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A new algorithm derived from the view-point of
the fluctuation-dissipation principle

in the theory of KM_{2O} -Langevin equations
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\S 1. Introduction and statements of results

We have constructed in [4] a theory of KM_{2O}-Langevin equations for
multi-dimensional weakly stationary processes with discrete time, and
from the view-point of the s0-called fluctuation-dissipation theorem in ir-
reversible statistical physics ([2]), we have established a ffiuctuation-dissi-
pation theorem which gives a relation between the fluctuant and deter
-ministic terms in the KM_{2O}-Langevin equation. Such a ffiuctuation-
dissipation theorem had already been found as the Levinson-Whittle-Wig-
gins-Robinson algorithm for the fitting problem of AR-models in the field
of system, control and information ([3], [1], [10], [11]). Sublimating a cer-
tain philosophical structure behind our fluctuation-dissipation theorem to
form the fluctuation-dissipation principle, we have applied the theory of
KM_{2O}-Langevin equations to data analysis and developped a stationary
analysis as well as a causal analysis ([7], [6]). Furthermore, on these
lines, we have solved the non-linear prediction problem for one-dimen-
sional strictly stationary processes with discrete time and developped a
prediction analysis as our third project in data analysis ([5], [9], [8]).

Let X=(X(n);n\in Z) be an R^{d}-valued weakly stationary process on a
probability space (\Omega, \mathscr{B}, P) with expectation vector zero and covariance
matrix function R :
(1. 1) R(m-n)\equiv E(X(m)^{t}X(n)) (m, n\in Z) ,

where d is any fixed natural number.
For each n\in N , a block Toeplitz matrix S_{n}\in M(nd;R) is defined by
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(1. 2) S_{n}\equiv\{\begin{array}{lllll}R(0) R(1) \cdots \cdots R(n-1)R(-1) R(0) \ddots\cdots \cdots R(n-2)\vdots \vdots \ddots \vdots R(-(n-1)) R(-(n-2)) \cdots \cdots R(0)\end{array}\}

In this paper we shall assume the Toeplitz condition:
(1. 3) S_{n}\in GL( nd : R) for any n\in N .

It then follows from the theory of KM_{2O}-Langevin equations that the time
evolution in the future (resp. past) of the process X is governed by the
forward (resp, backward) KM_{2}O-Langevin equation ( 1. 5_{+}) (resp. (1. 5-))
with (1. 4):

(1. 4) X(0)=\nu_{+}(0)=\nu_{-}(0)

( 1. 5_{+}) X(n)=- \sum_{k=1}^{n-1}\gamma_{+}(n, k)X(k)-\delta_{+}(n)X(0)+_{1/}+(n) (n\in N)

( 1. 5_{-}) X(-n)=- \sum_{k=1}^{n-1}\gamma-(n, k)X(-k)-\delta_{-}(n)X(0)+\nu_{-}(-n) (n\in N) .

Here the random force \nu_{+}=(\iota\nearrow_{+}(t);t\in N^{*}) (resp. \nu_{-}=(f_{J-}(t) : t\in-N^{*}) is
said to be the forward (resp. backward) KM_{2}O-Langevin force associated
with X. We call the system \{\gamma_{\pm}(n, k) , \delta_{\pm}(m) , V_{\pm}(l);l\in N_{y}^{*}k , m, n\in N ,
n>k\} , whose elements belong to M(d;R) , the KM_{2}O-Langevin data as-
sociated with the covariance matrix function R of X , where V_{\pm}(l) are the
covariance matrices of KM_{2O}-Langevin forces \nu_{\pm}(\pm l) (l\in N^{*}) :
(1. 6) V_{+}(l)\equiv E(f\nearrow+(l)_{l/}^{t}+(l)) and V_{-}(l)\equiv E(f/-(-l)_{1/-}^{t}(-l)) .

In particular, the subsystem \{\delta_{\pm}(n);n\in N\} is called the partial autocorrela-
tion coefficient in the field of system, control and information.

We are now ready to formulte the fluctuation-dissipation theorem
mentioned above:

Dissipation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any n, k
\in N , n>k,

( 1. 7_{\pm}) \gamma_{\pm}(n, k)=\gamma_{\pm}(n-1, k-1)+\delta_{\pm}(n)\gamma_{\mp}(n-1, n-k-1) ,
where

(1. 8) \gamma_{+}(n, 0)\equiv\delta_{+}(n) and \gamma_{-}(n, 0)\equiv\delta_{-}(n) .

Fluctuation-Dissipation Theorem ([3], [1], [10], [11], [4]). For any n\in

N,

( 1. 9_{\pm}) V_{\pm}(n)=(I-\delta_{\pm}(n)\delta_{\mp}(n))V_{\pm}(n-1)
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(1. 10) \delta_{-}(n)V_{+}(n-1)=V_{-}(n-1)^{t}\delta_{+}(n)

(1. 11) \delta_{-}(n)V_{+}(n)=V_{-}(n)^{t}\delta_{+}(n) .

Recalling the theory of KM_{2O}-Langevin equations, we should note
that the relations ( 1. 9_{\pm})-(1.11) can be derived from the following Burg’s
relation :

Burg’s relation ([3], [1], [10], [11], [4]). For any n\in N ,

(1. 12) \sum_{k=0}^{n-1}\gamma_{+}(n, k)R(k+1)=\sum_{k=0}^{n-1}R(k+1)^{t}\gamma-(n, k) .

As will be shown in \S 2, we can paraphrase Burg’s relation in terms of
the KM_{2O}-Langevin forces \nu_{\pm}:

(1. 13) E(1’+(n)^{t}1/-(-1))=E(f\nearrow+(1)_{1\nearrow-}^{t}(-n)) (n\in N^{*}) .

From our view-point of the fluctuation-dissipation principle, relation
(1. 13) should be regarded as a special case of the fluctuation-fluctuation
theorem, relations among the mutual covariance matrix functions I(m, n)
of the forward and backward KM_{2O}-Langevin forces \nu_{\pm}:

(1. 14) I(m, n)\equiv E(1\nearrow_{+}(m)^{t}\nu_{-}(-n)) (m, n\in N^{*}) .

The purpose of this paper is to prove these relations that will be used to
build a useful algorithm in applications to data analysis. The precise
statement of our results is as follows:

Fluctuation-Fluctuation Theorem.
(i) I(0,0)=V_{+}(0)

(ii) I(m, O)=I(0, m)=0 (m\in N)

(iii) I(m, 1)=I(1, m)=-\delta_{+}(m+1)V_{-}(m) (m\in N)

(iv) I(m, n)=I(m+1, n-1)+ \{\sum_{k=1}^{n-2}I(m+1, k)^{t}\delta_{+}(k+1)\}{}^{t}\delta_{-}(n)-

- \delta_{+}(m+1)\{\sum_{k=1}^{m-1}\delta_{-}(k+1)I(k, n)\} (m, n\geq 2) .

This theorem has already been announced in [5] and [9], and we can
easily form an algorithm to compute all values of I(m, n) . In a separate
paper, we shall give further discussions to assert that the fluctuation
-fluctuation theorem, together with the dissipation-dissipation and ffiuctua-
tion-dissipation theorerm, yields a characterization of the weak stationar-
ity of a stochastic process X in terms of the KM_{2O}-Langevin forces \nu_{\pm} .

The author would like to thank Professor A. Noda for his kind valu-
able advices.
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\S 2. Proof of Fluctuation-Fluctuation Theorem

For any fixed natural number d , let X= (X(n) : n\in Z) be an R^{d}-val-
ued weakly stationary process as in \S 1. Let us recall the definition of
KM_{2O}-Langevin forces. For any d-dimensional stochastic process Y=
(^{t}(Y_{1}(n), \cdots Y_{d}(n)):l\leq n\leq r) on the basic probability space (\Omega, \mathscr{B}, P)

(-\infty\leq l<r\leq\infty) , we difine, for each n_{1} , n_{2} , l\leq n_{1}\leq n_{2}\leq r , the closed sub-
space M_{n_{1}}^{n^{2}}(Y) of L^{2}(\Omega, \mathscr{B}, P) by

(2. 1) M_{n_{1}}^{n^{2}}(Y)\equiv the closed linear hull of \{ Y_{j}(n);1\leq j\leq d, n_{1}\leq n\leq n_{2}\} .

Then the forward (resp. backward) KM_{2O}-Langevin force \nu_{+}=(\nu_{+}(n);n\in

N^{*}) (resp. \nu_{-}=(\nu_{-}(l);l\in-N^{*}) ) is an R^{d}-valued stochastic process given
by

(2. 2) \{

\nu_{+}(n) \equiv X(n)-P_{M_{0}^{n1}(X)}X(n) (n\in N^{*})

\nu_{-}(-n) \equiv X(-n)-P_{M_{-n+1}^{0}(X)}X(-n) (n\in N^{*}) ,

where M_{0}^{-1}(X)=M_{1}^{0}(X)=\{0\} and P_{M_{0}^{n1}(X)} (resp. P_{M_{-n+1}^{0}(X)}) stands for the orth-
ogonal projection to the space M_{0}^{n-1}(X) (resp. M_{-n+1}^{0}(X) ). We have
(2. 3) \nu_{+}(0)=\nu_{-}(0)=X(0)

(2. 4) The stochastic processes \nu_{\pm} are orthogonal with mean vector
zero

(2. 5) M_{0}^{n}(X)=M_{0}^{n}(\nu_{+}) and M_{-n}^{0}(X)=M_{-n}^{0}(\nu_{-}) (n\in N^{*}) .

As stated in \S 1, the stochastic process X satisfies the forward (resp.
backward) KM_{2O}-Langevin equation ( 1. 5_{+}) (resp. (1. 5-)). The dissipa-
tion-dissipation theorem ( 1. 7_{\pm}) and the fluctuation-dissipation theorem
( 1. 9_{\pm})-(1.11) are known relations among the KM_{2O}-Langevin data. On
the other hand, the fundamental quantities \delta_{\pm}(\circ) can be calculated from
the covariance matrix function R by the following algorithm:

Partial Autocorrelation Coefficient ([3], [1], [10], [11], [4]). For any n
\in N ,

(2. 6_{\pm}) \delta_{\pm}(n)=-\{R(\pm n)+\sum_{k=0}^{n-2}\gamma_{\pm}(n-1, k)R(\pm(k+1))\}V_{\mp}(n-1)^{-1}

Now we are giving to prove Fluctuation-Fluctuation Theorem.
(Step 1) We begin with observing that Burg’s relation (1. 12) is

equivalent to a special case of the fluctuation-fluctuation theorem: for any
m\in N ,

I(m, 1)=I(1, m) .
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Multiplying both-hand sides of equation ( 1. 5_{+}) with n=m by {}^{t}X(-1)

from the right and taking an expectation with respect to P, we have

(2. 7) R(m+1)=- \sum_{k=0}^{m-1}\gamma_{+}(m, k)R(k+1)+E(\nu_{+}(m)^{t}X(-1)) .

Noting that the weak stationarity of X implies that R(m+1)=
E(X(m)^{t}X(-1))=E(X(1)^{t}X(-m)) , we then multiply both-hand sides of
equation (1. 5_{-}) with taking the transpose and putting n=m by X(1) from
the left, and similarly obtain

(2. 8) R(m+1)=- \sum_{k=0}^{m-1}R(k+1)^{t}\gamma-(m, k)+E(X(1)^{t}\nu_{-}(-m)) .

Therefore, we apply Burg’s relation (1. 12) to (2. 7) and (2. 8), and get

(2. 9) E(\nu_{+}(m)^{t}X(-1))=E(X(1)^{t}\nu_{-}(-m)) .

On the other hand, it follows immediately from ( 1. 5_{\pm}) and (2. 3)-(2 .
5) that

(2. 10) E(\nu_{+}(m)^{t}X(-1))=I(m, 1) and E(X(1)^{t}\nu_{-}(-m))=I(1, m) .

Hence Step 1 follows from (2. 9) and (2. 10).

(Step 2) We claim that for any m\in N ,

I(m, 1)=I(1, m)=-\delta_{+}(m+1)V_{-}(m) .

Immediately from (2. 6_{+}) , we have

R(m+1)=- \sum_{k=0}^{m-1}\gamma_{+}(m, k)R(k+1)-\delta_{+}(m+1)V_{-}(m) ,

which, with (2. 7) and (2. 10), completes the proof of Step 2.

(Step 3) We claim that for any n\in N ,

(i) V_{+}(n)=R(0)+ \sum_{k=0}^{n-1}R(n-k)^{t}\gamma_{+}(n, k)

(ii) V_{-}(n)=R(0)+ \sum_{k=0}^{n-1}\gamma-(n, k)R(n-k) .

These are easy versions of (4. 5) and (4. 6) in the proof of Lemma 4.2
in [4]. Actually we can directly derive them by multipyling both-hand
sides of equations (1. 5_{\pm})by{}^{t}X(\pm n) from the right, taking an expectation
with respect to P and using (2. 3)-(2.5) .

(Step 4) For any m, n\in N^{*} , put
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(2. 11) F_{n}(m) \equiv R(n)+\sum_{k=1}^{m}\gamma-(m, m-k)R(n+k) .

Then, rewriting (ii) in Step 3, we have

F_{0}(m)=V_{-}(m) .

(Step 5) We are now in a position to prove the following by mathe-
matical induction with respect to n . For any m, n\in N ,

R(m+n)=- \sum_{k=1}^{n}\delta_{+}(m+k)F_{n-k}(m+k-1)-\sum_{k=0}^{m-1}\gamma_{+}(m, k)R(k+n) .

By (2. 6_{+}) , we have

R(m+n)=- \delta_{+}(m+n)V_{-}(m+n-1)-\sum_{k=0}^{m+n-2}\gamma_{+}(m+n-1, k)R(k+1) ,

which, using Step 4, implies that Step 5 holds for any m\in N and n=1 .

Let us assume that Step 5 holds for any m\in N and n=n_{0}-1 , n_{0}\geq 2 . It
then follows that

(2. 12) R(m+n_{0})=R((m+1)+(n_{0}-1))=

=-[mathring]_{\sum_{k=1}^{n-1}} \delta_{+}(m+1+k)F_{no-1-k}(m+k)-\sum_{k=0}^{m}\gamma_{+}(m+1, k)R(k+n_{0}-1) .

By relation ( 1. 7_{+}) in the dissipation-dissipation theorem, we have

(2. 13) \sum_{k=0}^{m}\gamma_{+}(m+1, k)R(k+n_{0}-1)

= \delta_{+}(m+1)F_{no-1}(m)+\sum_{k=0}^{m-1}\gamma_{+}(m, k)R(k+n_{0}) .

Therefore, we see from (2. 12) and (2. 13) that Step 5 holds for any
m\in N and n=n_{0} . Hence, we complete the proof of Step 5 by mathemati-
cal induction.

(Step 6) We cla\dot{l}m that for any m, n\in N ,

E( \nu_{+}(m)^{t}X(-n))=-\sum_{k=1}^{n}\delta_{+}(m+k)F_{n-k}(m+k-1) .

Taking an analogous manipulation when we got (2. 7) from equation
( 1. 5_{+}) , we have

R(m+n)=- \sum_{k=0}^{m-1}\gamma_{+}(m, k)R(k+n)+E(\nu_{+}(m)^{t}X(-n)) ,

which, with Step 5, yields Step 6.
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(Step 7) We claim that for any m, n\in N , m\geq 2 ,

F_{n-1}(m)=F_{n-1}(m-1)+\delta_{-}(m)E(\nu_{+}(m-1)^{t}X(-n)) .

Applying ( 1. 7_{-}) to each term \gamma-(m, m-k)(1\leq k\leq m-1) in the
definition of F_{n-1}(m) , and using Step 5, we have

F_{n-1}(m)=R(n-1)+\delta_{-}(m)R(n-1+m)+

+ \sum_{k=1}^{m-1}(\gamma-(m-1, m-1-k)+\delta_{-}(m)\gamma_{+}(m-1, k-1))R(n-1+k)

– F_{n-1}(m-1)+ \delta_{-}(m)\{R(n-1+m)+\sum_{l=0}^{m-2}\gamma_{+}(m-1, l)R(n+l)\}

=F_{n-1}(m-1)- \delta_{-}(m)\{\sum_{k=1}^{n}\delta_{+}(m-1+k)F_{n-k}(m+k-2)\} .

Hence, Step 7 follows from Step 6.

(Step 8) We claim that for any m, n\in N , m\geq 2 ,

E(\nu_{+}(m)^{t}X(-n))=E(\nu_{+}(m+1)^{t}X(-n+1))-

- \delta_{+}(m+1)\{\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}X(-n))\}-

-\delta_{+}(m+1)F_{n-1}(1) .

By Step 6, we have

E(1’+(m)^{t}X(-n))=E(\nu_{+}(m+1)^{t}X(-n+1))-\delta_{+}(m+1)F_{n-1}(m) .

Hence, a repeat substitution of Step 7 into the last term above concludes
Step 8.

(Step 9) We claim that for any m, n\in N , m , n\geq 2 ,

E(\nu_{+}(m)^{t}\nu_{-}(-n))=E(\nu_{+}(m+1)^{t}X(-n+1))-

- \delta_{+}(m+1)\{\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}\nu_{-}(-n))\}-

- \delta_{+}(m+1)F_{n-1}(1)+\sum_{l=0}^{n-1}\{E(\nu_{+}(m+1)^{t}X(-l+1))-

-\delta_{+}(m+1)F_{l-1}(1)\}^{t}\gamma-(n, l) .

Substituing the right-hand side of equation ( 1. 5_{-}) into the terms in-
cluding X(-n) in Step 8, we have

E(\nu_{+}(m)^{t}\nu_{-}(-n))=E(\nu_{+}(m+1)^{t}X(-n+1))-

- \delta_{+}(m+1)\{\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}\nu_{-}(-n))\}-\delta_{+}(m+1)F_{n-1}(1)+

+ \sum_{l=1}^{n-1}\{E(_{1\nearrow+}(m)^{t}X(-l))+\delta_{+}(m+1)(\sum_{k=2}^{m}\delta_{-}(k)E(\nu_{+}(k-1)^{t}X(-l)))\}t\gamma-(n, l) .
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On the other hand, it follows also from Step 8 that

the coefficient of {}^{t}\gamma_{-}(n, l) in the above equality
=E(\nu_{+}(m+1)^{t}X(-l+1))-\delta_{+}(m+1)F_{l-1}(1) .

Hence, we get Step 9.

(Step 10) We claim that for any m, n\in N , n\geq 2 ,

E( \nu_{+}(m+1)^{t}X(-n+1))+\sum_{l=1}^{n-1}E(\nu_{+}(m+1)^{t}X(-l+1))^{t}\gamma-(n, l)

=E( \nu_{+}(m+1)^{t}\nu_{-}(-n+1))+\sum_{k=1}^{n-2}E(\nu_{+}(m+1)^{t}\nu_{-}(-k))^{t}(\delta_{-}(n)\delta_{+}(k+1)) .

It is easy to see from (2. 2)-(2.5) that Step 10 holds for n=2 . Let
n\geq 3 . By using equation ( 1. 5_{-}) for X(-n+1) and (1. 7_{-}) , we can write

the upper-hand side of Step 10
=E( \nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+\sum_{k=0}^{n-2}E(\nu_{+}(m+1)^{t}X(-k))^{t}(\gamma-(n, k+1)-

-\gamma-(n-1, k))

=E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+

+E(\nu_{+}(m+1)^{t}X(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1))+

+ \sum_{k=0}^{n-3}E(\nu_{+}(m+1)^{t}X(-k))^{t} ( \delta_{-}(n)\gamma_{+}(n-1 , n-k-2)).

Using equation ( 1. 5_{-}) for X(-n+2) and (1. 7_{+}) again, we get

the upper-hand side of Step 10
=E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1))+

+ \sum_{k=0}^{n-3}E(\nu_{+}(m+1)^{t}X(-k))^{t}\{\delta_{-}(n)(\gamma_{+}(n-1, n-k-2)-\delta_{+}(n-1)\gamma-(n-2, k))\}

=E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-1)))+E(\nu_{+}(m+1)^{t}\nu_{-}(-(n-2)))^{t}(\delta_{-}(n)\delta_{+}(n-1))+

+E(\nu_{+}(m+1)^{t}X(-(n-3)))^{t}(\delta_{-}(n)\delta_{+}(n-2))+

+ \sum_{k=0}^{n-4}E(\nu_{+}(m+1)^{t}X(-k))^{t} ( \delta_{-}(n)\gamma_{+}(n-2 , n-k-3)).

Repeating the same prodedure, we arrive at the conclusion of Step 10.
(Step 11) Now, we are going to exhibit the key formula: For any n

\in N , n\geq 2 ,

F_{n-1}(1)+ \sum_{l=1}^{n-1}F_{l-1}(1)^{t}\gamma-(n, l)=0 .

By the definition of F_{m}(n) in Step 4, we see that for any m\in N ,

F_{m}(1)=R(m)+\delta_{-}(1)R(m+1) ,
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which yields

(2. 14) F_{n-1}(1)+ \sum_{l=1}^{n-1}F_{l-1}(1)^{t}\gamma_{-}(n, l)=I+\delta_{-}(1)II ,

where

I=R(n-1)+ \sum_{l=1}^{n-1}R(l-1)^{t}\gamma_{-}(n, l)

and

II=R(n)+ \sum_{l=1}^{n-1}R(l)^{t}\gamma_{-}(n, l) .

We first show

(2. 15) II=-R(0)^{t}\delta_{-}(n) .

By (1. 7_{-}) and (2. 6_{-}) ,

II=-V_{+}(n-1)^{t} \delta_{-}(n)+\sum_{l=1}^{n-1}R(l)^{t}(\gamma_{-}(n, l)-\gamma_{-}(n-1, l-1))

=- \{V_{+}(n-1)-\sum_{l=1}^{n-1}R(l)^{t}\gamma_{+}(n-1, n-l-1)\}{}^{t}\delta_{-}(n) .

Hence, (2. 15) follows from (i) in Step 3.
The next task is to show

(2. 16) I=R(0){}^{t}\delta_{+}(1)^{t}\delta_{-}(n) .

When n=2 , it follows from (1. 7_{-}) and (2. 6_{+}) that
I=R(1)+R(0)^{t}\gamma_{-}(2,1)

=-\delta_{+}(1)R(0)+R(0)^{t}(\delta_{-}(1)+\delta_{-}(2)\delta_{+}(1)) .
Hence, by (1. 10), we see that (2. 16) holds for n=2 .

Let n\geq 3 . By (1. 7_{-}) and (2. 6_{-}) ,

I=-V_{+}(n-2)^{t} \delta_{-}(n-1)-\sum_{k=0}^{n-3}R(k+1)^{t}\gamma-(n-2, k)+\sum_{l=1}^{n-1}R(l-1)^{t}\gamma-(n, l) .

Applying (1. 7_{-}) to the last term in the above equality, we have
I=-V_{+}(n-2)^{t}\delta_{-}(n-1)+R(0)^{t}\delta_{-}(n-1)+

+ \sum_{k=0}^{n-3}R(k+1)^{t}(\gamma-(n-1, k+1)-\gamma-(n-2, k)))+

+ \sum_{l=1}^{n-1}R(l-1)^{t}\gamma_{+}(n-1, n-l-1)^{t}\delta_{-}(n) .
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By using ( 1. 7_{-}) again, we have

(2. 17) I=- \{V_{+}(n-2)-R(0)-\sum_{k=0}^{n-3}R(k+1)^{t}\gamma_{+}(n-2, n-k-3)\}{}^{t}\delta_{-}(n-1)+

+ \sum_{l=1}^{n-1}R(l-1)^{t}\gamma_{+}(n-1, n-l-1)^{t}\delta_{-}(n) .

It follows from (i) in Step 3 that

(2. 18) the coefficient of {}^{t}\delta_{-}(n-1) in (2. 17)=0.

So it suffices to show the following:

(2. 19) the coefficient of {}^{t}\delta_{-}(n) in (2. 17)=R(0)^{t}\delta_{+}(1) .

By ( 1. 7_{+}) ,

the coefficient of {}^{t}\delta_{-}(n) in (2. 17)

= \sum_{k=0}^{n-3}R(k)^{t}\gamma_{+}(n-2, n-3-k)+\{R(n-2)+\sum_{k=0}^{n-3}R(k)^{t}\gamma_{-}(n-2, k)\}{}^{t}\delta_{+}(n-1) .

On the other hand, by (3. 5)_{0} in [4], we get

R(n-2)=- \sum_{k=0}^{n-3}R(k)^{t}\gamma-(n-2, k) ,

which is also seen by multiplying both-hand sides of equation (1. 5_{-}) for
X(-n+2) by {}^{t}X(0) from the right and taking an expectation with respect
P. Therefore, we get

the coefficient of {}^{t}\delta_{-}(n) in (2. 17)= \sum_{k=0}^{n-3}R(k)^{t}\gamma_{+}(n-2, n-3-k) .

By repeating the same procedure and using (1. 7_{+}) , (1. 10) and (2. 6_{+}) ,

we can write

the coefficient of {}^{t}\delta_{-}(n) in (2. 17)= \sum_{k=0}^{1}R(k)^{t}\gamma_{+}(2,1-k)

=R(0)^{t}(\delta_{+}(1)+\delta_{+}(2)\delta_{-}(1))-

-\delta_{+}(1)R(0)^{t}\delta_{+}(2)

=R(0)^{t}\delta_{+}(1)

and so (2. 19) holds. This completes the proof of (2. 16).

In conclusion, we see from (2. 14)-(2. 16) and (1.10) that Step 11
holds.

(Step 12) We come to the final position to complete the proof of
Fluctuation-Fluctuation Theorem, (i) and (ii) are clear, (iii) has been
proved in Step 2. By Step 9 and Step 10, we have
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I(m, n)

=I(m+1, n-1)+ \{\sum_{k=1}^{n-2}I(m+1, k){}^{t}\delta_{+}(k+1)\}{}^{t}\delta_{-}(n)-

- \delta_{+}(m+1)\{\sum_{k=2}^{m}\delta_{-}(k)I(k-1, n)\}-

- \delta_{+}(m+1)\{F_{n-1}(1)+\sum_{l=1}^{n-1}F_{l-1}(1){}^{t}\gamma_{-}(n, l)\} .

Hence, by virtue of Step 11, (iv) holds
Thus we have completed the proof of Fluctuation-Fluctuation TheO-

rem. (Q. E. D.)
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