Weakly complex manifolds with semi-free S^1 -action whose fixed point set has complex codimension 2

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

Hiroaki KOSHIKAWA (Received April 19, 1991, Revised September 11, 1991)

1. Introduction

A weakly complex manifold means a smooth manifold whose tangent bundle is stably equivalent to a complex vector bundle. Let M^{2n} be a 2n-dimensional closed weakly complex manifold and let $\varphi: S^1 \times M^{2n} \rightarrow M^{2n}$ be a smooth semi-free S^1 -action which preserves the complex structure. We denote this manifold by the pair (M^{2n}, φ) . Let $F(M^{2n}, \varphi) = F_1 \cup F_2 \cup \cdots \cup F_s$, where $F_i(i=1, 2, \cdots, s)$ is a fixed point set component. Each F_i has an S^1 -invariant weakly complex structure. Then we have the following theorem by the Kamata's formula [2].

THEOREM 1. Let k be a positive integer and let (M^{2n}, φ) be a weakly complex semi-free S¹-manifold. Let $\dim_c F_i = n - 2k$ $(i=1, \dots, s)$. Then the Chern number $c_1^n[M^{2n}] \equiv 0 \mod (2k)^{2k}$.

Next in this paper we study, up to mod 2 bordism, those manifolds with semi-free S^1 -action with the property that all the components of the fixed point set have the same complex codimension 2.

Let \mathscr{U}_* be the bordism ring of closed weakly complex smooth manifolds. It is known that the bordism ring \mathscr{U}_* is generated by a set of bordism classes { $[CP(k)], [H_{m,n}(C)]; k \ge 1, n \ge m > 1$ }, where CP(k) is the k dimensional complex projective space and $H_{m,n}(C)$ is the Milnor hypersurface in $CP(m) \times CP(n)$. For our purpose, we calculate a base of the mod 2 weakly complex bordism ring $\mathscr{U}_* \otimes Z_2$. Let (n_1, n_2, \dots, n_k) be a k-tuple of non negative integers. We denote by $CP(n_1, n_2, \dots, n_k)$ the complex projective space bundle $CP(\lambda_1 \oplus \lambda_2 \oplus \dots \oplus \lambda_k)$ associated to the bundle $\lambda_1 \oplus \lambda_2 \oplus \dots \oplus \lambda_k$ over $CP(n_1) \times CP(n_2) \times \dots \times CP(n_k)$, where $\lambda_i(i=1, 2, \dots, k)$ is the pullback of the canonical line bundle over the *i*th factor.

Now we define an ideal \mathscr{T} in $\mathscr{U}_* \otimes \mathbb{Z}_2$ as follows.

$$\mathscr{T} = \{ [M^{2n}] \in \mathscr{U}_* \otimes \mathbb{Z}_2 \mid c_1^n[M^{2n}] \equiv 0 \mod 2 \}.$$

Then we have the following

THEOREM 2. \mathcal{T} is the ideal generated by the set

$$\{[CP(1)], [CP(2)]^2, [H_{2,2}(C)], [CP(n_1, n_2, n_3, n_4)]\},\$$

where $n_1 + n_2 + n_3 + n_4 \neq 1$.

The bordism ring \mathscr{U}_* is a polynomial ring with a generator in each dimension 2k, k>0. We take $x_{2^j}=[CP(2^j)]$ as a ring generator of $\mathscr{U}_*\otimes \mathbb{Z}_2$ in dimension 2^{j+1} . We consider suitable semi-free S^1 -actions on $CP(1)\times CP(1)$, $H_{2,2}(C)$ and $CP(n_1, n_2, n_3, n_4)$, and then from above two theorems we obtain the following

THEOREM 3. Suppose that the bordism class of a weakly complex manifold M^{2n} is represented by a polynomial in $\mathscr{U}_* \otimes \mathbb{Z}_2$ which does not involve any type of monomial factorized with $(x_{2^{j_1}})^{\varepsilon_1}(x_{2^{j_2}})^{\varepsilon_2}\cdots(x_{2^{j_r}})^{\varepsilon_r}(x_1)^{\delta}$, $\varepsilon_i \ge$ 2, $\delta = 0$ or $1, j_1 > j_2 \cdots > j_r \ge 1$. Then there exists a weakly complex semi-free S^1 -manifold (N^{2n}, φ) wich satisfies $F(N^{2n}, \varphi) = F_1 \cup F_2 \cup \cdots \cup F_t$, dimc $F_i = n$ -2 and $[N^{2n}] = [M^{2n}]$ in $\mathscr{U}_* \otimes \mathbb{Z}_2$ if and only if

 $c_1^n[M^{2n}] \equiv 0 \mod 2.$

REMARK. Let $M^{2n} = CP(2^{j+1}-3, 0, 0, 0)$ $(j \ge 2, n=2^{j+1})$. *M* has such a semi-free S¹-action as our thinking and $c_1^n[M^{2n}] \equiv 0 \mod 2$.

I am grateful to the referee for his various suggestions, especially for suggesting the conditions of Theorem 3.

2. An application of Kamata's formula and some Chern numbers

Let (M^{2n}, φ) be a weakly complex manifold with semi-free S^1 -action. Let $F(M^{2n}, \varphi) = F_1 \cup F_2 \cup \cdots \cup F_s$, where $F_i(i=1, 2, \cdots, s)$ is a fixed point set component. Let τ' be the complex n'-dimensional vector bundle which is stably equivalent to the tangent bundle of M^{2n} and let ν_i be the normal bundle of F_i and let τ'_i be the stable tangent bundle of F_i . Then the total Chern classes are expressed in the factored form as follows.

$$c(\tau') = \prod_{i=1}^{n} (1+\gamma_i)$$

$$c(\nu_i) = (1+\alpha_1^{(i)})(1+\alpha_2^{(i)})\cdots(1+\alpha_{l_i}^{(i)})$$

$$c(\tau'_i) = (1+\beta_1^{(i)})(1+\beta_2^{(i)})\cdots(1+\beta_{m_i}^{(i)}),$$

where $l_i = dim_c v_i$ and $m_i = dim_c \tau'_i$. Then we have the following

PROPOSITION 1 (M. Kamata [2]). Let $f(z_1, \dots, z_{n'})$ be a symmetric

Weakly complex manifolds with semi-free S^1 -action whose fixed point set has complex codimension 2

polynomial of degree n and let (M^{2n}, φ) be a weakly complex semi-free S^{1-} manifold. Then

$$\langle f(\gamma_1, \dots, \gamma_{n'}), \sigma(M) \rangle = \sum_{i=1}^{s} \langle \frac{f(1+\alpha_1^{(i)}, 1+\alpha_2^{(i)}, \dots, 1+\alpha_{l_i}^{(i)}, \beta_1^{(i)}, \dots, \beta_{m_i}^{(i)})}{(1+\alpha_1^{(i)})(1+\alpha_2^{(i)})\cdots(1+\alpha_{l_i}^{(i)})}, \quad \sigma(F_i) \rangle,$$

where $\sigma(M)$ and $\sigma(F_i)$ are fundamental homology classes of M^{2n} and F_i respectively.

Now we apply this formula to a weakly complex semi-free S^1 -manifold whose every fixed point set component has same codimension.

PROOF OF THEOREM 1.

PROOF. $c_1(M) = \gamma_1 + \dots + \gamma_{n'}(n' \ge n)$. Applying Proposition 1 to $f(z_1, \dots, z_{n'}) = (z_1 + \dots + z_{n'})^n$, we have

$$\begin{split} c_{1}^{n}[M] &= \langle f(\gamma_{1}, \cdots, \gamma_{n'}), \sigma(M) \rangle \\ &= \sum_{i=1}^{s} \langle \frac{f(1 + \alpha_{1}^{(i)}, 1 + \alpha_{2}^{(i)}, \cdots, 1 + \alpha_{2k}^{(i)}, \beta_{1}^{(i)}, \cdots, \beta_{n2k}^{(i)})}{(1 + \alpha_{1}^{(i)})(1 + \alpha_{2}^{(i)})\cdots(1 + \alpha_{2k}^{(i)})}, \sigma(F_{i}) \rangle \\ &= \sum_{i=1}^{s} \langle \frac{(2k + \alpha_{1}^{(i)} + \cdots + \alpha_{2k}^{(i)} + \beta_{1}^{(i)} + \cdots + \beta_{n2k}^{(i)})^{n}}{(1 + \alpha_{1}^{(i)})(1 + \alpha_{2}^{(i)})\cdots(1 + \alpha_{2k}^{(i)})}, \sigma(F_{i}) \rangle \\ &= \sum_{i=1}^{s} \langle (2k + c_{1}(\nu_{i}) + c_{1}(\tau_{i}))^{n} \sum_{j=0}^{2k} (-1)^{j} c_{j}(\nu_{i}), \sigma(F_{i}) \rangle \\ &\equiv 0 \mod (2k)^{2k}, \end{split}$$

because $dim_cF_i = n - 2k(i=1, \dots, s)$.

Next we calculate some Chern numbers. Let M^{2n} be a weakly complex manifold and let the total Chern class c(M) be expressed in the factored form $\prod_{i=1}^{n'} (1+\gamma_i)$ as mentioned above. We denote $s_k(c_1(M), \dots, c_n(M)) = \sum_{i=1}^{n'} \gamma_i^k$, and then we define the Chern number

$$s_n[M] = \langle s_n(c_1(M), \cdots, c_n(M)), \sigma(M) \rangle.$$

We call this number s-number, and simply often denote by s[M]. This is a weakly complex bordism invariant and we have

PROPOSITION 2 (J. Milnor[6]). A weakly complex manifold M^{2n} may be taken to be the 2n-dimensional generator in \mathcal{U}_* if and only if

$$s[M] = \begin{cases} \pm 1 & \text{if } n+1 \neq p^{j} \text{ for any prime } p \\ \pm p & \text{if } n+1 = p^{j} \text{ for some prime } p \text{ and } j > 0 \end{cases}$$

Now we obtain the following lemma (cf. Stong [5, p. 434, Lemma 3. 4]).

LEMMA 1. For $k \ge 2$

q. e. d.

$$s[CP(n_1, n_2, \dots, n_k)] = \pm \left\{ (-1)^{n-n_1} \binom{n+k-2}{n_1} + \dots + (-1)^{n-n_k} \binom{n+k-2}{n_k} \right\},$$

where $n = n_1 + \dots + n_k$.

PROOF. We put $X = CP(n_1, n_2, \dots, n_k)$, $Y = CP(n_1) \times CP(n_2) \times \dots \times CP(n_k)$, and $\lambda = \lambda_1 \oplus \lambda_2 \oplus \dots \oplus \lambda_k$. Let $p: X \to Y$ be the projection and ξ the canonical complex line bundle over X. We shall denote by $a \in H^2(X; Z)$ the characteristic class of ξ . The total Chern class of λ can be expressed in the factored form $\prod_{i=1}^{k} (1+t_i)$. We set $u_i = p^*(t_i)$ for $i=1, \dots, k$ and let v_j be the *j*th Chern class of λ , so v_j is the *j*th elementary symmetric function of u_1, \dots, u_k . Then the total Chern class of X is given by

(2.1)
$$c(X) = p^*((c(Y)) \left(\sum_{j=0}^k (1-a)^{k-j} p^*(v_j) \right)$$
$$= \prod_{i=1}^k (1+u_i)^{n_i+1} \prod_{i=1}^k (1+u_i-a)$$

with relation

(2.2)
$$\sum_{j=0}^{k} (-1)^{k-j} p^{*}(v_{j}) a^{k-j} = 0.$$

Now, we denote the *i*th dual Chern class of λ by $\overline{c}_i(\lambda)$ and we put $s_i(\lambda) = \sum_{i=1}^{k} t_i^j$. Then, from Conner's theorem [1, p. 293, (4.1)], we obtain the *s*-number of *X* as follows.

(2.3)
$$s_{n+k-1}[X] = \pm (-1)^{k-1} \langle k \overline{c}_n(\lambda) + \sum_{j=1}^n \binom{n+k-1}{j} s_j(\lambda) \overline{c}_{n-j}(\lambda), \sigma(Y) \rangle,$$

where $\sigma(Y)$ is the fundamental homology class of Y. From this formula, we obtain the desired result. *q.e.d.*

LEMMA 2.
(2.4)
$$c_1^n [CP(n_1, n_2, n_3, n_4)] = 2^6 d(d \in \mathbb{Z}, d \neq 0)$$
 where $n = n_1 + \dots + n_4 + 3$.
(2.5) $c_1^{m+n-1} [H_{m,n}(C)] = \frac{2(m+n-1)!}{(m-1)!(n-1)!} m^{m-1} n^{n-1}$.

(2.6)
$$c_1^n [CP(2^{j_1}) \times \cdots \times CP(2^{j_r})] = \frac{n!}{(2^{j_1})! \cdots (2^{j_r})!} (2^{j_1} + 1)^{2^{j_1}} \cdots (2^{j_r} + 1)^{2^{j_r}},$$

where $n = 2^{j_1} + \dots + 2^{j_r}$ and $j_1 \ge j_2 \ge \dots \ge j_r \ge 0$.

PROOF OF (2.4). Let $X = CP(n_1, n_2, n_3, n_4) = CP(\lambda_1 \oplus \lambda_2 \oplus \lambda_3 \oplus \lambda_4)$, $Y = CP(n_1) \times CP(n_2) \times CP(n_3) \times CP(n_4)$ and let $\lambda = \lambda_1 \oplus \lambda_2 \oplus \lambda_3 \oplus \lambda_4$. Let $p: X \to Y$ be the projection and let $a \in H^2(X; \mathbb{Z})$ be the characterisitic class of the canonical complex line bundle over X. Let $v_j \in H^{2j}(Y; \mathbb{Z})$ be the *jth*

Chern class of λ . Then by the formula (2.1)

$$c(X) = p^*(c(Y)) \left(\sum_{j=0}^4 (1-a)^{4-j} p^*(v_j) \right).$$

Now $c_1(X) = p^*(c_1(Y) + v_1) - 4a$. Put $b = c_1(Y) + v_1$. Then

$$c_{1}^{n}[X] = \langle (p^{*}(b) - 4a)^{n}, \sigma(X) \rangle$$

= $\sum_{i=0}^{n} (-1)^{n-i} {n \choose i} 4^{n-i} \langle (p^{*}(b^{i})a^{n-i}, \sigma(X)) \rangle$
= $\sum_{i=0}^{n-3} (-1)^{n-i} {n \choose i} 4^{n-i} \langle b^{i}, p_{*}(a^{n-i} \cap \sigma(X)) \rangle$
= $2^{6}d.$ q. e. d.

PROOF OF (2.5). Let ξ_m and ξ_n be the canonical line budles over CP(m) and CP(n) respectively. Let $i: H_{m,n}(C) \to CP(m) \times CP(n)$ be the inclusion map and ν be the normal bundle. Then $c(\nu) = i^*(c(\xi_m \otimes \xi_n))$, where $\xi_m \otimes \xi_n$ is the outer tensor product of ξ_m and ξ_n . Since $H^*(CP(m); \mathbb{Z}) \otimes H^*(CP(n); \mathbb{Z}) \cong H^*(CP(m) \times CP(n); \mathbb{Z})$, we may identify $c_1(\xi_m \otimes \xi_n) = \alpha + \beta$, where $\alpha = x_m \times 1$ and $\beta = 1 \times x_n, x_k = c_1(\xi_k)$: the generator of $H^2(CP(k); \mathbb{Z})$. On the other hand, $i^*(\tau(CP(m) \times CP(n))) = \tau(H_{m,n}(C)) \oplus \nu$, therefore $c_1(H_{m,n}(C)) = i^*(c_1(CP(m) \times CP(n)) - c_1(\xi_m \otimes \xi_n)) = i^*((m+1)\alpha + (n+1)\beta - (\alpha + \beta)) = i^*(m\alpha + n\beta)$. Let $\sigma_1 = \sigma(CP(m))$ and $\sigma_2 = \sigma(CP(n))$, then

$$c_{1}^{m+n-1}[H_{m,n}(C)] = \langle (i^{*}(m\alpha + n\beta)^{m+n-1}, \sigma(H_{m,n}(C)) \rangle \\ = \langle (m\alpha + n\beta)^{m+n-1} \cup c_{1}(\xi_{m} \widehat{\otimes} \xi_{n}), \sigma(CP(m) \times CP(n)) \rangle \\ = \langle (m\alpha + n\beta)^{m+n-1}(\alpha + \beta), \sigma(CP(m)) \times \sigma(CP(n)) \rangle \\ = \langle \{\binom{m+n-1}{m-1}(m\alpha)^{m-1}(n\beta)^{n} \\ + \binom{m+n-1}{m-1}(m\alpha)^{m}(n\beta)^{n-1}\}(\alpha + \beta), \sigma_{1} \times \sigma_{2} \rangle \\ = m^{m-1}n^{n-1}\{\binom{m+n-1}{m-1}n + \binom{m+n-1}{m}m\}\langle \alpha^{m}, \sigma_{1} \rangle \langle \beta^{n}, \sigma_{2} \rangle \\ = \frac{2(m+n-1)!}{(m-1)!}m^{m-1}n^{n-1}. \qquad q. e. d.$$

PROOF OF (2.6). Let $M = CP(2^{j_1}) \times \cdots \times CP(2^{j_r})$ then the total Chern class $c(M) = c(CP(2^{j_1}) \times \cdots \times CP(2^{j_r})) = c(CP(2^{j_1})) \cdots c(CP(2^{j_r})) = (1 + \alpha_1)^{2^{j_{i+1}}}$ $\cdots (1 + \alpha_r)^{2^{j_{r+1}}}$, where $\alpha_i = 1 \times \cdots \times 1 \times x_{l(i)} \times 1 \times \cdots \times 1$, $l(i) = 2^{j_i} (1 \le i \le r)$. Therefore $c_1(M) = (2^{j_1} + 1)\alpha_1 + \cdots + (2^{j_r} + 1)\alpha_r$. So we have the $c_1^n[M]$ by the multinomial theorem. q. e. d.

3. A ring structure for $\mathscr{U}_* \otimes \mathbb{Z}_2$ and proofs of Theorem 2 and 3.

LEMMA 3. The following manifolds represent the indecomposable bordism classes in the polynomial ring $\mathscr{U}_* \otimes \mathbb{Z}_2$.

- (1) $H_{2,2}(C)$,
- (2) $CP(2^{j}), j \ge 0,$
- (3) $CP(2^{j}-4, 0, 0, 0), j \ge 3,$
- (4) $CP(n-3, 0, 0, 0), n \equiv 2 \mod 4$,
- (5) $CP(2^{p_{r-1}}, 2^{p_{r-1}}, n-2^{p_r}-3, 0)$, where $n=2^{p_1}+\dots+2^{p_{r-1}}+2^{p_r}, r > 1$, and $p_1 > \dots > p_r \ge 2$.
- (6) $CP(2, 2q-2, 2q-2, 0), q \ge 1.$
- (7) $CP(2^{2+j}, 2(q-2^j), 2(q-2^j), 0), q = a_0 + a_1 2 + \dots + a_s 2^s$ with $a_j = 0$ for some j.

PROOF. We denote such a manifold as described above by M. It is known that s[CP(n)] = n+1 for $n \ge 1$ and $s[H_{m,n}(C)] = -\binom{m+n}{m}$ for $1 < m \le n$ [6]. By these facts, Lemma 1 and [4, Chapter, 1, 2.6. Lemma.], we obtain $s[M] \equiv 1 \mod 2$ for (2), (4), (5), (6) and (7). For (1) and (3), $s[M] \equiv 2 \mod 4$. Here we apply the Milnor theorem to the mod 2 weakly complex bordism ring $\mathscr{U}_* \otimes \mathbb{Z}_2$, and we obtain the results. q. e. d.

It is known that $\mathscr{U}_* \otimes \mathbb{Z}_2$ is a polynomial ring over \mathbb{Z}_2 with one generator in each even dimension. Let x_{2^j} be the class $[CP(2^j)]$ for $j \ge 0$ and let x_3 be the class $[H_{2,2}(C)]$. Denote y_n be the class $[CP(2^j-4, 0, 0, 0)]$ for $n=2^j-1, j\ge 3$ and let z_n be the class $[CP(n_1, n_2, n_3, n_4)]$ for $n=n_1+n_2+n_3+n_4+3\neq 2^j, 2^j-1$ whose types are (5), (6) or (7) of Lemma 3. Then we have the following proposition by Lemma 3.

LEMMA 4. $\mathscr{U}_* \otimes \mathbb{Z}_2$ is a polynomial ring over \mathbb{Z}_2 with the system of generators

$$\{x_3, x_{2^j}(j \ge 0), y_n(n = 2^j - 1, j \ge 3), z_n(n \neq 2^j, 2^j - 1)\}.$$

PROOF OF THEOREM 2.

ASSERTION 1. We define ideal \mathcal{T}_1 in $\mathcal{U}_* \otimes \mathbb{Z}_2$ is generated by the set

$$\{x_1, x_3, (x_{2^j})^2 (j \ge 1), y_n (n = 2^j - 1, j \ge 3), z_n (n \neq 2^j, 2^j - 1)\}.$$

Then $\mathcal{T} = \mathcal{T}_1$.

PROOF. We have $\mathscr{T} \supset \mathscr{T}_1$ from Lemma 2. If an element [M] is chosen from \mathscr{T} , then we express $[M^{2n}] = \sum a_{i_1 \cdots i_r} u_{i_1} \cdots u_{i_r}$, where $a_{i_1 \cdots i_r} \in \mathbb{Z}_2$ and u_{i_k} is a generator of $\mathscr{U}_* \otimes \mathbb{Z}_2$ as described in Lemma 4. As $c_1^n[M] \equiv 0 \mod 2$, the coefficients of $x_{2^{j_1}} x_{2^{j_2}} \cdots x_{2^{j_r}} (j_1 > j_2 > \cdots > j_r \ge 1)$ are equal to 0 mod 2.

Therefore $[M] \in \mathcal{T}_1$, hence $\mathcal{T} \subset \mathcal{T}_1$. Thus $\mathcal{T} = \mathcal{T}_1$. q. e. d.

ASSERTION 2. We can turn the generator $(x_{2^j})^2$ of \mathcal{T}_1 into $y'_{2^{j+1}} = [CP (2^{j+1}-3, 0, 0, 0)]$ for $j \ge 2$.

PROOF. The characteristic number $s_{(2^{j},2^{j})}[CP(2^{j}) \times CP(2^{j})] = s_{2^{j}}[CP(2^{j})]$ $\times s_{2^{j}}[CP(2^{j})] = (2^{j}+1)(2^{j}+1) \equiv 1 \mod 2$. On the other hand $s_{(2^{j},2^{j})}[CP(2^{j+1}-3,0,0,0)]$ $3, 0, 0, 0)] \equiv c_{2}^{2^{j}}[CP(2^{j+1}-3,0,0,0)] \mod 2$. We set $X = CP(2^{j+1}-3,0,0,0)]$. By (2.1), $c_{2}(X) \equiv u^{2} + au \mod 2$, where $u = p^{*}(t_{1})$. For $j \geq 2$, $c_{2}^{2^{j}}(X) \equiv a^{2^{j}}u^{2^{j}}$ $mod \ 2 = a^{3}u^{2^{j+1}-3}$ because by (2.2) $a^{4} = a^{3}u$. Then $S_{(2^{j},2^{j})}[X] \equiv \langle a^{3}u^{2^{j+1}-3}, \sigma(X) \rangle$ $mod \ 2 = 1$, where $Y = CP(2^{j+1}-3)$. Hence we can turn the generator $(x_{2^{j}})^{2}$ into $y_{2^{j+1}}$ for $j \geq 2$. Therefore we obtain the Theorem 2 from these assertions. q. e. d.

PROOF OF THEOREM 3.

Let $\varphi_1: S^1 \times CP(n_1, n_2, n_3, n_4) \to CP(n_1, n_2, n_3, n_4)$ be $\varphi_1(\zeta, [u_1, u_2, u_3, u_4]) = [u_1, u_2, \zeta u_3, \zeta_{u_4}]$ for any $\zeta \in S^1$ and $[u_1, u_2, u_3, u_4] \in CP(n_1, n_2, n_3, n_4)$. Let $\varphi_2: S^1 \times H_{2,2}(C) \to H_{2,2}(C)$ be $\varphi_2(\zeta, ([z_0: z_1: z_2], [w_0: w_1: w_2])) = ([z_0: z_1: \zeta z_2], [w_0: w_1: \overline{\zeta} w_2])$ for any $\zeta \in S^1$ and $([z_0: z_1: z_2], [w_0: w_1: w_2]) \in H_{2,2}(C)$, where $\overline{\zeta}$ is conjugate of ζ . Then φ_1 and φ_2 are semi-free S^1 -actions whose fixed point sets are $CP(\lambda_1 \oplus \lambda_2) \cup CP(\lambda_3 \oplus \lambda_4)$ and $CP(1) \cup CP(1) \cup H_{1,1}(C)$ respectively. The dimension of those fixed point sets are complex codimension 2. Moreover $(CP(1))^2$ has also natural diagonal semi-free S^1 -action the result from Theorem 1 and 2. q. e. d.

References

- [1] P. E. CONNER, The bordism class of a bundle space, Michigan Math. J., 14(1967), 289 -303.
- [2] M. KAMATA, On the characteristic numbers of unitary semi-free S¹-manifolds, In: Transformation Groups. Proceeding 1987, Lecture Notes in Math., 1375, Springer, 1987, pp. 126-131.
- [3] J. W. MILNOR and J. D. STASHEFF, Characteristic classes, Ann. of Math. Studies, no. 76, 1974.
- [4] N. E. STEENROD, Cohomology operations, Ann. of Math. Studies, no. 50, 1962.
- [5] R. E. STONG, On fibering of cobordism classes, Trans. Amer. Math, Soc., 178(1973), 431-447.
- [6] R. E. STONG, Notes on cobordism theory, Princeton Univ. Press and The Univ. of Tokyo Press, Princeton, N. J., 1968

H. Koshikawa

.

•

.

/

Department of Mathematics Faculty of Education Chiba University Chiba, 260 Japan

•