Weakly complex manifolds with semi-free S^{1}-action whose fixed point set has complex codimension 2

Dedicated to Professor Haruo Suzuki on his sixtieth birthday

Hiroaki Koshikawa

(Received April 19, 1991, Revised September 11, 1991)

1. Introduction

A weakly complex manifold means a smooth manifold whose tangent bundle is stably equivalent to a complex vector bundle. Let $M^{2 n}$ be a $2 n$-dimensional closed weakly complex manifold and let $\varphi: S^{1} \times M^{2 n} \rightarrow$ $M^{2 n}$ be a smooth semi-free S^{1}-action which preserves the complex structure. We denote this manifold by the pair $\left(M^{2 n}, \varphi\right)$. Let $F\left(M^{2 n}, \varphi\right)=F_{1}$ $\cup F_{2} \cup \cdots \cup F_{s}$, where $F_{i}(i=1,2, \cdots, s)$ is a fixed point set component. Each F_{i} has an S^{1}-invariant weakly complex structure. Then we have the following theorem by the Kamata's formula [2].

THEOREM 1. Let k be a positive integer and let $\left(M^{2 n}, \varphi\right)$ be a weakly complex semi-free S^{1}-manifold. Let $\operatorname{dim}_{c} F_{i}=n-2 k(i=1, \cdots, s)$. Then the Chern number $c_{1}^{n}\left[M^{2 n}\right] \equiv 0 \bmod (2 k)^{2 k}$.

Next in this paper we study, up to mod 2 bordism, those manifolds with semi-free S^{1}-action with the property that all the components of the fixed point set have the same complex codimension 2.

Let $\mathscr{U} *$ be the bordism ring of closed weakly complex smooth manifolds. It is known that the bordism ring \mathscr{U}_{*} is generated by a set of bordism classes $\left\{[C P(k)],\left[H_{m, n}(C)\right] ; k \geq 1, n \geq m>1\right\}$, where $C P(k)$ is the k dimensional complex projective space and $H_{m, n}(C)$ is the Milnor hypersurface in $C P(m) \times C P(n)$. For our purpose, we calculate a base of the mod 2 weakly complex bordism ring $\mathscr{U}_{*} \otimes Z_{2}$. Let $\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ be a k-tuple of non negative integers. We denote by $C P\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ the complex projective space bundle $C P\left(\lambda_{1} \oplus \lambda_{2} \oplus \cdots \oplus \lambda_{k}\right)$ associated to the bundle $\lambda_{1} \oplus \lambda_{2} \oplus \cdots \oplus \lambda_{k}$ over $C P\left(n_{1}\right) \times C P\left(n_{2}\right) \times \cdots \times C P\left(n_{k}\right)$, where $\lambda_{i}(i=1,2, \cdots$, $k)$ is the pullback of the canonical line bundle over the i th factor.

Now we define an ideal \mathscr{T} in $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ as follows.

$$
\mathscr{T}=\left\{\left[M^{2 n}\right] \in \mathscr{U} * \otimes \boldsymbol{Z}_{2} \mid c_{1}^{n}\left[M^{2 n}\right] \equiv 0 \text { mod } 2\right\} .
$$

Then we have the following
ThEOREM 2. \mathcal{T} is the ideal generated by the set

$$
\left\{[C P(1)],[\operatorname{CP}(2)]^{2},\left[H_{2,2}(C)\right],\left[C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right]\right\},
$$

where $n_{1}+n_{2}+n_{3}+n_{4} \neq 1$.
The bordism ring \mathscr{U}_{*} is a polynomial ring with a generator in each dimension $2 k, k>0$. We take $x_{2^{j}}=\left[C P\left(2^{j}\right)\right]$ as a ring generator of $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ in dimension 2^{j+1}. We consider suitable semi-free S^{1}-actions on $C P(1) \times$ $C P(1), H_{2,2}(C)$ and $C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$, and then from above two theorems we obtain the following

THEOREM 3. Suppose that the bordism class of a weakly complex manifold $M^{2 n}$ is represented by a polynomial in $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ which does not involve any type of monomial factorized with $\left(x_{2^{i n}}\right)^{\varepsilon_{1}}\left(x_{2^{2^{i}}}\right)^{\varepsilon_{2}} \ldots\left(x_{2^{i n}}\right)^{\varepsilon r}\left(x_{1}\right)^{\delta}, \varepsilon_{i} \geq$ $2, \delta=0$ or $1, j_{1}>j_{2} \cdots>j_{r} \geq 1$. Then there exists a weakly complex semi-free S^{1}-manifold $\left(N^{2 n}, \varphi\right)$ wich satisfies $F\left(N^{2 n}, \varphi\right)=F_{1} \cup F_{2} \cup \cdots \cup F_{t}$, dimc $F_{i}=n$ -2 and $\left[N^{2 n}\right]=\left[M^{2 n}\right]$ in $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ if and only if

$$
c_{1}^{n}\left[M^{2 n}\right] \equiv 0 \bmod 2 .
$$

Remark. Let $M^{2 n}=C P\left(2^{j+1}-3,0,0,0\right)\left(j \geq 2, n=2^{j+1}\right) . \quad M$ has such a semi-free S^{1}-action as our thinking and $c_{1}^{n}\left[M^{2 n}\right] \equiv 0 \bmod 2$.

I am grateful to the referee for his various suggestions, especially for suggesting the conditions of Theorem 3.

2. An application of Kamata's formula and some Chern numbers

Let $\left(M^{2 n}, \varphi\right)$ be a weakly complex manifold with semi-free S^{1}-action. Let $F\left(M^{2 n}, \varphi\right)=F_{1} \cup F_{2} \cup \cdots \cup F_{s}$, where $F_{i}(i=1,2, \cdots, s)$ is a fixed point set component. Let τ^{\prime} be the complex n^{\prime}-dimensional vector bundle which is stably equivalent to the tangent bundle of $M^{2 n}$ and let ν_{i} be the normal bundle of F_{i} and let τ_{i}^{\prime} be the stable tangent bundle of F_{i}. Then the total Chern classes are expressed in the factored form as follows.

$$
\begin{aligned}
& c\left(\tau^{\prime}\right)=\prod_{i=1}^{n^{\prime}}\left(1+\gamma_{i}\right) \\
& c\left(\nu_{i}\right)=\left(1+\alpha_{1}^{(i)}\right)\left(1+\alpha_{2}^{(i)}\right) \cdots\left(1+\alpha_{\left.l^{(i}\right)}^{(i)}\right) \\
& c\left(\tau_{i}^{\prime}\right)=\left(1+\beta_{1}^{(i)}\right)\left(1+\beta_{2}^{(i)}\right) \cdots\left(1+\beta_{m_{i}}^{(i)}\right),
\end{aligned}
$$

where $l_{i}=\operatorname{dim}_{c} \nu_{i}$ and $m_{i}=\operatorname{dim}_{c} \tau_{i}^{\prime}$. Then we have the following
Proposition 1 (M. Kamata [2]). Let $f\left(z_{1}, \cdots, z_{n^{\prime}}\right)$ be a symmetric
polynomial of degree n and let $\left(M^{2 n}, \varphi\right)$ be a weakly complex semi-free S^{1} manifold. Then

$$
\left\langle f\left(\gamma_{1}, \cdots, \gamma_{n}\right), \sigma(M)\right\rangle=\sum_{i=1}^{s}\left\langle\frac{f\left(1+\alpha_{1}^{(i)}, 1+\alpha_{2}^{(i)}, \cdots, 1+\alpha_{i}^{(i)}, \beta_{1}^{(i)}, \cdots, \beta_{m i}^{(i)}\right)}{\left(1+\alpha_{1}^{(i)}\right)\left(1+\alpha_{2}^{(i)}\right) \cdots\left(1+\alpha_{i}^{(i)}\right)}, \sigma\left(F_{i}\right)\right\rangle,
$$

where $\sigma(M)$ and $\sigma\left(F_{i}\right)$ are fundamental homology classes of $M^{2 n}$ and F_{i} respectively.

Now we apply this formula to a weakly complex semi-free S^{1}-manifold whose every fixed point set component has same codimension.

Proof of Theorem 1.
Proof. $c_{1}(M)=\gamma_{1}+\cdots+\gamma_{n^{\prime}}\left(n^{\prime} \geq n\right)$. Applying Proposition 1 to $f\left(z_{1}\right.$, $\left.\cdots, z_{n^{\prime}}\right)=\left(z_{1}+\cdots+z_{n}\right)^{n}$, we have

$$
\begin{aligned}
c_{1}^{n}[M] & =\left\langle f\left(\gamma_{1}, \cdots, \gamma_{n}\right), \sigma(M)\right\rangle \\
& =\sum_{i=1}^{s}\left\langle\frac{f\left(1+\alpha_{i}^{(i)}, 1+\alpha_{2}^{(i)}, \cdots, 1+\alpha_{20}^{(i)}, \beta_{1}^{(i)}, \cdots, \beta_{n 2 k}^{(i)}\right)}{\left(1+\alpha_{1}^{(i)}\right)\left(1+\alpha_{2}^{(i)}\right) \cdots\left(1+\alpha_{2 k}^{(i)}\right)}, \sigma\left(F_{i}\right)\right\rangle \\
& =\sum_{i=1}^{s}\left\langle\frac{\left(2 k+\alpha_{1}^{(i)}+\cdots+\alpha_{2 k}^{(i)}+\beta_{1}^{(i)}+\cdots+\beta_{n 2 k}^{(i)}\right)^{n}}{\left(1+\alpha_{1}^{(i)}\right)\left(1+\alpha_{2}^{(i)}\right) \cdots\left(1+\alpha_{2 k}^{(i)}\right)}, \sigma\left(F_{i}\right)\right\rangle \\
& =\sum_{i=1}^{s}\left\langle\left(2 k+c_{1}\left(\nu_{i}\right)+c_{1}\left(\tau_{i}^{\prime}\right)\right)^{n} \sum_{j=0}^{n k}(-1)^{i} c_{j}\left(\nu_{i}\right), \sigma\left(F_{i}\right)\right\rangle \\
& \equiv 0 \text { mod }(2 k)^{2 k},
\end{aligned}
$$

because $\operatorname{dim}_{c} F_{i}=n-2 k(i=1, \cdots, s)$.
q. e. d.

Next we calculate some Chern numbers. Let $M^{2 n}$ be a weakly complex manifold and let the total Chern class $c(M)$ be expressed in the factored form $\prod_{i=1}^{n^{\prime}}\left(1+\gamma_{i}\right)$ as mentioned above. We denote $s_{k}\left(c_{1}(M), \cdots, c_{n}\right.$ $(M))=\sum_{i=1}^{n^{\prime}} \gamma_{i}{ }^{k}$, and then we define the Chern number

$$
s_{n}[M]=\left\langle s_{n}\left(c_{1}(M), \cdots, c_{n}(M)\right), \sigma(M)\right\rangle .
$$

We call this number s-number, and simply often denote by $s[M]$. This is a weakly complex bordism invariant and we have

Proposition 2 (J. Milnor[6]). A weakly complex manifold $M^{2 n}$ may be taken to be the $2 n$-dimensional generator in \mathscr{U}_{*} if and only if

$$
s[M]= \begin{cases} \pm 1 & \text { if } n+1 \neq p^{j} \text { for any prime } p \\ \pm p & \text { if } n+1=p^{j} \text { for some prime } p \text { and } j>0\end{cases}
$$

Now we obtain the following lemma (cf. Stong [5, p. 434, Lemma 3.4]).
Lemma 1. For $k \geq 2$

$$
s\left[C P\left(n_{1}, n_{2}, \cdots, n_{k}\right)\right]= \pm\left\{(-1)^{n-n_{1}}\binom{n+k-2}{n_{1}}+\cdots+(-1)^{n-n_{k}}\binom{n+k-2}{n_{k}}\right\}
$$

where $n=n_{1}+\cdots+n_{k}$.
Proof. We put $X=C P\left(n_{1}, n_{2}, \cdots, n_{k}\right), \quad Y=C P\left(n_{1}\right) \times C P\left(n_{2}\right) \times \cdots \times$ $C P\left(n_{k}\right)$, and $\lambda=\lambda_{1} \oplus \lambda_{2} \oplus \cdots \oplus \lambda_{k}$. Let $p: X \rightarrow Y$ be the projection and ξ the canonical complex line bundle over X. We shall denote by $a \in H^{2}(X$; $Z)$ the characteristic class of ξ. The total Chern class of λ can be expressed in the factored form $\prod_{i=1}^{k}\left(1+t_{i}\right)$. We set $u_{i}=p^{*}\left(t_{i}\right)$ for $i=1, \cdots, k$ and let v_{j} be the j th Chern class of λ, so v_{j} is the j th elementary symmetric function of u_{1}, \cdots, u_{k}. Then the total Chern class of X is given by

$$
\begin{align*}
c(X) & =p^{*}\left((c(Y))\left(\sum_{j=0}^{k}(1-a)^{k-j} p^{*}\left(v_{j}\right)\right)\right. \tag{2.1}\\
& =\prod_{i=1}^{k}\left(1+u_{i}\right)^{n_{i}+1} \prod_{i=1}^{k}\left(1+u_{i}-a\right)
\end{align*}
$$

with relation

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{k-j} p^{*}\left(v_{j}\right) a^{k-j}=0 \tag{2.2}
\end{equation*}
$$

Now, we denote the i th dual Chern class of λ by $\bar{c}_{i}(\lambda)$ and we put $s_{j}(\lambda)=$ $\sum_{i=1}^{k} t_{i}^{j}$. Then, from Conner's theorem [1, p.293, (4.1)], we obtain the s-number of X as follows.

$$
\begin{equation*}
s_{n+k-1}[X]= \pm(-1)^{k-1}\left\langle k \bar{c}_{n}(\lambda)+\sum_{j=1}^{n}\binom{n+k-1}{j} s_{j}(\lambda) \bar{c}_{n-j}(\lambda), \sigma(Y)\right\rangle \tag{2.3}
\end{equation*}
$$

where $\sigma(Y)$ is the fundamental homology class of Y. From this formula, we obtain the desired result.
q.e.d.

LEMMA 2.

$$
\begin{gather*}
c_{1}^{n}\left[C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right]=2^{6} d(d \in Z, d \neq 0) \text { where } n=n_{1}+\cdots+n_{4}+3 . \tag{2.4}\\
c_{1}^{m+n-1}\left[H_{m, n}(C)\right]=\frac{2(m+n-1)!}{(m-1)!(n-1)!} m^{m-1} n^{n-1} . \tag{2.5}\\
c_{1}^{n}\left[C P\left(2^{j_{1}}\right) \times \cdots \times C P\left(2^{j_{r}}\right)\right]=\frac{n!}{\left(2^{j_{1}}\right)!\cdots\left(2^{j r}\right)!}\left(2^{j_{1}}+1\right)^{2^{j 1} \cdots\left(2^{j_{r}}+1\right) 2^{2^{i r}},} \tag{2.6}
\end{gather*}
$$

where $n=2^{j_{1}}+\cdots+2^{j_{r}}$ and $j_{1} \geq j_{2} \geq \cdots \geq j_{r} \geq 0$.
PROOF OF (2.4). Let $X=C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=C P\left(\lambda_{1} \oplus \lambda_{2} \oplus \lambda_{3} \oplus \lambda_{4}\right), \quad Y=$ $C P\left(n_{1}\right) \times C P\left(n_{2}\right) \times C P\left(n_{3}\right) \times C P\left(n_{4}\right)$ and let $\lambda=\lambda_{1} \oplus \lambda_{2} \oplus \lambda_{3} \oplus \lambda_{4}$. Let $p: X \rightarrow Y$ be the projection and let $a \in H^{2}(X ; \boldsymbol{Z})$ be the characterisitic class of the canonical complex line bundle over X. Let $v_{j} \in H^{2 j}(Y ; \boldsymbol{Z})$ be the $j t h$

Chern class of λ. Then by the formula (2.1)

$$
c(X)=p^{*}(c(Y))\left(\sum_{j=0}^{4}(1-a)^{4-j} p^{*}\left(v_{j}\right)\right) .
$$

Now $c_{1}(X)=p^{*}\left(c_{1}(Y)+v_{1}\right)-4 a$. Put $b=c_{1}(Y)+v_{1}$. Then

$$
\begin{aligned}
c_{1}^{n}[X] & =\left\langle\left(p^{*}(b)-4 a\right)^{n}, \sigma(X)\right\rangle \\
& =\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} 4^{n-i}\left\langle\left(p^{*}\left(b^{i}\right) a^{n-i}, \sigma(X)\right\rangle\right. \\
& =\sum_{i=0}^{n-3}(-1)^{n-i}\binom{n}{i} 4^{n-i}\left\langle b^{i}, p_{*}\left(a^{n-i} \cap \sigma(X)\right)\right\rangle \\
& =2^{6} d .
\end{aligned}
$$

q.e.d.

Proof of (2.5). Let ξ_{m} and ξ_{n} be the canonical line budles over $C P(m)$ and $C P(n)$ respectively. Let $i: H_{m, n}(C) \rightarrow C P(m) \times C P(n)$ be the inclusion map and ν be the normal bundle. Then $c(\nu)=i^{*}\left(c\left(\xi_{m} \hat{\otimes} \xi_{n}\right)\right)$, where $\xi_{m} \hat{\otimes} \xi_{n}$ is the outer tensor product of ξ_{m} and ξ_{n}. Since $H^{*}(C P(m)$; $\boldsymbol{Z}) \otimes H^{*}(C P(n) ; \boldsymbol{Z}) \cong H^{*}(C P(m) \times C P(n) ; \boldsymbol{Z})$, we may identify $c_{1}\left(\xi_{m} \widehat{\otimes} \xi_{n}\right)$ $=\alpha+\beta$, where $\alpha=\mathrm{x}_{m} \times 1$ and $\beta=1 \times \mathrm{x}_{n}, \mathrm{x}_{k}=c_{1}\left(\xi_{k}\right)$: the generator of $H^{2}(C P(k) ; \boldsymbol{Z})$. On the other hand, $i^{*}(\tau(C P(m) \times C P(n)))=\tau\left(H_{m, n}(C)\right)$ $\oplus \nu$, therefore $c_{1}\left(H_{m, n}(C)\right)=i^{*}\left(c_{1}(C P(m) \times C P(n))-c_{1}\left(\xi_{m} \hat{\otimes} \xi_{n}\right)\right)=i^{*}((m+1) \alpha$ $+(n+1) \beta-(\alpha+\beta))=i^{*}(m \alpha+n \beta)$. Let $\sigma_{1}=\sigma(C P(m))$ and $\sigma_{2}=\sigma(C P(n))$, then

$$
\begin{align*}
c_{1}^{m+n-1}\left[H_{m, n}(C)\right]= & \left\langle\left(i^{*}(m \alpha+n \beta)^{m+n-1}, \sigma\left(H_{m, n}(C)\right)\right\rangle\right. \\
= & \left\langle(m \alpha+n \beta)^{m+n-1} \cup c_{1}\left(\xi_{m} \widehat{\otimes} \xi_{n}\right), \sigma(C P(m) \times C P(n))\right\rangle \\
= & \left\langle(m \alpha+n \beta)^{m+n-1}(\alpha+\beta), \sigma(C P(m)) \times \sigma(C P(n))\right\rangle \\
= & \left\langle\left\{\binom{ m+n-1}{m-1}(m \alpha)^{m-1}(n \beta)^{n}\right.\right. \\
& \left.\left.+\binom{m+n-1}{m}(m \alpha)^{m}(n \beta)^{n-1}\right\}(\alpha+\beta), \sigma_{1} \times \sigma_{2}\right\rangle \\
= & m^{m-1} n^{n-1}\left\{\binom{m+n-1}{m-1} n+\binom{m+n-1}{m} m\right\}\left\langle\alpha^{m}, \sigma_{1}\right\rangle\left\langle\beta^{n}, \sigma_{2}\right\rangle \\
= & \frac{2(m+n-1)!}{(m-1)!(n-1)!} m^{m-1} n^{n-1} . \quad \text { q.e. }
\end{align*}
$$

Proof of (2.6). Let $M=C P\left(2^{j_{1}}\right) \times \cdots \times C P\left(2^{j^{r}}\right)$ then the total Chern class $c(M)=c\left(C P\left(2^{j_{1}}\right) \times \cdots \times C P\left(2^{j_{r}}\right)\right)=c\left(C P\left(2^{j_{1}}\right)\right) \cdots c\left(C P\left(2^{j_{r}}\right)\right)=\left(1+\alpha_{1}\right)^{2^{i+1}}$ $\cdots\left(1+\alpha_{r}\right)^{2^{2+1}}$, where $\alpha_{i}=1 \times \cdots \times 1 \times \mathrm{x}_{l(i)} \times 1 \times \cdots \times 1, \quad l(i)=2^{j^{i}}(1 \leq i \leq r)$. Therefore $c_{1}(M)=\left(2^{j_{1}}+1\right) \alpha_{1}+\cdots+\left(2^{j_{r}}+1\right) \alpha_{r}$. So we have the $c_{1}^{n}[M]$ by the multinomial theorem.
q.e.d.

3. A ring structure for $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ and proofs of Theorem 2 and 3.

LEMMA 3. The following manifolds represent the indecomposable bordism classes in the polynomial ring $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$.
(1) $H_{2,2}(C)$,
(2) $C P\left(2^{j}\right), j \geq 0$,
(3) $C P\left(2^{j}-4,0,0,0\right), j \geq 3$,
(4) $C P(n-3,0,0,0), n \equiv 2 \bmod 4$,
(5) $\quad C P\left(2^{p_{r}-1}, 2^{p_{r}-1}, n-2^{p_{r}}-3,0\right)$, where $n=2^{p_{1}}+\cdots+2^{p_{r-1}}+2^{p_{r}}, r>1$, and $p_{1}>\cdots>p_{r} \geq 2$.
(6) $C P(2,2 q-2,2 q-2,0), q \geq 1$.
(7) $C P\left(2^{2+j}, 2\left(q-2^{j}\right), 2\left(q-2^{j}\right), 0\right), q=a_{0}+a_{1} 2+\cdots+a_{s} 2^{s}$ with $a_{j}=0$ for some j.

Proof. We denote such a manifold as described above by M. It is known that $s[C P(n)]=n+1$ for $n \geq 1$ and $s\left[H_{m, n}(C)\right]=-\binom{m+n}{m}$ for $1<m$ $\leq n$ [6]. By these facts, Lemma 1 and [4, Chapter, 1, 2.6. Lemma.], we obtain $s[M] \equiv 1 \bmod 2$ for (2), (4), (5), (6) and (7). For (1) and (3), $s[M] \equiv 2$ $\bmod 4$. Here we apply the Milnor theorem to the mod 2 weakly complex bordism ring $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$, and we obtain the results. q.e.d.

It is known that $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ is a polynomial ring over \boldsymbol{Z}_{2} with one generator in each even dimension. Let $x_{2^{j}}$ be the class $\left[C P\left(2^{j}\right)\right]$ for $j \geq 0$ and let x_{3} be the class $\left[H_{2,2}(C)\right]$. Denote y_{n} be the class $\left[C P\left(2^{j}-4,0,0,0\right)\right]$ for $n=2^{j}-1, j \geq 3$ and let z_{n} be the class $\left[C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)\right]$ for $n=n_{1}+$ $n_{2}+n_{3}+n_{4}+3 \neq 2^{j}, 2^{j}-1$ whose types are (5), (6) or (7) of Lemma 3. Then we have the following proposition by Lemma 3.

LEMMA 4. $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ is a polynomial ring over \boldsymbol{Z}_{2} with the system of generators

$$
\left\{x_{3}, x_{2^{j}}(j \geq 0), y_{n}\left(n=2^{j}-1, j \geq 3\right), z_{n}\left(n \neq 2^{j}, 2^{j}-1\right)\right\}
$$

Proof of Theorem 2.
ASSERTION 1. We define ideal \mathscr{T}_{1} in $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ is generated by the set

$$
\left\{x_{1}, x_{3},\left(x_{2^{j}}\right)^{2}(j \geq 1), y_{n}\left(n=2^{j}-1, j \geq 3\right), z_{n}\left(n \neq 2^{j}, 2^{j}-1\right)\right\} .
$$

Then $\mathscr{T}=\mathscr{T}_{1}$.
Proof. We have $\mathscr{T} \supset \mathscr{T}_{1}$ from Lemma 2. If an element [M] is chosen from \mathscr{T}, then we express $\left[M^{2 n}\right]=\sum a_{i_{1} \cdots i_{r}} u_{i_{1}} \cdots u_{i_{r}}$, where $a_{i_{1} \cdots i_{r}} \in \boldsymbol{Z}_{2}$ and $u_{i k}$ is a generator of $\mathscr{U}_{*} \otimes \boldsymbol{Z}_{2}$ as described in Lemma 4. As $c_{1}^{n}[M] \equiv 0 \bmod$ 2, the coefficients of $x_{2^{j}} x_{2^{j 2}} \cdots x_{2^{2^{r}}}\left(j_{1}>j_{2}>\cdots>j_{r} \geq 1\right)$ are equal to $0 \bmod 2$.

Therefore $[M] \in \mathscr{T}_{1}$, hence $\mathscr{T} \subset \mathscr{T}_{1}$. Thus $\mathscr{T}=\mathscr{F}_{1}$. q.e. d.

ASSERTION 2. We can turn the generator $\left(x_{2^{2}}\right)^{2}$ of \mathscr{F}_{1} into $y_{2^{\prime+1}}^{\prime}=[C P$ ($\left.\left.2^{j+1}-3,0,0,0\right)\right]$ for $j \geq 2$.

Proof. The characteristic number $s_{\left(2^{j}, 2^{2}\right)}\left[C P\left(2^{j}\right) \times C P\left(2^{j}\right)\right]=s_{2^{2}}\left[C P\left(2^{j}\right)\right]$ $\times_{s_{2}}\left[C P\left(2^{j}\right)\right]=\left(2^{j}+1\right)\left(2^{j}+1\right) \equiv 1$ mod 2 . On the other hand $s_{\left(2^{j}, 2^{j}\right)}\left[C P\left(2^{j+1}-\right.\right.$ $3,0,0,0)] \equiv c_{2}^{s^{3}}\left[C P\left(2^{j+1}-3,0,0,0\right)\right]$ mod 2. We set $\left.X=C P\left(2^{j+1}-3,0,0,0\right)\right]$. By (2.1), $c_{2}(X) \equiv u^{2}+a u$ mod 2 , where $u=p^{*}\left(t_{1}\right)$. For $j \geq 2, c_{2}^{2^{3}}(X) \equiv a^{2^{i}} u^{2^{j}}$ $\bmod 2=a^{3} u^{2^{j+1}-3}$ because by (2.2) $a^{4}=a^{3} u$. Then $S_{\left(2^{\prime}, 2^{j}\right)}[X] \equiv\left\langle a^{3} u^{2^{j+1}-3}\right.$, $\sigma(X)\rangle \bmod 2=\left\langle p^{*}\left(t_{1}^{2+1}-3\right), a^{3} \cap \sigma(X)\right\rangle=\left\langle t_{1}^{2 j+1}-3, p_{*}\left(a^{3} \cap \sigma(X)\right\rangle \equiv\left\langle t_{1}^{j^{+1}-3}, \sigma(Y)\right\rangle\right.$ $\bmod 2=1$, where $Y=C P\left(2^{j+1}-3\right)$. Hence we can turn the generator $\left(x_{2^{\prime}}\right)^{2}$ into $y_{2 j+1}^{\prime}$ for $j \geq 2$. Therefore we obtain the Theorem 2 from these assertions.
q. e. d.

Proof of Theorem 3.
Let $\varphi_{1}: S^{1} \times C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right) \rightarrow C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ be $\varphi_{1}\left(\zeta,\left[u_{1}, u_{2}, u_{3}, u_{4}\right]\right)=$ [$u_{1}, u_{2}, \xi u_{3}, \xi_{u 4}$] for any $\zeta \in S^{1}$ and $\left[u_{1}, u_{2}, u_{3}, u_{4}\right] \in C P\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$. Let $\varphi_{2}: S^{1} \times H_{2,2}(C) \rightarrow H_{2,2}(C)$ be $\varphi_{2}\left(\zeta,\left(\left[z_{0}: z_{1}: z_{2}\right],\left[w_{0}: w_{1}: w_{2}\right]\right)\right)=\left(\left[z_{0}: z_{1}: \zeta z_{2}\right]\right.$, $\left.\left[w_{0}: w_{1}: \bar{\zeta} w_{2}\right]\right)$ for any $\zeta \in S^{1}$ and $\left(\left[z_{0}: z_{1}: z_{2}\right],\left[w_{0}: w_{1}: w_{2}\right]\right) \in H_{2,2}(C)$, where $\bar{\zeta}$ is conjugate of ζ. Then φ_{1} and φ_{2} are semi-free S^{1}-actions whose fixed point sets are $C P\left(\lambda_{1} \oplus \lambda_{2}\right) \cup C P\left(\lambda_{3} \oplus \lambda_{4}\right)$ and $C P(1) \cup C P(1) \cup$ $H_{1,1}(C)$ respectively. The dimension of those fixed point sets are complex codimension 2. Moreover ($C P(1))^{2}$ has also natural diagonal semi-free S^{1}-action whose flxed point set has complex codimension 2. So we obtain the result from Theorem 1 and 2.
q.e.d.

References

[1] P. E. CONNER, The bordism class of a bundle space, Michigan Math. J., 14(1967), 289 -303.
[2] M. Kamata, On the characteristic numbers of unitary semi-free S^{1}-manifolds, In: Transformation Groups. Proceeding 1987, Lecture Notes in Math., 1375, Springer, 1987, pp. 126-131.
[3] J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, no. 76, 1974.
[4] N. E. Steenrod, Cohomology operations, Ann. of Math. Studies, no. 50, 1962.
[5] R. E. Stong, On fibering of cobordism classes, Trans. Amer. Math, Soc., 178(1973), 431-447.
[6] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press and The Univ. of Tokyo Press, Princeton, N. J., 1968

Department of Mathematics
Faculty of Education
Chiba University
Chiba, 260
Japan

