On levels of the distance function from the boundary of convex domain

Dedicated to Professor Haruo Suzuki on his 60th birhday

Takashi SAKAI (Received November 8, 1990)

1. Introduction

In this note we shall be concerned with the behaviour of levels of the distance function from the convex boundary of the 2-dimensional disc with real analytic riemannian metric of nonnegative curvature. First we explain the motivation. Let (S^2, g) be a riemannian metric of nonnegative curvature on the 2-sphere. A. D. Alexandrov conjectured the following inequality with respect to the area and the diameter :

(1)
$$\operatorname{Area}(S^2, g)/(\operatorname{Diam}(S^2, g))^2 \le \pi/2,$$

where the equality holds iff (S^2, g) is the double of the flat euclidean disc. For the partial results we refer to [Sa2], [Shi].

Now we consider the isoperimetric quantity $h := \inf\{ \text{length } \partial\Omega / \text{Area} (S^2, g); \Omega \text{ is a domain of } S^2 \text{ with smooth boundary such that } \text{Area}\Omega = \text{Area} (S^2, g)/2 \}$. Then in our case the infimum is realized by domain D whose boundary c is a connected regular simple closed curve of constant mean (i. e., geodesic) curvature (see e. g., [Ga]). Then $S^2 \setminus c$ is divided into the two discs $D_1 = D$, $D_2 = S^2 \setminus \overline{D}$ with the same area and the boundary c. Setting $d_i^* := \max\{d(p, c); p \in D_i\}$ (i=1, 2), we easily see that $d_1^* + d_2^* \leq \text{Diam}(S^2, g)$. Then if we may estimate Area $D_i/(d_i^*)^2$, we may have estimate for (1). Since $d_1^* + d_2^*$ may smaller than $\text{Diam}(S^2, g)$ this approach doesn't work very well for the original problem. Nevertheless it seems to be interesting to estimate Area $D_i/(d_i^*)^2$. For that purpose we consider the length l_t of level $d_c^{-1}(t)$, $0 \le t \le d_i^*$, where d_c denotes the distance function from the boundary c. In the present article we restrict ourself to the case when $D = D_i$ is 2-disc with real analytic riemannian metric of non-

This work was partially supported by Grant-in-Aid for Scientific Reseach 01302002, 02640053, Ministry of Education, Science and Culture.

negative curvature and convex boundary.

Now in his nice paper F. Fiala ([F]) studied the behaviour of the length l_t of levels in general case (see also [Be], [Sal]). Under our assumption we have the following:

THEOREM. Let D be the 2-disc with real analytic metric of nonnegative curvature and convex boundary, namely geodesic curvature of the boudary curve c is positive. We denote by l_t the length of the level $d_c^{-1}(t)$, where d_c is the distance function from the boundary c.

(1) Set $d^* := \max\{d_c(q); q \in D\}$. Then there exists the unique furthest point $p \in D$ from c which realizes d^* . The levels $d_c^{-1}(t)$, $0 \le t < d^*$, are connected simple closed curves and $\Omega_t := d_c^{-1}(t, d^*)$ are discs.

(2) $t \rightarrow l_t$ is continuous and real analytic except for at most finitely many singular values $0 < t_1 < ... < t_k = d^*$ ([F]). Under our assumption we have furthermore

$$d/dt$$
 $l_t < 0$, and $\lim_{t \to t_t = 0} d/dt$ $l_t \ge \lim_{t \to t_t = 0} d/dt$ l_t

(3) For regular values t we have $d^2/dt^2 l_t \leq 0$.

As a corollary we get an estimate for Area $D/(d^*)^2$. Note that in genral we have no finite upper bound for Area $D/(d^*)^2$.

COROLLARY. Under the assumption of the theorem we have the following.

(1) If there exist infinitely many minimal geodesics from c to the furthest point p, then we have Area $D/(d^*)^2 \le \pi$.

(2) If there exist only finitely many minimal geodesics from c to p, let $\alpha_1, ..., \alpha_k$ be the angles between tangent vectors at p to above minimal geodesics which are adjoining each other $(\alpha_1 + ... + \alpha_k = 2\pi)$. Then we have

Area $D/(d^*)^2 \leq \pi + \sum_i (\tan \alpha_i/2 - \alpha_i/2)$.

2. Proof of the theorem and corollary.

Let the boundary curve $c(s) (0 \le s \le l)$ be parametrized by arc length and n(s) be the unit inward normal vector to c at c(s). Then the geodesic curvature x of c at c(s) is given by $\langle n(s), \nabla_{\partial/\partial s} \dot{c}(s) \rangle$ where \langle , \rangle and ∇ denote the inner product and Levi-Civita covariant derivative respectively. Using normal exponential map exp we have a real analytic map

(2)
$$x(t,s) := \exp_{c(s)} t n(s)$$

Since $t \to x(t, s)$ is a geodesic γ_s parametrized by arc length and $\partial x/\partial s(0, s) = \dot{c}(s)$ is a unit vector perpendicular to $\partial x/\partial t(0, s) = n(s)$, we have $\langle \partial x/\partial t, \partial x/\partial s \rangle = 0$ everywhere. Note that the vector field $Y_s: t \to \partial x/\partial s(t, s)$ along γ_s is a *c*-Jacobi field.

LEMMA 1. Up to the first focal value t(s) of c along the c-Jacobi field Y_s , we have

(3) $\langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s \rangle$ (t, s) < 0 (0 < t < (s))

PROOF. First we have

$$\begin{aligned} d/dt \{ \langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s \rangle / |\partial x/\partial s| \} = \\ \{ \langle \nabla_{\partial/\partial t} \nabla_{\partial/\partial s} \partial x/\partial t, \partial x/\partial s \rangle + |\nabla_{\partial/\partial t} \partial x/\partial s|^2 \} / |\partial x/\partial s| - \\ \langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial/\partial s \rangle^2 / |\partial x/\partial s|^3 = \langle R(\partial x/\partial t, \partial x/\partial s) \partial x/\partial t, \partial x/\partial s \rangle \cdot |\partial x/\partial s|^{-1} \\ + \{ |\nabla_{\partial/\partial t} \partial x/\partial s|^2 |\partial x/\partial s|^2 - \langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s \rangle^2 \} \cdot |\partial x/\partial s|^{-3}, \end{aligned}$$

where R denotes the curvature tensor. Now the first term of the last equality is nonpositive because of the assumption on the curvature. Since Jacobi field $Y_s(t) = \frac{\partial x}{\partial s}(t, s)$ is perpendicular to γ_s for every value of t, $\nabla Y_s(t) = \nabla_{\partial/\partial t} \frac{\partial x}{\partial s}$ is also perpendicular to γ_s and linearly dependent on $Y_s(t)$. This implies that the second term vanishes. On the other hand for initial value we get

$$\langle \nabla_{\partial/\partial t} \ \partial x/\partial s, \ \partial x/\partial s \rangle (0, s) = \langle \nabla_{\partial/\partial s} \ \partial x/\partial t, \ \partial x/\partial s \rangle (0, s) = -\langle n(s), \ \nabla_{\partial/\partial s} \overset{\bullet}{c} (s) \rangle < 0,$$

because c is convex. This completes the proof of the lemma.

Next we shall give key observation for our purpose.

LEMMA 2. There is only one point at which d_c takes relative maximum. Thus we have the unique furthest point p from c with $d_c(p) = d^*$.

PROOF. Let p be a point with $d_c(p) = d^*$ and suppose that d_c takes relative maximum at $p_1 \neq p$. Then from the convexity of D, the minimal geodesic τ joining p to p_1 lies in D. We may take a point r in the interior of τ at which $d_c | \tau$ takes the minimum. Take a minimal geodesic σ : $[0, a] \rightarrow \overline{D}$ from c to r parametrized by arc length which realizes the distance $d_c(r)$. By the first variation formula σ is orthogonal to c at $\sigma(0) =$ c(s) and to τ at $r = \sigma(a)$. Now consider the unit parallel vector field Xalong σ with X(0) = c(s). Since X(a) is tangent to the geodesic τ , we have by the second variation formula (see e. g., [B-C]) T. Sakai

(4)
$$D^{2}L(X, X) = \int_{0}^{a} \{ \langle \nabla X(t), \nabla X(t) \rangle - \langle R(X(t) \overset{\bullet}{\sigma}(t)) \overset{\bullet}{\sigma}(t), X(t) \rangle \} dt + \langle AX(0), X(0) \rangle,$$

where A denotes the shape operator of c with respect to the normal n. In our case we have $\nabla X(t)=0$ and

$$\langle AX(0), X(0) \rangle = \langle A \stackrel{\circ}{c} (s), \stackrel{\circ}{c} (s) \rangle = \langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s \rangle (0, s) =$$

-geodesic curvature of c at c(s) < 0

because of convexity. Then we have $D^2L(X, X) < 0$ which contradicts the fact that $d_c | \tau$ takes the minimum at r. q. e. d.

Now we recall the notion of the critical point of the distance function due to Gromov ([G]): $q \in D \setminus c$ is called a critical point of d_c if for any unit tangent vector $u \in T_q D$, there exists a minimal geodesic (parametrized by arc length) σ such that the angle \sphericalangle ($\overset{\circ}{\sigma}(d_c(q)), u) \leq \pi/2$. It is known that the furthest point p from c is d_c -critical.

LEMMA 3. p is the only one critical point of d_c . Namely for any point q of $D \setminus c$ different from p, the tangent vectors to minimal geodesics from c to q at q are contained in an open half plane of T_qD .

PROOF. Let $q \neq p$ be a critical point of d_c . Take a minimal geodesic τ ($\subseteq D$) from p to q parametrized by arc length and set $u := \dot{\tau} (d(p, q)) \in T_q D$, where d(p, q) denotes the distance between p and q. Then there exists a minimal geodesic σ from c to q with $\measuredangle(\dot{\sigma}(d_c(q)), u) \leq \pi/2$. If this angle is less than $\pi/2$, then from the first variation formula we may find points of τ whose distance from c is less than $d_c(q)$. In case where $\measuredangle(\dot{\sigma}(d_c(q), u) = \pi/2)$, the same argument as in the proof of Lemma 2 implies the same conclusion. Namely we see that $d_c|\tau$ takes the minimum at an interior point of τ . Again the same argument as in the proof of Lemma 2 derives a contradiction. q. e. d.

Note that for Lemma 1~3 we don't need real analycity of the metric. Now following Fiala ([F]) we investigate the behaviour of l_t by considering the cut locus of c in D (see also [B], [M], [Sal]). We list up some properties of cut locus which is necessary for later use. We mainly follow the notation of [Sal]. We denote by N(c) the normal bundle of c. Let C (resp. \tilde{C}) be the (resp. tangent) cut locus of c. We may write as $\tilde{C} = \{(s, g_1(s)) := g_1(s)n(s) \in N(c), s \in [0, 1]/\{0, 1\}\}$. Then $g_1(s) \in (0, d^*]$ is continuous with respect to s. The normal exponential map exp is a

90

diffeomorphism on the set $\mathcal{J} := \{(s, t) := tn(s) \in N(c); s \in [0, 1]/\{0, 1\}, 0 \le t < g_1(s)\}$ and we get $\partial \mathcal{J} = \tilde{C}$.

CASE 1. If the first focal locus F of c reduces to one point, then $C = F = \{p\}$ and all unit speed geodesics emanating from c perpendicularly reach p at the same parameter value d^* . In this case we have $g_1(s) \equiv d^*$.

CASE 2. Otherwise we have the following;

1° There are only finitely many cut points which are also focal points of c along geodesics emanating from c perpendicularly.

2° The cut locus is a tree in the curve theory (i. e.,1-complex without closed curves). Its end points are the first focal points.

3° For $q \in C$, the number of minimal geodesics from c to q is finite and equal to the number of 1-cells of C which issue from q. This number will be called the order of the cut point q. In fact exactly one 1-cell issues from q between the two minimal geodesics from c to q adjoining each other. Note that end points are cut points of order 1.

4° Cut point $q \in C$ is called regular if q is of order 2 and is not a focal point. Otherwise $q \in C$ is called singular. The lift of regular (resp. singular) cut ponts to $\tilde{C} \subset N(c)$ via exp are called regular (resp. singular) tangent cut points. Then there are only finitely many singular (tangent) cut points. Singular cut points and the furthest point p from c form the set of vertices of the tree C.

5° There are only finitely many connected components of the set of regular cut points and each component, which is a 1-cell of C, is a regular analytic arc parametrized by analytic function $t=g_1(s)$. The number of critical points of $g_1(s)$ is at most finite in general. Moreover for regular cut point $q \in C$, two minimal geodesics from c to q make the equal angle at q with the real analytic curve $t=g_1(s)$ which is a 1-cell of the cut locus C (condition of bisection).

6° Now we consider the level $\Lambda_t := d_c^{-1}(t)$ and $\tilde{\Lambda}_t := \{(t, s) \in N(s), which lies in the closure of <math>\tilde{\mathscr{I}}\}$. Then $\tilde{\Lambda}_t \cap \tilde{\mathcal{C}}$ consists of at most finitely many points. Now the value t_o $(0 < t_o < d^*)$ will be called regular if $\tilde{\Lambda}_{t_o} \cap \tilde{\mathcal{C}}$ either is empty or consists only of regular tangent cut points. In the latter case for each tangent cut point $(g_1(\sigma_o), \sigma_o) \in \tilde{\Lambda}_{t_o} \cap \tilde{\mathcal{C}}$, the equation $t = g_1(s)$ for $\tilde{\mathcal{C}}$ is locally solvable in a neighbourhood of $t_o = g_1(\sigma_o)$ in the form $s = \sigma(t)$ with $\sigma_o = \sigma(t_o)$, where $\sigma(t)$ is real analytic. Note that the value t is singular iff Λ_t contains a singular cut point. Then for regular value t_o , by changing the origin of c if necessary, we have real analytic functions $s = \sigma_i^{\pm}(t)$ (i=1, ..., k) defined in a neighbourhood of t_o with $0 < \sigma_1^{-1}(t) < \sigma_1^{+1}(t) < ... < \sigma_k^{-1}(t) < l$ so that we have $\tilde{\Lambda}_t = \bigcup_{i=1}^k t > [\sigma_i^{-1}(t), t]$

T. Sakai

 $\sigma_i^+(t)$] and $\tilde{\Lambda}_t \cap \tilde{C} = \{(t, \sigma_i^{\pm}(t))\}_{i=1}^k$. Then $\Lambda_t = \exp \tilde{\Lambda}_t$ is obtained from $\tilde{\Lambda}_t$ by identifying each $(t, \sigma_i^{\mp}(t))$ with exactly one $(t, \sigma_i^{\pm}(t))$ under exp. Note that $x|\{t\} \times (\sigma_i^-(t), \sigma_i^+(t))$ is a diffeomorphism. From this we see that for regular value $t \Lambda_t$ consists of finitely many Jordan closed curves and we have

(5)
$$l_t = \sum_{i=1}^k \int_{\sigma_i^{-}(t)}^{\sigma_i^{+}(t)} |\partial x / \partial s(t, s)| ds$$

Now we turn to our situation.

LEMMA 4. Under the assumption of the theorem, for every 1-cell e of C, which is a real analytic curve consisting of regular cut points, there exists no critical points of real analytic function $d_c|e$ (i. e., $g_1(s)$).

PROOF. If $q \in e$ is a critical point of $d_c|e$, then by the first variation formula the two minimal geodesics γ_1 , γ_2 from c to q intersect e perpendicularly at q. By parallel translating the unit tangent vector u to e at qalong $\gamma_i^{-1}(i=1,2)$, we see by the same argument as in Lemma 2 that d_c takes a local maximum at q along a geodesic $s \to \exp su$. From this we see that $d_c|_e$ also takes a local maximum at q. Since e is contained in the cut locus, $d_c: D \to \mathbf{R}$ takes a local maximum at q. This contradicts Lemma 2. q. e. d.

Now consider а 1-cell e of C issuing from an end point q of C. Since there is only one minimal geodesic from c to q, the condition of bisection, the first variation formula and Lemma 4 imply that $d_c | e$ is strictly increasing. Next we consider a vertex q of Cdifferent from *p* in general. Since q is not d_c -critical, unit tangent vectors at q to the minimal geodesics $\gamma_1, \ldots, \gamma_k$

from c to q adjoining each other are contained in an open half plane of

 T_qD . We chose $\gamma_1,..., \gamma_k$ so that the only one 1-cell e_k issuing from q, which lies in the above half plane, is adjoining to γ_1 and γ_k (see Figure 1). Then e_k makes an obtuse angle with γ_1^{-1} and γ_k^{-1} at q and $d_c|e_k$ is strictly increasing as above. Along other 1-cells $e_1, ..., e_{k-1}$ of C issuing from q, d_c is strictly decreasing. Thus for every cut point r, we can reach the furthest point p from r in the unique way along 1-cells of C so that d_c is strictly increasing.

LEMMA 5. The level $d_c^{-1}(t)$ $(0 \le t < d^*)$ is a connected simple closed curve and $\Omega_t := d_c^{-1}([t, d^*])$ is a disc.

PROOF. First we consider the case when t is a regular value. Then from 6° $d_c^{-1}(t)$ consists of finitely many disjoint Jordan closed curves $\tau_i(i=1,...,l)$. Now we show that Ω_t is connected. In fact for every point $q \in \Omega_t$ first proceed to a cut point q_1 along a minimal geodesic from c to q. Then we may reach p along cut locus as above. Thus we have a curve from q to p. By the same reason $d_c^{-1}((t, d^*])$ is connected. On the other hand $d_c^{-1}([0, t))$ is obviously connected. Now suppose that l > 1. Then point r_1 of $d_c^{-1}((t, d^*])$ and point r_2 of $d_c^{-1}([0, t))$, which are close to τ_1 , can be connected by a curve. In fact first take a curve from r_1 to a point of τ_2 in $d_c^{-1}([t, d^*]) \setminus \tau_1$ and then join this point to r_2 by a curve in $d_c^{-1}([0, t]) \setminus \tau_1$. Then we see that $D \setminus \tau_1$ is connected. By a limitting argument we have the same conclusion also for singular value t. q. e. d.

Now F. Fiala computed the first derivative $d/dt \ l_t$ for a regular value t in the following way: We denote by $\theta_i^{\pm}(t)$ the angle between $\pm (\partial x/\partial s)$ $(t, \sigma_i^{\pm}(t))$ and the tangent vector at $x(\sigma_i^{\pm}(t), t)$ to the 1-cell $t \rightarrow x(t, \sigma_i^{\pm}(t))$ of the cut locus (i=1, ..., k). Then $0 < \theta_i^{\pm}(t) \le \pi/2$ and we get by setting $\Lambda_t := d_c^{-1}(t)$

(6)
$$d/dt \ l_t = -\int_{\Lambda_t} \langle \partial x/\partial t, \nabla_{\partial/\partial s}(\partial x/\partial s/|\partial x/\partial s|) \rangle \ ds - \sum \cot \theta_i^{\pm}(t)$$

(see [F], [Sal])

Note that $0 < \theta_i^{\pm}(t) < \pi/2$ in our case.

REMARK. If Λ_t contains no cut points then the second term of right side of (6) vanishes. Next the geodesic curvature x_t of the curve $s \to x(t, s)$, $\sigma_i^-(t) < s < \sigma_i(t)$ is given by

$$x_t d\sigma = \langle \partial x / \partial t, \nabla_{\partial l \partial s / |\partial x / \partial s|} (\partial x / \partial s / |\partial x / \partial s| \rangle) |\partial x / \partial s| ds,$$

T. Sakai

where σ denotes arc length of $s \to x(t, s)$. Thus the integrand of the first term of right side is the geodesic curvature of Λ_t .

LEMMA 6. Under the assumption of the theorem we have $d/dt l_t < 0$ for regular value t.

PROOF. This is clear from

$$\langle \partial x/\partial t, \nabla_{\partial /\partial s/|\partial x/\partial s|}(\partial x/\partial s/|\partial x/\partial s|) \rangle =$$

 $-|\partial x/\partial s|^{-1} \langle \nabla_{\partial /\partial s} \partial x/\partial t, \partial x/\partial s/|\partial x/\partial s| \rangle > 0$

by virtue of lemma 1. Note that this means that the geodesic curvature x_t of the level is positive. q. e. d.

Now we apply Gauss-Bonnet to Ω_t . Since Ω_t is a disc we get by denoting K and ds Gauss curvature and area element respectively

(7)
$$d/dt \ l_t = \int_{\Omega_t} K \ ds - 2\pi - \sum \{ \tan(\pi/2 - \theta_i^{\pm}(t)) - (\pi/2 - \theta_i^{\pm}(t)) \}$$

We set $\eta_i^{\pm}(t) := \pi/2 - \theta_i^{\pm}(t)$.

LEMMA 7. Let $T < d^*$ be a singular value. Then we have $\lim_{t \to T+0} d/dt$ $l_t \leq \lim_{t \to T-0} d/dt \ l_t < 0$

PROOF. Let q be a singular cut point in $d_c^{-1}(t)$ of order k. Then from the argument given before Lemma 5, there exists only one 1-cell e_k of C issuing from q along which d_c is monotone increasing and other 1-cells e_i (i=1,...,k-1) of C issuing from q are contained in an open half plane of $T_q D$ (see Figure 1). Now for t < T, where T-t is small, consider the contribution of $\eta_i^{\pm}(t)$ to (7) in a neighbourhood of q. Let $a_1, ...,$ a_{k-1} be the angles at q between adjoing minimal geodesics $\gamma_1, ..., \gamma_k$ from cto q contained in the open half plane. Then as $t \to T-0$, the above contribution to (7) converges to $-2 \sum (\tan a_i/2 - a_i/2)$ by the condition of bisection. On the other hand for t > T, the 1-cell e_k of C consists only of regular cut points and as $t \to T+0$ the contribution of the angles $\eta^{\pm}(t)$ to (7) converges to

$$-2\{\tan((\alpha_1+\ldots+\alpha_{k-1})/2)-(\alpha_1+\ldots+\alpha_{k-1})/2\}.$$

Now since $(\alpha_1 + ... + \alpha_{k-1})/2 < \pi/2$ by virtue of Lemma 3, we have

 $\tan((\alpha_1 + ... + \alpha_{k-1})/2) \geq \tan \alpha_1/2 + ... + \tan \alpha_{k-1}/2.$

Then summing up the above contributions for all singular cut points in Λ_T we have easily the conclusion of the Lemma.

LEMMA 8. Under the assumption of the theorem we have for regular value t d^2/dt^2 $l_t \leq 0$.

PROOF. we differentiate (7) for regular value *t*. Denoting $d\sigma$ the induced measure on Λ_{to} we get by Coarea formula (or directly by Fubini's theorem)

(8)
$$d^2/dt^2 l_t|_{t=t_o} = -\int_{\Lambda_{to}} K d\sigma - \sum d\eta_i^{\pm}/dt(t_o) \cdot \{1/\cos^2 \eta_i^{\pm}(t_o) - 1\}$$

Thus to prove the lemma it suffices to show that $d\eta_i^{\pm}/dt(t_o)$ is nonnegative. Now recall that each $\eta_i^{\pm}(t)$ is equal to the half of the angle of the tangent vectors at cut point q := x(t, t) $\sigma_i^{\pm}(t)$ to two minimal geodesics from c to q by virtue of the condition of bisection. We parametrize the 1-cell e of the cut locus C containing q in the form $t \rightarrow x(t, \sigma_1(t)) = x(t, \sigma_2(t))$, where $\tau \rightarrow x(\tau, \sigma_i(t)), \ 0 \le \tau \le t \ (i=1, 2)$ are two minimal geodesics from c to the point of e. Here note that we parametrize e in a neighbourhood of $\sigma_i(t_o)$ so that t $\rightarrow s = \sigma_i(t)$ (i=1, 2) are increasing (see Figure 2). We denote

by $2\eta(t)$ the angle between the tangent vectors at cut point $x(t, \sigma_i(t))$ to two minimal geodesics from c to the cut point, namely we have

$$\cos 2\eta(t) = \langle \partial x / \partial t(t, \sigma_1(t)), \partial x / \partial t(t, \sigma_2(t)) \rangle.$$

Note that each angle $\eta_i^{\pm}(t)$ may be written in this form $\eta(t)$. Now since $\nabla_{\partial/\partial t} \partial x/\partial t = 0$, we get

$$d/dt_{|t=t_o} \langle \partial x / \partial t(t, \sigma_1(t)), \ \partial x / \partial t(t, \sigma_2(t)) \rangle$$

= $\sigma'_1(t_o) \langle \nabla_{\partial/\partial s} \ \partial x / \partial t(t_o, \sigma_1(t_o)), \ \partial x / \partial t(t_o, \sigma_2(t_o)) \rangle$

$$+ \sigma_2'(t_o) \langle \partial x / \partial t(t_o, \sigma_1(t_o)), \nabla_{\partial/\partial s} \partial x / \partial t(t_o, \sigma_2(t_o)) \rangle$$

we consider the first term of the right side of the above equality. Since $t \rightarrow \partial x/\partial s(t, s)$ is a *c*-Jacobi field along γ_s which is perpendicular to γ_s everywhere we may write

$$\nabla_{\partial/\partial s} \ \partial x/\partial t(t, \sigma_1(t)) = \nabla_{\partial/\partial t} \ \partial x/\partial s \ (t, \sigma_1(t))$$

$$= \{ \langle \nabla_{\partial/\partial t} \ \partial x/\partial s, \ \partial x/\partial s/|\partial x/\partial s| \rangle \ \partial x/\partial s/|\partial x/\partial s| \}(t, \sigma_1(t))$$

up to the first focal value. Thus the above first term is equal to

$$\sigma_{1}'(t_{o}) \langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s/|\partial x/\partial s| \rangle (t_{o}, \sigma_{1}(t_{o})) \cdot \langle \partial x/\partial s/|\partial x/\partial s| (t_{o}, \sigma_{1}(t_{o})), \\ \partial x/\partial t (t_{o}, \sigma_{2}(t_{o})) \rangle$$

Now $\sigma'_1(t_o) > 0$, and we see that from lemma 1

$$\langle \nabla_{\partial/\partial t} \partial x/\partial s, \partial x/\partial s/|\partial x/\partial s| \rangle < 0$$

Moreover from lemmas 3, $4 \ll (\partial x/\partial t(t_o, \sigma_1(t_o), \partial x/\partial t(t_o, \sigma_2(t_o)) < \pi$ and recalling the way of the parametrization of $\sigma_1(t)$, $\sigma_2(t)$ we have

 $\langle \partial x/\partial s/|\partial x/\partial s|(t_o, \sigma_1(t_o)), \ \partial x/\partial t(t_o, \sigma_2(t_o))\rangle < 0$

Then the first term is negative and the same argument for the second term implies that $t \to \cos 2\eta(t)$ is decreasing and we have $d/dt \eta(t) \ge 0$. This completes the proof of the lemma. q. e. d.

REMARK. Consider the domain of revolution $(\tilde{D}, \tilde{g}), \tilde{D} = [0, d^*] \times S^1,$ $\tilde{g} = dt^2 + (l_t/2\pi)^2 g_{s_1}$, where g_{s_1} denotes the canonical metric of unit circle S^1 and $\{d^*\} \times S^1$ reduces to one point \tilde{p} . Then the Gauss curvature \tilde{K} of (\tilde{D}, \tilde{g}) is positive except singular values of t, because $\tilde{K} = -(d^2/dt^2 l_t)/l_t$.

Now the theorem follows immediately from lemma $1 \sim \text{lemma 8}$. Finally we give a proof of the corollary: First consider the case (1). In this case the cut locus *C* consists of one point *p*. Then we have from (7)

$$\lim_{t \to d^*} d/dt \ l_t = \lim_{t \to d^*} (\int_{\mathcal{Q}t} K \ ds - 2\pi) = -2\pi.$$

Now from lemma 8 we get d/dt $l_t \ge -2\pi$ and consequently $l_t \le 2\pi(d^* - t)$. This implies that

Area
$$D \le 2\pi \int_0^{d^*} (d^* - t) dt = \pi (d^*)^2$$

We turn to the second case. Since by the same argument as in the proof

of lemma 7 we have

$$\lim_{t\to d^*} d/dt \ l_t = -2\pi - 2\sum (\tan \alpha_i/2 - \alpha_i/2).$$

Then we get the desired inequality by lemmas 5, 6, 7 as above.

References

- [Be] M. BERGER: Volume et rayon d'injectivité dans les variétés riemanniennes de dimension 3, Osaka J. Math., 14, 191-200 (1977).
- [B-C] R. BISHOP and R. CRITTENDEN: Geometry of Manifolds, Acsdemic Press, New York, 1964.
- [F] F. FIALA: Le probleme les isopérimètres sur les surface ouvertes à courbure positive, Comment. Math. Helv., 13, 297-346 (1940/41).
- [Ga] S. GALLOT : Inègalites isopérimètriques et analytiques sur les variétés riemanniennes, Asterisque, 163/164, 31-91 (1988).
- [G] M. GROMOV: Curvature, diameter and Betti numbers, Comment. Math. Helv., 56, 179-195 (1981).
- [M] S. B. MYERS: Connections between differential geometry and topology I, simply connected surfaces, Duke Math. J., 1, 376-391 (1935).
- [Sal] T. SAKAI: On a theorem of Burago-Toponogov, Indiana Univ. Math. J., 32, 165-175 (1983).
- [Sa2] T. SAKAI: On the isodiametric inequality for the 2-sphere, Geometry of Manifolds, Perspectives in Math., 8, Academic Press, 303-315 (1989).
- [Shi] T. SHIOYA: Diameter and area estimates for S² and P² with nonnegatively curved metrics, Preprint. 1989.

Department of Mathematics Faculty of Science Okayama University Okayama 700 Japan

Added in proof : d_c is a concave function (J. Cheeger-D. Gromoll, Ann. of Math., 96(1974), 413-443). Using their argument it is possible to prove Theorem and Corollary under the weaker condition that the geodesic curvature x of c is nonnegative.