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Higher dimensional semilinear parabolic problems

Jan W. CHOLEWA
(Received November 18, 1992, Revised May 6, 1993)

1. Introduction

There are two commonly used ways of approaching parabolic prob-
lems, i.e. “ dynamic ” semigroup technique (e.g. [AM], [WA]) and “ static ”

a priori estimates method (e.g. [LA], DL] ). In spite of the great power of
“ dynamical ” approach (which leads to the general results for the possibly
wide class of nonlinear problems), classical in the theory of partial
differential equations “ static ” a priori technique can very often give exact
in form and precise in assumptions existence-uniqueness theorems concern-
ing regular solutions in the space of H\"older functions. Moreover dealing
with the problem of local solvability one is also able to estimate (from
below) the “ life time” of the obtained solution in a way similar to the
well known Peano theorem in the theory of ordinary differential equations.

However both in the “ dynamic ” and “ static ” studies of the classical
solvability, growth of the space dimension n causes a feedback in the
sense of increase (with respect to n) of the assumptions that should be put
on the data of the considered problem. Since referring to needed assump-
tions as “ sufficiently regular ” makes the final result hardly applicable, we
want in this note to deal with the case of higher space dimension coming
back to the idea of our recent paper [CH], in which higher dimensional
case was only mentioned in the Appendix.

We have presented in [CH] a classical approach to the 2 m-th (m>1)
order initial-boundary value problem

(1) \{\begin{array}{l}u_{t}=-Pu+f(t,x,d^{m}u) inB_{0}u=\ldots=B_{m-1}u=0 on\partial Gu(0,x)=u_{0}(x) inG\end{array}

D^{T}=(0, T)\cross G

with P= \sum_{|\alpha|,|\beta|\leq m}(-1)^{|\beta|}D^{\beta}(a_{a,\beta}(x)D^{a}) , d^{m}u=( u , \frac{\partial u}{\partial x_{1}} , \cdots \frac{\partial u}{\partial x_{n}} , \frac{\partial^{2}u}{\partial x_{1}^{2}} , \cdots

\frac{\partial^{m}u}{\partial x_{n}^{m}}) and a bounded domain G\subset R^{n} having smooth C^{4m+\mu} boundary \partial G ,

where \mu\in(0,1) is fixed from now on.
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In this note we announce precise necessary assumptions and formulate
the estimate-existence-uniqueness result in, outlined previously in the
Appendix of [CH], higher dimensional case n\geq 2m (especially we give the
direct estimate of the “ life tim\"e ” of the solution). The exact stating of
this result for higher dimensioal case is possible thanks to the more subtle
use of the linear theory given in [LA, Chapt. VII, \S 10 Th. 10.1, Th. 10.4],

which plays an important role in the derivation of the estimate (4). In
particular throughout this note we use both the notation and the general
concept developed in [CH].

2 Assumptions.

Let for each pair of multi-indices \alpha , \beta\in N^{n} with |\alpha| , |\beta|\leq m the
coefficient a_{a,\beta} of P belongs to the space C^{2m+|\beta|+\mu}(clG) , the coefficients of
the boundary operators B_{j}(j=0, \ldots m-1) are of the class (resp).
C^{4m-m_{j}+\mu}(\partial G) and nonlinear scalar function f=f(t, x, p_{1}, \ldots, p_{d})(d denotes
the length of d^{m}u ) is differentiate with respect to t and has all partial
derivatives up to the order 2m with respect to x , p_{1} , \ldots , p_{d} . Moreover, let
both f and all its partial derivatives which were just mentioned satisfy
local Lipschitz condition with respect to t and functional arguments
p_{1} , ..., p_{d} and H\"older condition with respect to the space variable x (fur-

ther, for simplicity, L will denote the common Lipschitz constant for the
considered functions, relatively to a fixed compact subset of [0, T]\cross clG\cross

R^{d}) . We also assume the conditions E, F stated in [CH] (i.e. P is coer-
cive, satisfies Green’s Identity and the triple (P, \{B_{j}\}, G) forms the regular
elliptic boundary value problem) and claim that the initial function u_{0}

satisfies (necessary for the existence of H\"older solution) first order com-
patibility conditions according to the monograph [LA].

Then in the case of higher space dimension n\geq 2m we have the follow-
ing result:

3 The main result.

THEOREM. For arbitrarily fixed K>0 there exist positive constants
\overline{C}_{1},\overline{C}_{2},\overline{C}_{3},\overline{C}_{4},\overline{C}_{5} such that for any hypothetical, classical solution u of
the problem (1), as long as
(2) \sum_{|\alpha|\leq m}||D^{a}(u-u_{0})(t^{ },\cdot)||_{L^{\infty}(G)}\leq K

(considering t\in[0, T] , x\in G ) the following a priori estimates hold:

(3) ||(u-u_{0})(t^{ },\cdot)||_{0,2}^{2}\leq\overline{C}_{1}te^{\overline{C}_{2}t} ,
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(4) ||u_{t}(t, \cdot)||_{0,\frac{n}{m-1}}\leq\overline{C}_{3}t^{1\frac{m-1}{n}}+||f(0, d^{m}u_{0})-Pu_{0}||_{0,\frac{n}{m-1}} .

Moreover inequalities (3), (4) guarantee validity of our main a priori esti-
main

(5) ||u-u_{0}||_{L^{\infty}(0,t,W^{m\infty}(G))}\leq\overline{C}_{4}(t) ( \overline{C}_{4}(0)=\frac{K}{2} and \overline{C}_{4}(t)\nearrow\infty ),

which, in turn, implies that (2) holds until the time T_{0} given by

(6) T_{0}= \min\{T_{1}, T\} .

Here T_{1}>0 is given as the unique solution of the equation

(7) \nu_{1}\overline{C}_{3}T_{1}^{1\frac{m-1}{n}}+1\nearrow_{1}||f(0,3, d^{m}u_{0})-Pu_{0}||_{0,\frac{n}{m-1}}

+ \nu_{1}|G|^{\frac{m-1}{n}}suP\{|f(t, x, d^{m}u_{0})-Pu_{0}|\}+C_{\mathfrak{l}j}1T_{1}^{\frac{1}{2}}\frac{1}{C_{1}^{2}}=KclDe^{\frac{\overline{c}_{2}}{2}T_{1}}

with \nu_{1} and C_{1/1} specified in (resp.) (24) (18). In consequence, the preced-
ing week norms estimates (3)-(5) lead to the condition

(8) \langle u-u_{0}\rangle_{C^{2m+\mu 1+\frac{\mu}{m}}(clD^{r_{0}})}\leq\overline{C}_{5} ,

being sufficient to establish solvability of the problem (1) in the H\"older

space C^{2m+\mu,1+\frac{\mu}{2m}}(clD^{To}) . Furthermore, the C^{2m+\mu,1+\frac{\mu}{2m}}(clD^{T_{0}}) solution is
unique.

PROOF OF THE THEOREM. According to the notation of [CH] we put
v:=u-u_{0} and g(t, x, d^{m}v):=f(t, x, d^{m}v+d^{m}u_{0})-Pu_{0} . Thus v satisfies:

(9) \{

v_{t}=-Pv+g(t, x, d^{m}v) in D^{T}

B_{0}v=\ldots=B_{m-1}v=0 on \partial G

v(0, x)=0 in G

At the beginning we shall prove that as long as (2) holds, for all v\in(0, v_{0}]

( v_{0} given by (17)) the following (compare [DL], [CH]) ”flexible” estimate
is valid:

(10) ||v(t, \cdot)||_{m,\infty}\leq\nu(||v_{t}(t, \cdot)||_{0,\frac{n}{m- 1}+}|G|^{\frac{m-1}{n}}s_{Cl}u_{l}p\{|g(t, x, d^{m}0)|\})

+C_{\nu}||v(t, \cdot)||_{0,2} ,

where C_{\nu}\nearrow\infty as 1J\searrow 0 . First we use Sobolev Embeddings and Nirenberg-
Gagliardo inequalities to find that ( \alpha fixed with |\alpha|\leq m )
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(11)
||D^{a}v||_{0,\infty} \leq C_{1}||D^{a}v||\leq C_{1}C_{4}||D^{a}v||||D^{a}v||m-1,\frac{n+\frac{1}{21}}{m-}\frac{n}{m\frac{+\frac{1}{2n}}{m-1}n}\frac{\frac{1}{2}}{0,2n+\frac{1}{2}}

We continue further with the Young’s inequality and interpolation inequal-,

ity for the intermediate derivatives ( [AD, Th. 4. 14] with \epsilon=\frac{\delta}{C_{8}}, \leq\epsilon_{0}) until

we get

(12) ||D^{a}v||_{0,\infty}\leq\delta||D^{a}v||_{m,\frac{n}{m-1}}+C_{8}’||D^{a}v||_{0,2}\leq\delta||v||_{2m,\frac{n}{m-1}}+C_{8}’||D^{a}v||_{0,2}

\leq\delta||v||_{2m,\frac{n}{m-1}}+C\acute{s}(\frac{\delta}{C_{\acute{8}}}||v||_{2m,2}+_{Co}\neg 2m-a\neg(2m\frac{C_{\acute{8}}}{\delta})^{\frac{|\alpha|}{2m-|\alpha|}}||v||_{0,2)}

,

where 0< \delta\leq\delta_{0}=\frac{1}{2n+1}C_{1}C_{4}\epsilon^{\frac{1}{2n+10}}(2n)^{\frac{2n}{2n+1}}C_{8}’=\frac{1}{2n+1}(C_{1}C_{4})^{2n+1}

( \frac{(2n+1)\delta}{2n})^{-2n} Applying evident inequality ||v||_{2m,2}\leq

d^{\frac{n-2m+2}{12n}}|G| \frac{n-2m+2}{2n}||v||_{2m,\frac{n}{m-1}} , where d_{1}= \frac{(2m+n)!}{(2m)!n!}) and Calderon-Zygmund

estimate, we increase the right side of (12) coming to the condition

(13) ||D^{a}v||_{0,\infty}\leq C_{5}\delta(1+d^{\frac{n-2m+2}{12n}}|G|^{\frac{n-2m+2}{2n}})(||Pv||_{0,\frac{n}{m-1}}+||v||_{0,\frac{n}{m-1}})+C_{8,a}||v||_{0,2} ,

where C_{8,a}=C_{8}’C^{\frac{2m}{0^{2m-|a|}}}( \frac{C_{8}’}{\delta})^{\frac{|a|}{2m-|a|}} Now, similarly as it was done in LCH,

Lem. 1, conditions (18)-(21) ] , we find required estimate of the L^{\frac{n}{m-1}} norm
of Pv :

(14) ||Pv||_{0,\frac{n}{m-1}}\leq||v_{t}||_{0,\frac{n}{m-1}}+||g(t^{ },\cdot, d^{m}0)||_{0,\frac{n}{m-1}}+Ld^{1\frac{m-1}{n}}||v||_{m,\frac{n}{m-1}} .

Since ||v||_{0,\frac{n}{m-1}}\leq||v||_{m,\frac{n}{m-1}}\leq|G|^{\frac{m-1}{n}}||v||_{m,\infty} , thus collecting the inequalities (13),

(14) and defining constants \overline{C}_{6}=|G|^{\frac{m-1}{n}}

\sup_{(t,x)\in clD^{T}}\{|g(t, x, d^{m}0)|\} ,

\overline{C}_{7}=(d_{1}|G|)^{\frac{n-2m+2}{2n}} we obtain that

(15) ||D^{a}v||_{0,\infty}\leq C_{5}(Ld^{1\frac{m-1}{n}}+1)|G|^{\frac{m-1}{n}}\delta(1+\overline{C}_{7})||v||_{m,\infty}

+C_{5}\delta(1+\overline{C}_{7})(||v_{t}||_{0,\frac{n}{m-1}}+\overline{C}_{6})+C_{8,a}||v||_{0,2} .

Summing both sides of (15) with respect to \alpha with |\alpha|\leq m , for C_{8}= \sum_{|\alpha|\leq m}C_{8,a}

and any positive \delta satisfying
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\delta\leq\min\{\frac{1}{2n+1}C_{1}C_{4}\epsilon^{\frac{1}{0^{2n+1}}}(2n)^{\frac{zn}{2n+1}} ,

\frac{1}{2dC_{5}(Ld^{1\frac{m-1}{n}}+1)|G|^{\frac{m-1}{n}}(1+\overline{C}_{7})}\} ,

we get the estimate

(16) ||v||_{m,\infty} \leq\frac{1}{2}||v||_{m,\infty}+dC_{5}\delta(1+\overline{C}_{7})(||v_{t}||_{0,\frac{n}{m-1}}+\overline{C}_{6})+C_{8}||v||_{0,2} .

Substituting 1\nearrow:=2dC_{5}\delta(1+\overline{C}_{7}) in (16) we come immediately to (10) with

(17) \nu_{0}=\min\{2dC_{5}\delta_{0}(1+\overline{C}_{7}) , \frac{1}{(Ld^{1\frac{m-1}{n}}+1)|G|^{\frac{m-1}{n}}}\}

and

(18) C_{\nu}=2 \sum_{|\alpha|\leq m}C^{\frac{2m}{0^{2m-|a|}}}(\frac{1}{2n+1}(\frac{2n+1}{2n})^{-2n}(C_{1}C_{4})^{2n+1})^{\frac{2m}{2m-|a|}}\cross

\cross(2dC_{5}(1+\overline{C}_{7}))^{\frac{4mn+|a|}{2m-|a|}}\nu^{\frac{4mn+|a|}{2m-|a|}}t

Condition (10) is thus proved. For the proof of a priori estimate (3) we
refer to [CH , Lem. 2]. We proceed now to justification of (4). First, let
us note that v_{t} is a classical solution of

(19) \{

z_{t}=(-P+ \sum_{|\alpha|\leq m}g_{a}D^{a})z+g_{t}

B_{0}z=\ldots=B_{m-1}z=0

z(0, x)=g_{0}(x)

were g_{t}(t, x)= \frac{\partial g}{\partial t}(t, x, dmv(t, x)) , g_{a}(t, x)= \frac{\partial g}{\partial(D_{u}^{a})}(t, x, dmv(t, x)) and
g_{0}(x)=g(0, x, d^{m}0) . Furthermore, as long as (2) holds, as a result of con-
tinuity we have

||g_{t}(t^{ },\cdot)||_{0,\infty}\leq M , ||g_{a}(t^{ },\cdot)||_{0,\infty}\leq M |\alpha|\leq m .

Let us denote by T_{\max} ( T_{\max}\in(0, T]) hypothetical, maximal time until
which (2) holds. Then from the linear theory stated in [LA, Chapt. VII,
\S 10, Th. 10.4 with t=2m, 1=0 , s=0] (using also notation of [LA]) we
obtain that

(20) ||v_{t}||_{W_{\frac{2m1n}{m- 1}}(D^{\tau_{\max}})}\leq c(MT^{\frac{m-1}{n}}|G|^{\frac{m-1}{n}}+||g_{0}||)B_{\frac{2mn}{m- 1}}^{\frac{2m(m-1)}{n}}(G)=:\overline{C}_{3} .

Thus because of (20), as long as inequality (2) is valid, we obtain in par-
ticular:
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(21) ( \int_{0}^{t}\int_{G}|v_{tt}(\tau, x)|^{\frac{n}{m-1}}dxd\tau)^{\frac{m-1}{n}}\leq\overline{C}_{3} .

Applying next Newton Integral Formula, together with H\"older and (gener-
alized) Minkowski’s inequalities we find the estimate

(22) ||v_{t}(t, \cdot)-v_{t}(0^{ },\cdot)||_{0,\frac{n}{m-1}}=(\int_{G}|v_{t}(t, x)-v_{t}(0, x)|^{\frac{n}{m-1}}dx)^{\frac{m-1}{n}}

=( \int_{G}|\int_{0}^{t}v_{tt}(\tau, x)d\tau|^{\frac{n}{m-1}}dx)^{\frac{m-1}{n}}\leq\int_{0}^{t}(\int_{G}|v_{tt}(\tau, x)|^{\frac{n}{m-1}}dx)^{\frac{m-1}{n}}d\tau

\leq t^{1-\frac{m-1}{n}(\int_{0}^{t}\int_{G}1v_{tt}(\tau, x)|^{\frac{n}{m-1}}dxd\tau)^{\frac{m-1}{n}}}

which because of (21) leads directly to (4). Collecting now estimates (10),
(3) and (4) we come to the condition

(23) ||v(t, \cdot)||_{m,\infty}\leq\nu(\overline{C}_{3}t^{1\frac{m-1}{n}}+||g_{0}||_{0,\frac{n}{m-1}}+\overline{C}_{6})+C_{\nu}^{\frac{1}{C_{1}^{2}}}t^{\frac{1}{2}}c^{\frac{\overline{c}_{2}}{2}t}

From (23), choosing \nu=\nu_{1} given by

(24) \nu_{1}
:= \min\{\nu_{0} , \frac{1}{2}K(||g_{0}||_{0,\frac{n}{m-1}}+\overline{C}_{6})^{-1}\}

and using the same argumentation as in [CH , Lem. 4 formulas (33)-(34)]
we obtain immediately (5), verifying also (2) together with the “ life tim\"e ”

T_{0}(6) and the condition (7) determining auxiliary time value T_{1} .
Having justified precisely that v belongs to L^{\infty}(0, T_{0} ; W^{m,\infty}(G)) , we

refer to [CH] for the rest of the proof. Using the argumentation of [CH ,

Appendix, conditions (65)-(66) ] we get

(25) D^{a}v\in C^{\mu,\mu}(clD^{\tau_{0}})

and next, exactly as it was done in [CH, Lem. 4, formulas (41)-(42)], we
get the c^{2m+\mu,1+\frac{\mu}{2m}(clD^{T_{0}})} estimate claimed in (8). Existence of the solu-
tion for (1) can be derived now by standard “ method of continuity ” with
the use of the Leray-Schauder Principle ; then also, as there has been
shown in [CH , Sec, 2. 1], the solution is unique.

Because C^{2m,1}(clD^{T_{0}}) somoothness of v_{t} was used in the proof, we add
for the completeness verification of the assumed regularity (based on lin-

ear theory). Since g\in C^{m+\mu,\frac{m+\mu}{2m}}(clD^{T_{0}}) then from [LA, Chapt. VII, \S 10,

Th. 10.1] we have that v\in c^{3m+\mu,1+\frac{m+\mu}{2m}(clD^{To})} . Next we find that g\in C^{2m+\mu} ’

\frac{2m+\mu}{2m}(clD^{To}) and hence v\in C^{4m+\mu,2+\frac{\mu}{2m}}(clD^{To}) . Thus we conclude finally that
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solution u of the problem (1) belongs to the H\"older space
C^{4m+\mu,2+\frac{\mu}{2m}}(clD^{To}) .

Our considerations are completed.

THE FINAL REMARK. Let us note that given in (10) stronger version
of proved previously in [CH , Lem. 1] inequality (15) allows to estimate in
a flexible manner W^{m,\infty} norm of the solution, and finally establish (2) for
certain positive time T_{0}\leq T Moreover, thanks to “ flexibility” of (10),
although the assumptions needed in higher dimensional case n\geq 2m are
stronger than stated in [CH] (sufficient for n<2m) conditions (A)-(F) ,

they do not growth any more for larger value of n . Whereas for the
existence of the classical solution in [FR] or [AM] the conditions imposed
on f must have been getting stronger and stronger, relatively to the
growth of the space dimension n and sometimes they also have not been
given explicitly (as in [FR, Th.19, Sec. 7, Chapt. 10]).
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