}\in \mathfrak{n} .
Then since [E, E_{1}]=0 , we know that ad(E-E_{1})|\mathfrak{g}- is semisimple. On the
other hand, since ad E_{2}|\mathfrak{g}- is nilpotent, we have ad(E-E_{1})|\mathfrak{g}_{-}=0 . By tran-
sitivity, we have E=E_{1} , so E\in \mathfrak{g}_{0}(0) . Moreover let e be the defining ele-
root of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} : then e\in \mathfrak{g}_{0}(0) because [e, E]=0. If \mathfrak{g} isomorphic to

W(1) , then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is clearly isomorphic to W(1:k1)(k>0) . Hence we
may assume that n\geq 2 in case \mathfrak{g} is isomorphic to W(n) . Let \mathfrak{h} be a Cartan
subalgebra of \mathfrak{g}_{0}(0) . Let us examine the structure of the GLA G_{0}= \bigoplus_{p\in Z}\mathfrak{g}_{p}(0) .

This GLA is a reductive GLA whose center is one dimensional (Theorem
3) and contained in \mathfrak{g}_{0}(0) . Then \mathfrak{h} is a Cartan subalgebra of G_{0} . More-
over there are a simple root system \prod=\{\alpha_{1},\ldots,\alpha_{1}\} of (G_{0}, \mathfrak{h}) and s=(s_{1},\ldots ,
s_{l})\in A(l) such that \Delta_{p}=\{\alpha=\Sigma k_{i}\alpha_{i}\in\Delta:\Sigma s_{i}k_{i}=p\} (cf. 1. 2). We suppose
that G_{-1}= \bigoplus_{p\geq_{s0}}\mathfrak{g}_{-p}(-1) and \mathfrak{g}_{-s_{0}}(-1)\neq\{0\} . Then we can easily prove that

the highest weight of the \mathfrak{g}_{0}(0) -module \mathfrak{g}_{-s_{0}}(-1) is that of the G_{0}-module
G_{-1} , which we write -\alpha_{0} . Here we remark the following fact: let
\mathfrak{l}^{(i)}=\bigoplus_{p\in Z}\mathfrak{l}b^{i)}(i=1,2) be GLAs isomorphic to a certain GLA of Cartan type

with the standard gradation, and let us consider the sequence (\mathfrak{l}b^{i)}, \mathfrak{h}^{(i)} , \prod^{(i)} ,
(e_{a}^{(i)})_{a\in\Pi^{(i)},F\lambda^{i)})} (cf. 1. 3). Then there is an isomorphism \varphi of \mathfrak{l}^{(1)} onto \mathfrak{l}^{(2)}

as a GLA which transform \mathfrak{h}^{(1)} into \mathfrak{h}^{(2)} , \Pi^{(1)} into \Pi^{(2)} , e_{a}^{(1\rangle} into eb_{a}^{2)}(where\emptyset

is a contragredient mapping of \phi|\mathfrak{h}^{(1)} ), and F\lambda^{1)} into F\lambda^{2)} (cf. [Kac68]). By
identifying the GLA \mathfrak{g}=\bigoplus_{p\in Z}G_{p} with a certain GLA of Cartan type with the
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standard gradation, we may regard the sequence (G_{0}, \mathfrak{h}, \Pi, (e_{a})_{a\in\Pi}, F_{\Lambda}) an
the sequence defined in 1. 3. Moreover \{\alpha_{0}, \alpha_{1},\ldots,\alpha_{l}\} is a basis of \mathfrak{h}^{*} . We
denote by \{\pi_{0}^{\vee},\ldots,\pi_{\ell}^{\vee}\} the dual basis of \{\alpha_{i}\} . We first assume that \mathfrak{g}=\bigoplus_{p\in Z}G_{p}

=W(n:1) . Then n=l+1 and \pi_{k}^{\vee}=\sum_{i=k+1}^{l+1}x_{i}D_{i}(k=0,\ldots,l) . Thus we have

E= \sum_{i=0}^{1}s_{i}\pi_{i}^{\vee}=\sum_{i=0j}^{l}\sum_{=k+1}^{1}s_{i}x_{j}D_{j}=\sum_{k=1}^{\ell+1}(\sum_{i=0}^{k-1}s_{i})x_{k}D_{k} . We set t_{k}= \sum_{i=0}^{k-1}s_{i}(1\leq k\leq l+1) :

then E= \sum_{k=1}^{l+1}t_{k}x_{k}D_{k} . Further we have [E, x^{(\beta)}D_{p}]= \sum_{k=1}^{l+1}t_{k}[x_{k}D_{k}, x^{(\beta)}D_{p}]=

1+11+1\Sigma t_{k}(x_{k}x^{(\beta-\epsilon_{k})}D_{p}-x^{(\beta)}x^{(\epsilon_{k}-\epsilon_{p)}}D_{k})=\Sigma(t_{k}\beta_{k}-t_{p})x^{(\beta)}D_{p}=(||\beta||_{t}-tp)x^{(\beta)}D_{p} .
k=1 k=1

Hence \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to W(n:t) . Similarly in case \mathfrak{g}=\bigoplus_{p\in Z}G_{p}=

CS(n:1) , we can prove that \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to CS(n:t) . Second-

ly we assume that \mathfrak{g}=\bigoplus_{p\in Z}G_{p}=CH(n:1:2) ; Then n=l and \pi_{i}^{\vee}=

= \sum_{ki+1}^{\ell}(x_{k}D_{k}+x_{k’}D_{k’})+2\sum_{k=1}^{i}x_{k’}D_{k’}(0\leq i\leq l-1) and \pi_{1}^{\vee}=\sum_{k=1}^{\ell}x_{k’}D_{k’} . Thus E=

\sum_{i=0}^{l}s_{i}\pi_{i}^{\vee}=\sum_{i=1}^{1}\{(\sum_{k=0}^{i-1}s_{k})x_{i}D_{i}+(\sum_{k=0}^{i-1}s_{k}+2\sum_{k=i}^{1-1}s_{k}+s_{1})x_{i’}D_{i’}\} . We set t_{i}= \sum_{k=0}^{i-1}s_{k}(1\leq i\leq l)

and \mu=2\sum_{k=0}^{\ell-1}s_{k}+s_{1} . Then [E, x^{(a)}D_{p}]=(||\alpha||_{u}-t_{p})x^{(a)}D_{p} , where u=(t, \mu 1

-t) , so \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}p is isomorphic to CH(n:t:\mu) . Finally we assume that

\mathfrak{g}=\bigoplus_{p\in Z}G_{p}=K(n:1:2) . Then n=l and \pi_{i}^{\vee}=-(1/2)\delta_{il}\sum_{k=1}^{i}x_{k}x_{k’}-\sum_{k=i+1}^{1}x_{k}x_{k’}

+x_{21+1} . Thus E=\Sigma s_{i}\pi_{\check{i}}=-\Sigma(s_{0}+\Sigma s_{k})x_{j}x_{j’}+(\Sigma 2s_{k}+s_{l})x_{2l+1}lli-11-1 . We set t_{i}

i=0 j=1 k=1 k=1

= \sum_{k=0}^{i-1}s_{k}(1\leq i\leq l) and \mu=2\sum_{k=0}^{1-1}s_{k}+s_{1} . Then [E, x^{(a)}]=(||\alpha||_{u}-\mu)x^{(a)} , where u

=(t, \mu 1-t, \mu) , so \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to K(n:t:\mu) . \square

REMARK 2. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a finite dimensional GLA of depth \mu

satisfying (G. 1), (G. 2) and the condition “
\mathfrak{g}_{1}\neq\{0\} for some l\geq 1 ” Then

\mathfrak{g} is simple. In fact, suppose that there exists a nonzero commutative
ideal (l=\bigoplus_{p\in Z}\mathfrak{a}_{p} of \mathfrak{g} . By (G. 2), we have \mathfrak{g}-\subset \mathfrak{a} , so [ 0p , g-] =\{0\} for p\geq 0 .

By virtue of transitivity, we have \mathfrak{a}_{p}=\{0\} for p\geq 0 , and hence \mathfrak{g}_{-}=\mathfrak{a} . This
being so, since a_{9}(\mathfrak{g}-)=\mathfrak{g}-\mu , we have \mathfrak{g}_{-\mu}=\mathfrak{g}_{-}=\mathfrak{a} ; thus [(], \mathfrak{g}_{l}]\subset \mathfrak{a}_{1-\mu}=\{0\} ,

which is a contradiction. Hence \mathfrak{g} is semisimple. Let \mathfrak{g}^{=}(1^{1}\oplus t1^{2} . where t1^{1}

is a non-zero simple ideal of \mathfrak{g} and Q^{2} is a semisimple ideal of \mathfrak{g} . Then by
(G. 2), we have \mathfrak{a}^{1}\supset \mathfrak{g}_{-} . Therefore (x^{2}=\{0\} . This proves our assertion.
Actually the condition (G. 1) is unnessary.
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COROLLARY. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be an infinite dimensional GLA of fifinite
depth satisfying (G. 2). Then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to one of W(n:t) , S
(n:^{t)} , CS(n : t) , H(n : t : \mu) , CH(n : t : \mu) , K(n : t : _{\mu}) . In particular,
if \mathfrak{g} is simple, then it is isomorphic to one of W(n:t) , S(n:t) , H(n:t :
\mu) , K(n:t:\mu) . Furthermore if \mathfrak{g} is simple and satisfifies (G. 1), then it is
isomorphic to W(n:t) or K(n:t : \mu) .

PROOF. Let E be the defining element of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} . We set \mathfrak{g}_{0}^{c}=\mathfrak{g}_{0}

+KE and \mathfrak{g}_{p}^{c}=\mathfrak{g}_{p}(p\neq 0) . Then \mathfrak{g}^{c}

:= \bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is a GLA satisfying (G. 1) and

(G. 2). By Theorem 7, \mathfrak{g}^{c}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is isomorphic to one of W(n : _{t}) ,

CS(n:t) , CH(n:t:\mu) , K(n:t:\mu) . If \mathfrak{g}^{c}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is isomorphic to
W(n:t) or K(n:t:\mu) , then \mathfrak{g}^{c}=\mathfrak{g} . If \mathfrak{g}^{c}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is isomorphic to CS(n :
t) and \mathfrak{g}\neq \mathfrak{g}^{c} . then \mathfrak{g} is isomorphic to S(n) because \mathfrak{g} is a nontrivial ideal
of \mathfrak{g}^{c} . Hence \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to S(n : t) . Similarly in case
\mathfrak{g}^{c}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is isomorphic to CH(n:t:\mu) and \mathfrak{g}^{c}\neq \mathfrak{g} . we can prove that
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to H(n:t : \mu) . This proves the first assertion.
For the remaining statements, it is obvious. \square

\S 3. The prolongation of the associated truncated GLAs to GLAs
of Cartan type and finite dimensional simple GLAs.

3. 1. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a GLA of finite depth isomorphic to either a
certain GLA of Cartan type or a finite dimensional simple GLA. In this
section, we will give necessary and sufficient conditions so that \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is
the prolongation of Trun_{k}(\mathfrak{g})(k\geq-1) . We first prove the following lemma
to be used later on.

LEMMA 8. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a simple GLA of fifinite depth and | \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p}

be the prolongation of Trun_{k}(\mathfrak{g})(k\geq-1) . Then :
(1) \mathscr{C}\Lambda

:= \bigoplus_{p\neq 0}\mathscr{C}p\oplus\sum_{p\neq 0}[\mathscr{C}_{p}, \mathscr{C}_{-p}] is simple.

(2) If \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} satisfifies (G. 1), then \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}\prime p is isomorphic to either
W(n:t) , K(n:t:\mu) or a fifinite dimensional simple GLA .

(3) If k\geq 0 , then \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is simple.

PROOF. If dim \mathscr{C}<\infty , we can easily prove that \mathfrak{g}^{=}\mathscr{C} . Therefore we
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suppose that dim \mathscr{C}=\infty . Since \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p\Lambda\Lambda satisfies (G. 2), it is isomorphic

to a certain GLA of Cartan type (Corollary to Theorem 7). Since \mathscr{C}\Lambda is a

nonzero ideal of \mathscr{C} , we know that \mathscr{C}\Lambda is isomorphic to one of W(n) , S(n) ,

H(n) , K(n) , so \mathscr{C}\Lambda is simple. This proves (1). The assertion (2) follows

immediately from Corollary to Theorem 7. If k\geq 0 , then \mathscr{C}=-\mathscr{C}\Lambda , so \mathscr{C} is
simple. This proves (3). \square

3. 2. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a GLA of finite depth satisfying (G. 1) and

(G. 2). It follows from Theorem 6 that \mathfrak{g} has a standard gradation \{G_{p}\}_{p\in Z}

with [E, G_{p}]\subset G_{p} and \bigoplus_{p<0}G_{p}\subset \mathfrak{g}- . We set \mathfrak{g}_{p}(q)=\mathfrak{g}_{p}\cap G_{q} . Let e be its

defining element and \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}_{0}(0) . Then by the proof

of Theorem 7 we have e , E\in \mathfrak{g}_{0}(0) . Let \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} be the prolongation of

Trun_{k}(\mathfrak{g})(k\geq-1) . Clearly \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p satisfies (G. 1) and (G. 2), so it is

isomorphic to one of GLAs of Cartan type satisfying (G. 1). Then we
have

LEMMA 9. There exisls a standard gradation \{K_{p}\}_{p\in Z} on \mathscr{C} such that
[ \mathfrak{h}, K_{p}]\subset K_{p},\bigoplus_{p<0}K_{p}\subset \mathfrak{g}-and e^{\vee}\in_{\partial}(\mathfrak{g}_{0}(0)) , where e^{\vee} is the defining element

of \mathscr{C}^{=\bigoplus_{p\in Z}K_{p}} .

Proof. If k\geq 0 , the assertion follows from the proof of Theorem 7.

Therefore we suppose that k=-1 . Since \mathscr{C}_{0}=Der_{0}(\mathfrak{g}
-

) , there exists a
reductive subalgebra \mathfrak{m} of \mathscr{C}_{0} such that the \mathfrak{m}-module \mathfrak{g}_{-} is completely

reducible, that \mathfrak{g}_{0}(0)\subset rn and that \mathscr{C}_{0}=\mathfrak{m}\oplus \mathfrak{n} , where \mathfrak{n} is the largest

nilpotency ideal for the \mathscr{C}0-module \mathfrak{g}_{-} (cf. [BOu75, Ch. VII, \S 5. Proposition

7 and Exercise 4]). Let \mathfrak{h}’ be a Cartan subalgebra of rn containing \mathfrak{h} . It

follows from Theorem 6 that \mathscr{C} has a standard gradation \{K_{p}\}_{p\in Z} such

that [\mathfrak{h}’, K_{p}]\subset K_{p} and \bigoplus_{p<0}K_{p}\subset \mathfrak{g}- . Let e^{\vee} be its defining element. We put

\mathscr{C}_{p}(q)=\mathscr{C}_{p}\cap K_{q} . Then E , e^{\vee}\in \mathscr{C}_{0}(0) (cf. the proof of Theorem 7). Here

we remark that \mathfrak{n}=\bigoplus_{q>0}\mathscr{C}_{0}(q) . Let e^{\vee}=e_{1}^{\vee}+e_{2}^{\vee} , where e_{1}^{\vee}\in a(\mathfrak{m}) , e_{2}^{\vee}\in \mathfrak{n} .

Then 0=[e^{\vee}\mathscr{C}_{0}(0)]=[e_{1}^{\vee}. \mathscr{C}_{0}(0)]+[e_{2}^{\vee}, \mathscr{C}_{0}(0)] . Since [e_{1}^{\vee}, \mathscr{C}0(0)]\subset \mathscr{C}o(0)

and [e_{2}^{\vee}, \mathscr{C}0(0)]\subset \mathfrak{n} , we have [e_{1}^{\vee}. \mathscr{C}0(0)]=\{0\} , so [e_{1}^{\vee}. e^{\vee}]=0 . Since ad
(e_{1}^{\vee}-e^{\vee})|\mathfrak{g}_{-} is semisimple and since ad e_{2}^{\vee}|\mathfrak{g}_{-} is nilpotent, we have e^{\vee}=e_{1}^{\vee}\in

3(\mathfrak{m}) , and hence [e^{\vee}, \mathfrak{g}_{0}(0)]=\{0\} . Thus \mathfrak{g}_{0}(0)\subset \mathscr{C}_{0}(0) . Since [\mathfrak{h}, e^{\vee}]=\{0\} and
\mathscr{C}_{-}=\mathfrak{g}- , we have [e^{\vee}, \mathfrak{g}_{p}(q)]\subset \mathfrak{g}_{p}(q) for p<0 , so [e^{\vee}. G_{p}]\subset G_{p} for p<0 .

Since [e^{\vee}, \mathfrak{g}_{0}(0)]=\{0\} , we can easily prove that there exists an element h of
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a(\mathfrak{g}_{0}(0)) such that ad h|G_{-}=ade^{\vee}|G_{-} , where G_{-}= \bigoplus_{p<0}G_{p} . It follows from
transitivity of \mathfrak{g}=\bigoplus_{p\in Z}G_{p} that ad e^{\vee}|\mathfrak{g}_{-}=adh|\mathfrak{g}_{-} . Hence by transitivity of \mathscr{C}=

\bigoplus_{p\in Z}\mathscr{C}p , we have e^{\vee}=h\in_{3}(\mathfrak{g}_{0}(0)) . \square

REMARK 1. We may assume that \bigoplus_{p<0}G_{p}\subset\bigoplus_{p<0}K_{p} . In fact, \mathfrak{g} has a
standard gradation \{G_{p}’\}_{p\in Z} such that [\mathfrak{h}, G_{p}’]\subset G_{p}’ and \bigoplus_{p\geq 0}G_{p}’\supset\bigoplus_{p\geq 0}K_{p}\cap \mathfrak{g}

(Theorem 6). Further \mathfrak{g}=\bigoplus_{p\in Z}G_{p} is isomorphic to \mathfrak{g}=\bigoplus_{p\in Z}G_{p}’ as a GLA and
e^{\vee}\in a(G’o\cap \mathfrak{g}_{0}) . Hence we may replace \mathfrak{g}=\bigoplus_{p\in Z}G_{p} by \mathfrak{g}=\bigoplus_{p\in Z}G_{p}’ .

3. 3. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a GLA of Cartan type of depth \mu , E be the
defining element of \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} and \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p be the prolongation of Trun_{k}(\mathfrak{g})

(k\geq-1) . By Lemma 9 and Remark 1, there is a standard gradation
\{G_{p}\}_{p\in Z} (resp. \{K_{p}\}_{p\in Z}) on \mathfrak{g} (resp. \mathscr{C} ) such that each K_{p} is (\mathfrak{g}_{0}\cap G_{0}) -stable,
e^{\vee}\in a(\mathfrak{g}_{0}\cap G_{0}) and \bigoplus_{p<0}G_{p}\subset\bigoplus_{p<0}K_{p}\subset \mathfrak{g}- , where e^{\vee} is the defining element of the
GLA \mathscr{C}=\bigoplus_{p\in Z}K_{p} . We set G_{\acute{p}}=\mathfrak{g}\cap K_{p} ; then \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} . Further \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is a
GLA of depth \nu=1 or 2, and G_{\acute{P}}\cap Trun_{k}(\mathfrak{g})=K_{P}\cap Trun_{k}(\mathfrak{g}) . In particular,
G_{\acute{p}}=K_{p} for p<0 , and G_{-2}’=\mathfrak{g}_{-\mu} if \iota/=2 . By construction, \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is
isomorphic to one of W(n:1) , W(n:(1_{n-1},2)) , CS(n:1) , CS(n:(1_{n-1},2)) ,
CH(n:1 : 2) , K(n:1 : 2) .

Then we have

THEOREM 10. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=K(n:t:\mu) , Then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prO-

longation of Trun_{k}(\mathfrak{g}) for all k\geq-1 .

PROOF. By Lemma 8 (2),
\mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n^{\prime }: ^{t’}) or

K(n^{\prime }: ^{t’} : \mu’) . If \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n’ : ^{t’}) , then f/=1 . It is
impossible. If \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to K(n^{\prime }: ^{t’} : \mu’) , then \iota/=2 . Thus
\mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to K(n’ : 1: 2 ) . Since \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is the prolongation

of G_{-2}’\oplus G_{-1}’ , we have \mathfrak{g}=\mathscr{C} . \square

THEOREM 11. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=W(n : ^{t}) . Then :
(1)

\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prolongation of Trun_{k}(\mathfrak{g}) if one of the following

conditions holds : (\alpha)n\geq 2 , t_{n}=t_{n-1} ; (\beta)n\geq 2 , t_{n-1}<t_{n}<2t_{n-1}+(k+1) ; (\gamma)

n=1 .
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(2) If n\geq 2 and t_{n}\geq 2t_{n-1}+(k+1) , then the prolongation of Trun_{k}(\mathfrak{g})

is isomorphic to K(n-1:s:t_{n}) , where s_{i}= \min\{t_{i}, t_{n}-t_{i}\} .

PROOF. (1) The case n=1 is clear. Therefore we assume n\geq 2 .
By Lemma 8, \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n^{\prime }: ^{t’}) or K(n^{\prime }: ^{t’} : \mu) . If

\mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n^{\prime }: ^{t’}) , then }/=1 , so \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomor-

phic to W(n:1) , Since \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is the prolongation of G_{-1}’ , we have \mathfrak{g}=\mathscr{C}.

Suppose that \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to K(n^{\prime }: t’ : \mu) . Then \nu=2 and

dim \mathfrak{g}_{-\mu}=1 . Hence the condition (\alpha) dose not hold. If the condition (\beta)

holds, then dim G_{-2}’=1 , and hence \mathfrak{g}=\bigoplus_{p\geq-2}G_{\acute{p}} is isomorphic to W(n:(1_{n-1} ,

2)). We set G_{\acute{p}}(q)=G_{\acute{p}}\cap G_{q} . Then we can easily prove that G_{\acute{0}}=

G_{\acute{0}}(0)\oplus G_{\acute{0}}(1) and G_{\acute{0}}(1) is a nilpotent ideal of G_{\acute{0}} isomorphic to G -2
\otimes S^{2}(G_{-1}’(-1)^{*}) as a G_{0}’(0) -module, so the maximum of the eigenvalues of
ad E on G_{\acute{0}}(1) is 2t_{n-1}-t_{n} . Applying Lemma 1 (2) to the case when \mathfrak{l}=K_{0} ,
\mathfrak{U}^{=G_{\acute{0}}} , we have G_{0}’(1)\subset Trun_{-k-1}(\mathfrak{g}) . Hence 2t_{n-1}-t_{n}\leq-k-1 , which is a
contradiction. This proves (1).

(2) We set F_{p}=W(n:(1_{n-1},2))_{p} and F_{p}(q)=F_{p}\cap W(n:1)_{q} . Let
\mathscr{H}^{=\bigoplus_{p\in Z}H_{p}} be the prolongation of F_{-2}\oplus F_{-1} . Then \mathscr{H}=\bigoplus_{p\in Z}H_{p} is isomorphic

to K(n-1:1:2) . Therefore dim F_{-1}=2(n-1) and dim H_{0}=\dim c\mathfrak{s}\mathfrak{p}(F_{-1})

=2n^{2}-3n+2 . Applying Lemma 1 (1) to the case when \mathfrak{n}=F_{0}(1) , \mathfrak{U}^{=}F_{0}(0) ,
\mathfrak{l}=H_{0} , we know that there exists a nilpotent subalgebra \mathfrak{n}_{+} of H_{0} such that
\mathfrak{n}_{+}+F_{0}(0)+F_{0}(1) is a direct sum and that \mathfrak{n}_{+} is contragredient to F_{0}(1) as a
F_{0}(0)-module, so dim (\mathfrak{n}_{+}\oplus F_{0}(0)\oplus F_{0}(1))=2n^{2}-3n+2 . This implies H_{0}=

\mathfrak{n}_{+}\oplus F_{0}(0)\oplus F_{0}(1) . We set \mathscr{H}_{p}=\{x\in \mathscr{H}:[E, x]=px\} ; then \mathscr{H}=\bigoplus_{p\in Z}\mathscr{H}p . As

in the proof of (1), since F_{0}(1)\subset Trun_{-k-1}(\mathfrak{g}) , we have \mathfrak{n}_{+}\subset\bigoplus_{p\geq k+1}\mathscr{H}p , whence

H_{0} \cap\bigoplus_{p\leq k}\mathscr{H}p=F_{0}\cap Trun_{k}(\mathfrak{g}) . Moreover we can inductively prove that [H_{l}\cap

\oplus_{p\leq k}\mathscr{C}p , F_{-1}]\subset F_{-1}\cap Trunk(\mathfrak{g}) for l\geq 0 . Hence we see that \bigoplus_{p\geq 1}H_{p}\cap

Trun_{k}(\mathfrak{g}) is contained in the prolongation of F_{-2}\oplus F_{-1}\oplus F_{0} . However since
\mathfrak{g}=\bigoplus_{p\geq-2}F_{p} coincides with the prolongation of F_{-2}\oplus F_{-1}\oplus F_{0} (by (1)), we

have Trun_{k}(\mathfrak{g})=\bigoplus_{p\leq k}\mathscr{H}_{p} , so \mathscr{H} is contained in \mathscr{C} . On the other hand, since

K(n:t:\mu) is the prolongation of Trun_{k}(K(n:t:\mu)) for any t and \mu

(Theorem 10), we have \mathscr{C}=\mathscr{H}. Finally since dim F_{-1}=2(n-1) and since
F_{-1} is isomorphic to F_{-1}(-1)\oplus F_{-1}(-1)^{*}\otimes F_{-2} as a F_{0}(0)-module, \mathscr{C}=\bigoplus_{p\in Z}

\mathscr{C}_{p} is isomorphic to K(n-1:s:\mu) , where s_{i}= \min\{t_{i}, t_{n}-t_{i}\} . \square
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REMARK 2. In the case of t=1 (resp. s=(1, \mu 1 )), Theorem 10 (resp.
Theorem 11) is included in the results of [MOr88].

THEOREM 12. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=CS(n : ^{t})(n\geq 2) . Then :
(1)

\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prolongation of Trun_{k}(\mathfrak{g}) if t_{1}\leq k .
(2) The prolongation of Trun_{k}(\mathfrak{g}) is isomorphic to W(n:t) if one of

the following conditions holds ; (\beta)t_{n}=t_{n-1} , t_{1}>k : (\alpha)t_{n-1}<t_{n}<2t_{n-1}+(k

+1) , t_{1}>k .
(3) If t_{n}\geq 2t_{n-1}+k+1 and t_{1}>k , then the prolongation of Trun_{k}(\mathfrak{g}) is

isomorphic to K(n-1 : s : t_{n}) , where s_{i}= \min\{t_{i}, t_{n}-t_{i}\} .

PROOF. If t_{1}>k , then we can easily prove that W(n:t)_{p}=CS(n:t)_{1}
for l\leq k . Hence the assertions (2) and (3) follow from Theorem 11.
Now suppose that t_{1}\leq k . If \mathscr{C}=\bigoplus_{p\in Z}ff_{p} is isomorphic to CS(n’ : 1 ) , then \nu

=1 and n=n’ so \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to CS(n:1) . Hence \mathfrak{g}=\mathscr{C} If
\mathscr{C}=\bigoplus_{p\in Z}K_{p} is isomorphic to CH(n’ : 1: 2 ) (n’\geq 2) , then \iota/=1 and 2n’=n, so

\mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to CS(2n’ : 1) . We have dim K_{0}=\dim c\mathfrak{s}\mathfrak{p}(G_{-1}’)=

2n^{2}’+n’+1 and dim G_{\acute{0}}= dim \mathfrak{g}\mathfrak{l}(G_{-1}^{r})=4n’2 . Since K_{0}\supset G_{\acute{0}} , we have (2n’
+1)(n’-1)\leq 0 , which is a contradiction. If \mathscr{C}=\bigoplus_{p\in Z}K_{p} is isomorphic to
W(n’ : 1 ) , then \iota/=1 and n’=n, so \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to CS(n:1) .
Moreover K_{0}=G_{\acute{0}} and there is a K_{0^{-}}submodule K_{1}’ of K_{1} such that K_{1}=

K_{1}’\oplus G_{1}’ and that K_{1}’ is contragredient to G_{-1}’ as a G_{\acute{0}^{-}}module (Theorem 3).
Since the minimum of the eigenvalues of ad(E) on K_{1}’ is t_{1} and since G_{1}’\cap

Trun_{k}(\mathfrak{g})=K_{1}\cap Trun_{k}(\mathfrak{g}) , we have t_{1}>k , which is acontradiction.
If \mathscr{H}=\bigoplus_{p\in Z}K_{p} is isomorphic to K(n’ : 1: 2 ) , then }/=2 and dim G_{-2}’=1 , so \mathfrak{g}

= \bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to CS(n:(1_{n-1},2)) . Let \mathscr{C}=\bigoplus_{p\in Z}H_{p} be the prolonga-

tion of G_{-2}’\oplus^{r}G_{-1}\oplus G_{\acute{0}} . By (2)
\mathscr{H}=\bigoplus_{p\in Z}H_{p} is isomorphic to W(n:(1_{n-1},2))

and \mathscr{H}_{-}\subset \mathscr{C} , By Theorem 6, there exists a standard gradation \{F_{p}\}_{p\in Z} on
\mathscr{H}_{-} such that [\mathfrak{h}, F_{p}]\subset F_{p} and F_{-1}\subset G_{-2}’\oplus G_{-1}’\subset \mathfrak{g}- , where \mathfrak{h} is a Cartan subal-
gebra of \mathfrak{g}_{0}\cap G_{0} . We set C_{p}=F_{p}\cap \mathfrak{g} ; then \mathfrak{g}=\bigoplus_{p\in Z}C_{p} and C_{q}=F_{q} for q=0 ,

-1. Moreover \mathfrak{g}=\bigoplus_{p\in Z}F_{p} is isomorphic to CS(n:1) . We set \mathscr{H}^{p^{=}}\mathscr{H}\cap \mathscr{C}p :
then \mathscr{H}^{=\bigoplus_{p\in Z}\mathscr{H}p} and it becomes a GLA isomorphic to W(n:t’) . As in the
proof of Theorem 7, since t’ is determined by C_{0} and C_{-1} , we have t=t’
Since Trun_{k}(\mathfrak{g})=Trun_{k}(\mathscr{C}) , we have Trun_{k}(\mathfrak{g})=\oplus_{p\leq k}\mathscr{H}p , so dim W(n:t)_{\ell}
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=\dim CS(n:t)_{1} for l\leq k . But it is impossible (e. g. , x^{(\epsilon_{1}+\epsilon_{2})}D_{2}\in

W(n:t)_{t_{1}}\backslash CS(n:t)_{t_{1}}) . This proves (1). \square

THEOREM 13. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=CH(n : ^{t} : \mu)(n\geq 2) . Then :
(1)

\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prolongation of Trun_{k}(\mathfrak{g}) unless k=-1 , t_{1}=\ldots=t_{n}

and \mu=2t_{1} .
(2) If t_{1}=\ldots=t_{n} and \mu=2t_{1} , then the prolongation of T nm-i(g) is

W(2n:t_{1}1) .

PROOF. (1) If \mathscr{C}=\bigoplus_{p\in Z}K_{p} is isomorphic to W(n’ : 1 ) or CS(n’ : 1 ) ,

then \iota/=1 and n’=2n. Thus \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} is isomorphic to CH(n:1:2) ; then

dim K_{0}=\dim \mathfrak{g}\mathfrak{l}(G_{-1}’)=4n^{2} and dim G_{\acute{0}}=\dim c\mathfrak{s}\mathfrak{p}(G_{-1}’)=2n^{2}+n+1 . If K_{0}\cap \mathfrak{g}-

\neq\{0\} , then K_{0}=G_{\acute{0}} (Lemma 1 (3)), so 0=2n^{2}-n-1=(2n+1)(n-1) , which
is a contradiction. If K_{0}\cap \mathfrak{g}_{-}=\{0\} , then t_{1}=\ldots=t_{n} and \mu=2t_{1} , and hence
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is isomorphic to CH(n:t_{1}1:2t_{1}) . But since k\geq 0 , we have \mathfrak{g}^{=}\mathscr{C} ,

which is a contradiction. If \mathscr{C}=\bigoplus_{p\in Z}K_{p} is isomorphic to K(n:1:2) , then

\nu=2 . Hence \mathfrak{g}=\bigoplus_{p\in Z}G_{\acute{p}} must be isomorphic to CH(n:1:3) , which contra-

dicts the fact that \dim G_{-2}’=1 . If \mathscr{C}=\bigoplus_{p\in Z}K_{p} is isomorphic to CH(n’ : 1: 2 ) ,

then \nu=1 and n’=n. Hence \mathfrak{g}=\mathscr{C} .
(2) This is a well-known fact. \square

3. 4. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a GLA of finite depth isomorphic to S(n:t)
or H(n:t:\mu) , and \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} be the prolongation of Trun_{k}(\mathfrak{g})(k\geq-1) .

We set \mathfrak{g}_{0}^{c}=\mathfrak{g}_{0}+KE and \mathfrak{g}_{p}^{c}=\mathfrak{g}_{p} for p\neq 0 , where E is the defining element of
\mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} . Then \mathfrak{g}^{c}=\bigoplus_{p\in Z}\mathfrak{g}_{p}^{c} is a GLA isomorphic to CS(n:t) or CS(n:t :
\mu) respectively. Also we set \mathscr{C}_{0}^{c}=\mathscr{C}_{0}+KE and \sigma_{r_{p}}^{PC}=\mathscr{C}_{p} for p\neq 0 . Then
\mathscr{C}^{c}=\bigoplus_{p\in Z}\mathscr{C}_{p}^{c} is a GLA of finite depth satisfying (G. 1) and (G. 2). We

remark that \mathscr{C}^{c}=\mathscr{C} if k=-1 . Then we have

THEOREM 14. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=S(n : ^{t})(n\geq 2) . Then :
(1) If k\geq 0 , then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prolongation of Trunks)

(2) The prolongation of Trun_{k}(\mathfrak{g}) is isomorphic to W(n:t) if one of
the following conditions holds : (\alpha)’k=-1 , t_{n}=t_{n-1} : (\beta)’k=-1 , t_{n-1}<t_{n}<

2t_{n-1} .
(3) If t_{n}\geq 2t_{n-1} , then the prolongation of T nm-i(g) is K(n-1 : s:t_{n}) ,

where s_{i}= \min\{t_{i}, t_{n}-t_{i}\} .
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PROOF. If k\geq 0 , then \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to S(n’ : t’) or H(n’ :
t’ : \mu’) (Lemma 8 (3)). Then as in the proof of Theorem 11, we have \mathfrak{g}^{c}=

\mathscr{C}^{c} . so \mathfrak{g}=\mathscr{C} , Since the prolongation of Trun_{-1}(\mathfrak{g}) coincides with that of
Trun-1(\mathfrak{g}^{c}) , our assertion follows from Theorem 12. \square

Similarly we have

THEOREM 15. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p}=H(n : t : \mu)(n\geq 2) . Then :
(1) If k\geq 0 , then \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is the prolongation of Trunk \{0) .
(2) The prolongation of Trun_{-1}(\mathfrak{g}) is CH(n : _{t} : _{\mu}) unless t_{1}=\ldots=t_{n}

and \mu=2t_{1} .
(3) If t_{1}=\ldots=t_{n}and\mu=2t_{1} , then the prolongation of Trun-i(o) is W

(2n:t_{1}1) .

Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a finite dimensional simple GLA. Then \mathfrak{g}_{-} is generated

ed by \mathfrak{g}_{-1} if and only if \bigoplus_{p\geq 1}\mathfrak{g}_{p} is generated by \mathfrak{g}_{1} . By contrast, in the cases
of GLAs of Cartan type, it is not true. Indeed, as a corollary to TheO-
rems 10-15, we have

COROLLARY. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be one of W(m : s)(m\geq 2) , S(m : s)(m
\geq 2) , CS(m : s)(m\geq 2) , H(n:t _{:} _{\mu)}(n\geq 2), CH(n:_{t _{:} _{\mu)}}(n\geq 2) , K(n :
t : \mu). Suppose that \mathfrak{g}_{-} is generated by \mathfrak{g}_{-1} . The following conditions are
equivalenl :

(a)
\bigoplus_{p\geq 1}\mathfrak{g}_{p} is generated by \mathfrak{g}_{1} .

(b) (i) s_{i+1}-s_{i}\leq 1 for \mathfrak{g}=W(m : s) , S(m : s) or CS(m : s) ; (ii)t_{i+1}
-t_{i}\leq 1 , [\mu/2]=t_{n} for \mathfrak{g}=H(n:t:\mu) , CH(n:t:\mu) or K(n : t:\mu)(n\geq
2):(iii)t_{1}=[\mu/2] for \mathfrak{g}=K(1:t:\mu) .

PROOF. By assumption, s_{1}=1 (resp. t_{1}=1 ) for \mathfrak{g}=W(m:s) , S(m:s)
or CS(m:s) (resp. \mathfrak{g}=H(n:t:\mu) , CH(n:t:\mu) or K(n:t:\mu) ). Sup-
pose that (a) holds and (b) does not hold. Then there exists a positive
integer p_{0} such that p_{0}<m , s_{p+1}-s_{p}\leq 1 for p>p_{0} and s_{p_{0}}+1<s_{p_{0}+1} (resp. p_{0}

\leq n , t_{p}-tp-1\leq 1 for p\leq p_{0} and t_{p_{0}}+1<t_{p_{0}+1} , where we consider t_{p_{0}+1}=\mu-t_{n}

if p_{0}=n). We set (l= ( \sum_{p\geq p_{0}}\mathfrak{A}(m : s)_{-1+s_{p}}D_{p})\cap \mathfrak{g}_{-1} (resp. ( \sum_{p\geq p_{0}}\mathfrak{A}(m : s)_{-1+\mu-t\rho}

D_{n+p})\cap \mathfrak{g}_{-1}) . Then it is not difficult to show that () is a nontrivial \mathfrak{g}_{0}-sub-
module of \mathfrak{g}_{-1} such that [[\mathfrak{a}, \mathfrak{g}_{1}], \mathfrak{g}_{-1}]\subset \mathfrak{a} . Let \mathfrak{d}=\bigoplus_{p\in Z}\mathfrak{d}_{p} be the ideal of \mathfrak{g}

generated by 0 ; then b_{-1}=(l (cf. [Kan70, Lemma 16]), which contradicts
(G. 2): thus (a) implies (b). Conversely we suppose that (b) holds. Then
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we can easily prove that [\mathfrak{g}_{p}, \mathfrak{g}_{1}]=\mathfrak{g}_{p+1} for p<0 . Let \tilde{\mathfrak{g}}=\bigoplus_{p\in Z}\tilde{\mathfrak{g}}_{p} be the subal-

gebra of \mathfrak{g} generated by \mathfrak{g}_{-1}\oplus \mathfrak{g}_{0}\oplus \mathfrak{g}_{1} . By the above-mentioned fact, \tilde{\mathfrak{g}}=\bigoplus_{p\in Z}\tilde{\mathfrak{g}}_{p}

satisfes (G. 2), so it is isomorphic to one of GLAs of Cartan type (Corol-
lary to Theorem 7). Since the condition (a) is clearly satisfied for the
GLA \tilde{\mathfrak{g}}=\bigoplus_{p\in Z}\tilde{\mathfrak{g}}_{p} the condition (b) also satified by virtue of the implication

(a)\supset(b) . Applying Theorems 10-15 to \tilde{\mathfrak{g}}, we see that \tilde{\mathfrak{g}} is the prolonga-
tion of Trun_{1}(\mathfrak{g}) , which implies \mathfrak{g}=\tilde{\mathfrak{g}}. Hence the condition (a) holds for \mathfrak{g} .

\square

3. 5. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a finite dimensional simple GLA of depth \mu

and \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p be the prolongation of Trun_{k}(\mathfrak{g})(k\geq-1) . We can easily

prove that if dim \mathscr{C}<\infty , then \mathscr{C}=\mathfrak{g} . Hence we investigate only the case
that dim \mathscr{C}=\infty , Then by Lemma 8 (2), \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n :
t) or K(n:t:\mu) . Just as in the proof of Lemma 9, there exists a stan-
dard gradation \{K_{p}\}_{p\in Z} on \mathscr{C} whose defining element e^{\vee} is contained in
3(\mathfrak{g}_{0}) . The following theorem is due to K. Yamaguchi ([Yam-pre]). Here
we prove the theorem by a different approach to his proof.

THEOREM 16. Let \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} be a fifinite dimensional simple GLA of
depth \mu with the gradation of type (s_{)},\ldots,s_{\ell}) and \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} be the prolonga-

tion of Trun_{k}(\mathfrak{g})(k\geq-1) . If \mathscr{C} is infifinite dimensional, then only the fol-

lowing cases occur :
(\alpha)

\mathfrak{g} is of type A_{1+1}(l\geq 1) and k+1 \leq s_{)}-\sum_{i=1}^{l}s_{i} , where we except the

cases ( i) k=-1, \theta)^{=s_{1}>0} and s_{i}=0 for 1\leq i\leq l-1 , and ( ii)k=-1 , s_{)}>

0 and si=0 for 1\leq i\leq l . In this case, \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p is isomorphic to

W(l+1:t) , where t_{i}= \sum_{j=0}^{i-1}s_{j} .

(\beta)
\mathfrak{g} is of type C_{1+1} and k+1 \leq s_{)}-2\sum_{i=1}^{1}s_{i}-s_{l} , where we except the case

k=-1 , s_{\}}>0 and s_{i}=0 for 1\leq i\leq l . In this case, \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic

to K(l:t: \mu) , where t_{i}= \sum_{j=0}^{i-1}s_{j} and \mu=2\sum_{j=0}^{1-1}s_{j}+s_{1} .
(\gamma)

\mathfrak{g} is of contact type of order m and k=-1 . In this case,
\mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p is isomorphic to K(n:m1:2m), where dim\mathfrak{g}_{-m}=2n .

(\delta)
\mathfrak{g} is of general type of order m such that dim\mathfrak{g}_{-m}=n>1 and k=

-1 . In this case, \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p is isomo\uparrow phic to W(n:m1) .
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(\epsilon)
\mathfrak{g} is of type A_{1} and - 1\leq k\leq s). In this case, \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomor-

phic to W ( 1 : s_{0}) .

PROOF. We use the same notation as in 1. 2. We set \mathscr{C}_{p}(q)=/\mathscr{C}_{p}\cap

K_{q} . Since [\mathfrak{h}, \mathscr{C}_{p}(q)]\subset \mathscr{C}_{p}(q) , we know that \mathscr{C}_{p}(q)(p<0) is spanned by
root vectors of (\mathfrak{g}, \mathfrak{h}) . We first prove that \mathscr{C}_{p}(q)=\{0\} for q>0 , p<0 . If
\mathscr{C}_{p}(q)\neq\{0\} for some q>0 , p<0 , there exists a root \alpha with e_{a}\in \mathscr{C}_{p}(q) .
Then [E, e_{-a}]=-pe_{-a} and [e^{\vee}-e_{-a}]=-qe_{-a} . Thus e_{-a}\in \mathfrak{g}_{-p}(-q)=\{0\} ,
which is a contradiction. Hence \mathscr{C}_{p}(q)=\{0\} for q>0 , p<0 . Clearly, if \mathscr{C}

= \bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(1:t_{1}) , then \mathfrak{g} is of type A_{1} , s_{0}=t_{1} and - 1\leq k

\leq t_{1} . Therefore we assume that \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to K(n : ^{t} : \mu)

or W(n:t)(n\geq 2) . Then there exist a K_{0}-submodule K_{1}^{(1)} of K_{1} not
contragredient to K_{-1} and a K_{0}-submodule K_{1}^{(2)} of K_{1} contragredient to
K_{-1} . We set G_{q}=\mathfrak{g}\cap K_{q} and \mathfrak{g}_{p}(q)=\mathfrak{g}_{p}\cap G_{q} . We first suppose that K_{0}\cap \mathfrak{g}-

\neq\{0\} . Then \mathfrak{g}_{p}(0)=\mathscr{C}_{p}’(0) for p<0 and \mathfrak{g}_{p}(0)\subset \mathscr{C}_{p}(0) for p\geq 0 , so by
Lemma 1 (3), we have K_{0}=G_{0} . Since G_{1} is contragredient G_{-1} as a
G_{0}-module and K_{1}=K_{1}^{(1)}\oplus K_{1}^{(2)} , we have G_{1}=K_{1}^{(2)} , Thus \mathfrak{g} coincides with
the subalgebra of \mathscr{C} generated by K_{-1}\oplus K_{0}\oplus K_{1}^{(2)} , and therefore the grada-
tion of type (s_{0},\ldots,s_{l}) must be as in the proof of Theorem 7. Thus, when
\mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}_{p} is isomorphic to W(n:t) (resp. K(n:t:\mu) ), since K_{1}^{(1)}\subset

\bigoplus_{p\geq k+1}\mathscr{C}_{p}(1) and since the minimum of the eigenvalues of ad E on K_{1}^{(1)} is 2 t_{1}

-\mu (resp. 3t_{1}-\mu), we obtain that \mathfrak{g} is of type A_{l+1}(l\geq 1) (resp. C_{1+1} ) and k
+1 \leq s_{0}-\sum_{i=1}^{1}s_{i} (resp. k+1 \leq s_{0}-2\sum_{i=1}^{l-1}s_{i}-s_{l}). Next we suppose that K_{0}\cap \mathfrak{g}_{-}=

\{0\} . Then t_{i}=t_{1} (resp. t_{i}=t_{1} and \mu=2t_{1} ) for all 1\leq i\leq n when \mathscr{C}=\bigoplus_{p\in Z}\mathscr{C}p is
isomorphic to W(n:t) (resp. K(n:t:\mu) ), so \mathfrak{g}=\bigoplus_{p\in Z}\mathfrak{g}_{p} is of general type
(resp. of contact type). The remaining statements are obvious from the
above proof, Theorem 9 and Theorem 10. \square
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