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Almost periodic solutions of functional differential equations
with infinite delays in a Banach space
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\S 1. Introduction and preliminaries

Let E be a Banach space with norm ||\circ|| and let J=R=(-\infty, \infty) or
R_{-}=(-\infty, 0] . We shall mean by C(J;E) the set of E-valued continuous
functions defined on J. By C_{B}(J:E) we denote the set of E-valued func-
tions continuous and bounded on J with the \sup-norm ||\circ||_{\infty} . For each
t\in R and u\in C_{B}(R;E) , the symbol u_{t} is defined by u_{t}(s)=u(t+s) for
s\in R_{-} . Clearly u_{t}\in C_{B}(R_{-} ; E) .

With these notations, we consider in this paper the following delay-
differential equation

(D. D. E) x’=F(t, x, x_{t}) , t\in R .

Here F(t, x, \phi) is an E-valued function defined on R\cross E\cross.C_{B}(R- ; E)

which satisfies some conditions mentioned precisely later. By a solution
of (D. D. E), we mean a continuously differentiate function u defined on
R such that u’(t)=F(t, u(t), u_{t}) for all t\in R . In this paper the term
“ continuous ” means “ strongly continuous ”

Recently, we proved the existence and uniqueness of a solution of
(D. D. E) in the case of E=R^{n} . the n-dimensional Euclidean space.
Moreover, we showed that if F(t, x, \phi) is almost periodic (a. p . for short)

with respect to t uniformly for (x, \phi) in closed bounded subsets of R^{n}\cross

C_{B}(R-; R^{n}) , then (D. D. E) has a unique a . p . solution ([4]). These
results give an affirmative answer to the open question proposed by

G. Seifert [10]. The results of [4] and [10] are essentially based on a
result of Medvedev [8] which guarantees the existence of a bounded solu-
tion on R of a certain class of differential equation. The result of [8],

however, can be treated in the framework of our previous papers [2, 3] .
The purpose of this paper is to extend these results to the case of a func-
tional differential equation with infinite delay in a general Banach space.

We define the functional [ ] : E\cross E- R by

[x, y]= \lim_{harrow+0}(||x+hy||-||x||)/h .
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The following two lemmas will be needed later. For the proofs of these
lemmas see [2, 3, 7].

LEMMA 1. Let x, y and z be in E. Then the functional [ ] has
the following properties :

(1 ) [x, y]= \inf\{(||x+hy||-||x||)/h ; h>0\} ,
(2) |[x, y]|\leqq||y|| , [0, y]=||y|| ,
(3) [x, y+z]\leqq[x, y]+[x, z] ,
(4) let u be a function from a real interval I into E such that the

strong derivative u’(k) exists for an interior point t_{0} of I, then D_{+}||u(t_{0})||

exists and

D_{+}||u(t_{0})||=[u(t_{0}), u’(t_{0})] ,

where D_{+}||u(t_{0})|| denotes the right derivative of ||u(t)|| at k .
LEMMA 2. Let Q be a closed subset of E and let a\in R. Suppose

that f is a continuous function from [a, \infty)\cross Q into E satisfying the follow-
ing conditions :

(1) [x-y, f(t, x)-f(t, y)]\leqq\omega(t)||x-y||

for all (t, x) , (t, y)\in[a^{ },\infty)\cross Q, where \omega is a real-valued continuous func-
tion defined on [a, \infty) ;

(2) \lim_{harrow+}\inf_{0}d(x+hf(t, x), Q)/h=0

for all (t, x)\in[a^{ },\infty)\cross Q, where d(z, Q) denotes the distance from z\in E to
Q. Then for each (\tau, z)\in[a, \infty)\cross Q, the Cauchy problem

(1. 1) x’=f(t, x), x(\tau)=z

has a unique global solution u on [\tau^{ },\infty) such that u(t)\in Q for all t\in
[\tau, \infty) .

Throughout this paper we assume that the E-valued function F is
defined on R\cross E\cross C_{B}(R_{-} ; E) and satisfies the following conditions:

(K_{1}) for each r>0 there exist M(r)>0 and N(r)>0 such that
||F(t, 0, \phi)||\leqq M(r) and ||F(t, x, 0)||\leqq N(r)

for all t\in R , ||x||\leqq r and ||\phi||_{\infty}\leqq r , (\phi\in C_{B}(R_{-} ; E)) :
(K2) if for x(t) uniformly continuous and bounded on R, F(t, x(t), x_{t})

is continuous on R and F(t, y, x_{t}) is continuous in (t, y) on R\cross B_{r}(0) ,
where B_{r}(0)=\{x\in E:||x||\leqq r\} ;
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(K_{3}) if there exist positive numbers p, r , L such that p> \max\{M(r)/r ,
L\} , where M(r) is as in (K_{1}) , such that

(1. 2) [x-y, F(t, x, \phi)-F(t, y, \phi’)]\leqq-p||x-y||+L||\phi-\phi’||_{\infty}

for all t\in R , ||x||\leqq r , ||y||\leqq r , ||\phi||_{\infty}\leqq r , ||\phi’||_{\infty}\leqq r ( \phi ,\phi’\in C_{B}(R- ;E)).

REMARK 1. It can be easily seen that if F is continuous on R\cross E\cross

C_{B}(R_{-} ; E) , it satisfies (K2). From (2) in Lemma 1, (K_{1}) and (1. 2) in (K_{3})

it follows that

(1. 3) ||F(t, x, \phi)||\leqq Lr+N(r)

for all (t, x)\in RXB_{r}(0) , ||\phi||_{\infty}\leqq r(\phi\in C_{B}(R_{-} ; E)) .

\S 2. Existence of a bounded solution on R

The following theorem is both an improvement and a generalization
of a result of Medvedev [8] into a general Banach space.

THEOREM 1. Let A be an E- valued function defined on R\cross E and
let g\in C(R;E) . Suppose that there exist positive numbers p, r, M such that
A is continuous on R\cross B_{r}(0) , ||A(t, O)+g(t)||\leqq M(t\in R) , M/p<r and

(2. 1) [x-y, A(t, x)-A(t, y)]\leqq-p||x-y||

for all (t, x) , (t, y)\in R\cross B_{r}(0) . Then the equation

(2. 2) x’=A(t, x)+g(t)

has a solution u on R such that ||u(t)||\leqq M/p for all t\in R, and this solu-
tion is unique in G_{r}, where G_{r}=\{\varphi\in C_{B}(R;E);||\varphi||_{\infty}\leqq r\} . Moreover, if v

is any solution of (2. 2) such that ||v(k)||\leqq M/p for some t_{0}\in R, then
||v(t)||\leqq M/p and

(2. 3) ||v(t)-u(t)||\leqq||v(t_{0})-u(t_{0})||\exp(-p(t-t_{0}))

for all t\in[t_{0}, \infty) .

PROOF. If A(t, 0)\not\equiv 0 for t\in R , we replace A(t, x) and g(t) by
A(t, x)-A(t, 0) and g(t)+A(t, 0) , respectively. We assume henceforth
that A(t, 0)\equiv 0 and ||g(t)||\leqq M for all t\in R . Fix a u_{0}\in E with ||u_{0}||=M/p

and consider the following Cauchy problem for each positive integer n .

(2. 4) x’=A(t, x)+g(t) , x(-n)=u_{0} .

For each x\in E with ||x||=r , (2. 1) and (3) in Lemma 1 imply
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[x, A(t, x)+g(t)]\leqq[x, A(t, x)]+||g(t)||\leqq-p||x||+M

=-pr +M<0 .

It follows from the definition of the functional [ ] that
||x+h(A(t, x)+g(t))||<||x||=r

for sufficiently small h>0 . It therefore follows that, for each (t, x)\in
[-n, \infty)\cross B_{r}(0) there exists an h_{0}=h_{0}(t, x)>0 such that

x+h(A(t, x)+g(t))\in B_{r}(0) for all 0<h\leqq h_{0} .

Lemma 2 can now be applied to guarantee the existence of a unique global
solution u_{n} of (2. 4) on [-n, \infty) such that u_{n}(t)\in B_{r}(0) for all t\in

[-n, \infty) . Moreover, we can show that ||u_{n}(t)||\leqq M/p for all t\in[-n, \infty) .
In fact, (2. 1) and (4) in Lemma 1 imply

D_{+}||u_{n}(t)||=[u_{n}(t), A(t, u_{n}(t))+g(t)]\leqq-p||u_{n}(t)||+||g(t)||

\leqq-p||u_{n}(t)||+M

for all t\in[-n, \infty) . Solving this differential inequality we obtain

||u_{n}(t)|| \leqq||u_{n}(-n)||\exp(-p(t+n))+M\int_{-n}^{t}\exp(-p(t-s))ds

\leqq\frac{M}{p} exp(-p(t+n))+ \frac{M}{p}(1-exp( -p(t+n))) = \frac{M}{p}

for all t\in[-n^{ },\infty) (see Proposition 1. 3 in [7]). We next show that, for
an arbitrary fixed number a<0 , \{u_{n}\} is a uniformly Cauchy sequence on
[a^{ },\infty) . Let m, n be positive integers such that n\geqq m>-a , then

D_{+}||u_{n}(t)-u_{m}(t)||=[u_{n}(t)-u_{m}(t), A(t, u_{n}(t))-A(t, u_{m}(t))]

\leqq-p||u_{n}(t)-u_{m}(t)|| for all t\in[-m, \infty) .

It follows as above that

||u_{n}(t)-u_{m}(t)||\leqq\exp(-p(t+m))||u_{n}(-m)-u_{m}(-m)||

\leqq\exp(-p(a+m))||u_{n}(-m)-u_{0}||

\leqq\frac{2M}{p}\exp(-p(a+m))

for all t\in[a^{ },\infty) . Thus, \{u_{n}\} is a uniformly Cauchy sequence on [a^{ },\infty) .
Define u(t)= \lim_{narrow\infty}u_{n}(t) for t\in[a, \infty) . Then ||u(t)||\leqq M/p for all t\in[a, \infty) .

Since

u_{n}(t)=u_{n}(a)+ \int_{a}^{t}(A(s, u_{n}(s))+g(s))ds
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for each t\in[a^{ },\infty) , letting narrow\infty we have

u(t)=u(a)+ \int_{a}^{t}(A(s, u(s))+g(s))ds (t\in[a^{ },\infty)) .

This shows that u is a solution of (2 2) on [a^{ },\infty) . Since a<0 is arbi-
trary, we conclude that there is a solution u of (2. 2) on R such that
||u(t)||\leqq M/p for all t\in R .

To prove the uniqueness of a solution of (2. 2) in G_{r} , let w be another
solution of (2. 2) in G_{r} . Then for each t\in R

D_{+}||u(t)-w(t)||=[u(t)-w(t), A(t, u(t))-A(t, w(t))]

\leqq-p||u(t)-w(t)|| .

This implies

||u(t)-w(t)||\leqq\exp(-p(t-s))||u(s)-w(s)||\leqq 2r\exp(-p(t-s))

for all s\leqq t . Letting sarrow-\infty , we get u(t)\equiv w(t) , t\in R . To show the last
assertion of the theorem, let v be any solution of (2. 2) such that ||v(t_{0})||\leqq

M/p for some t_{0}\in R . Then we have

D_{+}||v(t)||=[v(t), A(t, v(t))+g(t)]\leqq-p||v(t)||+||g(t)||

\leqq-p||v(t)||+M

provided ||v(t)||\leqq r for t\geqq t_{0} , and hence

||v(t)|| \leqq\exp(-p(t-t_{0}))||v(t_{0})||+M\int_{to}^{t}\exp(-p(t-s))ds

\leqq\frac{M}{p}\exp(-p(t-t_{0}))+\frac{M}{p}(1-\exp(-p(t-t_{0})))=\frac{M}{p} .

Consequently, ||v(t)||\leqq M/p for all t\in[t_{0}, \infty) . By the same argument as
before we have also

||v(t)-u(t)||\leqq\exp(-p(t-t_{0}))||v(t_{0})-u(t_{0})||

for all t\in[t_{0^{ }},\infty) . This completes the proof.

\S 3. Existence of an almost periodic solution

In this section we consider the delay-differential equation (D. D. E).

Let r be as in (K_{3}) and let C_{r}^{*}=\{\varphi\in C_{B}(R;E);||\varphi||_{\infty}\leqq r and \varphi is uniformly
ly continuous on R}. Then we have the following.

THEOREM 2. Suppose that (K_{1})-(K_{3}) are satisfied. Then there exists
a unique solution u of (D. D. E) in C_{r}^{*} .
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PROOF. Let r , L be as in (K3) and N(r) be as in (K_{1}) . Define S_{r}=

{f\in C_{B}(R;E) ; ||f||_{\infty}\leqq r , ||f(t)-f(t’)||\leqq(Lr+N(r))|t-t’| for all t , t’\in R},
then S_{r} is a closed bounded subset of the Banach space C_{B}(R;E) with the
\sup-norm ||\circ||_{\infty} . Define

A(t, x, \phi)=F(t, x, \phi)-F(t, 0, \phi) and B(t, \phi)=F(t, 0, \phi)

for (t, x) , (t, y)\in R\cross B_{r}(0) and ||\phi||_{\infty}\leqq r(\phi\in C_{B}(R_{-} ; E)) . We now define
a mapping T : S_{r}arrow S_{r} as follows:
x(t)=Tf(t) is the unique solution in G_{r} of

(2. 5) x’=A(t, x, f_{t})+B(t, f_{t}) ,

where G_{r} is as in Theorem 1 and f\in S_{r} . Such a solution x exists by
Theorem 1 and satisfies ||x||_{\infty}\leqq M/p<r . In fact, (K_{1}) and (K2) imply that
A(t, x, f_{t}) is continuous in (t, x) on R\cross B_{r}(0) and B(t, f_{t}) is continuous
on R such that ||B(t, f_{t})||\leqq M(r) for all t\in R . Moreover, (1. 2) in (K3)
implies

[x-y, A(t, x, f_{t})-A(t, y, f_{t})]

=[x-y, F(t, x, f_{t})-F(t, y, f_{t})]

\leqq-p||x-y|| for all (t, x) , (t, y)\in R\cross B_{r}(0) .

Since

||x(t)-x(t’)||=|| \int_{t}^{t},F(s, x(s), f_{s})ds||\leqq(Lr+N(r))|t-t’|

for all t , t’\in R , we see that x\in S_{r} . We next show that T is a strict con-
traction on S_{r} . For each f, g\in S_{r} , putting x=Tf and y=Tg, we see that

D_{+}||x(t)-y(t)||=[x(t)-y(t), F(t, x(t), f_{t})-F(t, y(t), g_{t})]

\leqq-p||x(t)-y(t)||+L||f_{t}-g_{t}||_{\infty} for all t\in R .

Solving this differential inequality we have

||x(t)-y(t)||\leqq\exp(-p(t-s))||x(s)-y(s)||

+L \int_{s}^{t}\exp(-p(t-\sigma))||f_{\sigma}-g_{\sigma}||_{\infty}d\sigma

\leqq\frac{2M(r)}{p}\exp(-p(t-s))

+ \frac{L}{p}(1-\exp(-p(t-s)))||f-g||_{\infty}

= \frac{1}{p}(2M(r)-L||f-g||_{\infty})\exp(-p(t-s))+\frac{L}{p}||f-g||_{\infty}
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for all s\leqq t . Letting sarrow-\infty , we obtain

||x(t)-y(t)|| \leqq\frac{L}{p}||f-g||_{\infty} for all t\in R ,

and this shows that ||Tf-Tg||_{\infty} \leqq\frac{L}{p}||f-g||_{\infty} . Since 0<L/p<1 by (K_{3}) , T

has a unique fixed point u in S_{r} by the contraction principle. Clearly, u
is a solution of (D. D. E).

To show that the above solution u is unique in C_{r}^{*} (note that S_{r}\subset

C_{r}^{*}) , let v\in C_{r}^{*} be another solution of (D. D. E). Then we have for each
t_{0}\in R

D_{+}||u(t)-v(t)||=[u(t)-v(t), F(t, u(t), u_{t})-F(t, v(t), v_{t})]

\leqq-p||u(t)-v(t)||+L||u_{t}-v_{t}||_{\infty} for all t\geqq t_{0} .

Solving this differential inequality we obtain

||u(t+s)-v(t+s)||\leqq\exp(-p(t-t_{0}))||u(t_{0}+s)-v(t_{0}+s)||

+L \int_{to+s}^{t+s}\exp(-p(t+s-\sigma))||u_{\sigma}-v_{\sigma}||_{\infty}d\sigma

\leqq\exp(-p(t-t_{0}))||u(t_{0}+s)-v(t_{0}+s)||

+ \frac{L}{p}(1-\exp(-p(t-t_{0})))||u_{t}-v_{t}||_{\infty}

for all t\in[t_{0}, \infty) and s\in R_{-} . Here we have used the fact that ||u_{\sigma}-v_{\sigma}||_{\infty} is
nondecreasing in \sigma . It therefore follows that

||u_{t}-v_{t}||_{\infty} \leqq\exp(-p(t-t_{0}))||u_{to}-v_{to}||_{\infty}+\frac{L}{p}||u_{t}-v_{t}||_{\infty}

for all t\in[t_{0^{ }},\infty) , and this implies

||u_{t}-v_{t}||_{\infty} \leqq\frac{p}{p-L}\exp(-p(t-t_{0}))||u_{t_{0}}-v_{t_{0}}||_{\infty} (t\in[t_{0}, \infty))

Consequently, we obtain

||u_{to}-v_{to}||_{\infty} \leqq||u_{t}-v_{t}||_{\infty}\leqq\frac{p}{p-L}\exp(-p(t-t_{0}))||u_{to}-v_{to}||_{\infty}

for all t\in[t_{0}, \infty) . Letting tarrow\infty , we get ||u_{to}-v_{to}||_{\infty}=0 and this implies, in
particular, u(t_{0})=v(t_{0}) .

THEOREM 3. Suppose that (K_{1})-(K_{3}) are satisfied. Suppose further
that F(t, x, \phi) is a. p. in t uniformly for (x, \phi) in closed bounded subsets
of E\cross C_{B}(R_{-} : E) . Then (D. D. E) has a unique a. p. solution in C_{r}^{*} .

where C_{r}^{*} is as in Theorem 2. Moreover, if v is any solution of
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(D. D. E) such that ||v_{to}||_{\infty}\leqq M(r)/p for some t_{0}\in R, then v=u.

PROOF. Let u be the unique solution of (D. D. E) in C_{r}^{*} obtained in
Theorem 2. Since Q=B_{r}(0)\cross\{\phi\in C_{B}(R_{-} ; E);||\phi||_{\infty}\leqq r\} is a closed bounded
ed subset of E\cross C_{B}(R_{-} ; E) , for each \epsilon>0 there exists a positive number
t=t(\epsilon, Q) such that any interval of length t contains a \tau=\tau(\epsilon) for which

||F(t+\tau, u(t+\tau) , u_{t+\tau})-F(t, u(t+\tau), u_{t+\tau})||<\epsilon

for all t\in R . By virtue of (2)-(4) in Lemma 1 and (1. 2) in (K3) we have

D_{+}||u(t+\tau)-u(t)||=[u(t+\tau)-u(t), F(t+\tau, u(t+\tau), u_{t+\tau})

-F(t, u(t) , u_{t})]

\leqq-p||u(t+\tau)-u(t)||+L||u_{t+\tau}-u_{t}||_{\infty}

+||F(t+\tau, u(t+\tau) , u_{t+\tau})-F(t, u(t+\tau), u_{t+\tau})||

\leqq-p||u(t+\tau)-u(t)||+L||u_{t+\tau}-u_{t}||_{\infty}+\epsilon

for all t\in R .

Solving this differential inequality we obtain

||u(t+\tau+s)-u(t+s)||\leqq\exp(-p\beta||u(t+\tau-\beta+s)-u(t-\beta+s)||

+L \int_{t+s-\beta}^{t+s}\exp(-p(t+s-\sigma))||u_{\sigma+\tau}-u_{\sigma}||_{\infty}d\sigma

+ \frac{\epsilon}{p}(1- exp( -p\beta) )

\leqq 2r\exp(-p\beta)+\frac{L}{p}( 1 -exp(-p\beta) ) ||u_{t+\tau}-u_{t}||_{\infty}

+ \frac{\epsilon}{p}

\leqq 2r exp(-p \beta)+\frac{L}{p}||u_{t+\tau}-u_{t}||_{\infty}+\frac{\epsilon}{p}

for all t\in R , s\in R_{-} and \beta>0 . Here we have used again the fact that
||u_{\sigma+\tau}-u_{\sigma}||_{\infty} is nondecreasing in \sigma , and u\in C_{r}^{*} . It follows from this

||u_{t+\tau}-u_{t}||_{\infty} \leqq\frac{2pr}{p-L}\exp(-p\beta)+\frac{\epsilon}{p-L} for all t\in R .

Choose \beta_{0}>0 such that 2rp\exp(-p\beta_{0})<\epsilon , then

||u(t+ \tau)-u(t)||\leqq||u_{t+\tau}-u_{t}||_{\infty}\leqq\frac{2\epsilon}{p-L} for all t\in R .

Thus \tau is a 2\epsilon/(p-L)- translation number for u , and since \epsilon>0 is arbi-
trary u is an a . p . solution of (D. D. E).

To show the last assertion of theorem, let v be any solution of (D. D.
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E) such that ||v_{to}||_{\infty}\leqq M(r)/p for some t_{0}\in R . We note that ||v_{t}||_{\infty}\leqq M(r)/p

for all t\leqq to . Define \Gamma= { t\in[to, \infty):||v(s)||\leqq r for all s\in[t_{0}, t] } and define
\alpha=\sup\Gamma Then \alpha>t_{0} because ||v_{to}||_{\infty}\leqq M(r)/p<r . Suppose, for contradic-
tion, that \alpha<\infty . For sufficiently large integer n there exists a t_{n}\in\Gamma such

that t_{0}< \alpha-\frac{1}{n}<t_{n} . In view of (2)-(4) in Lemma 1 and (1.2) in (K_{3}) we
have

D_{+}||v(s)||=[v(s), F(s, v(s), v_{s})]

\leqq[v(s), F(s, v(s), v_{s})-F(s, 0, v_{s})]+||F(s, 0, v_{s})||

\leqq-p||v(s)||+M(r) for all s\in[t_{0}, t_{n}) .

From this we get

||v(t_{n})|| \leqq\exp(-p(t_{n}-t_{0}))||v(t_{0})||+\frac{M(r)}{p}(1-exp( -p(t_{n}-t_{0})) )

\leqq\frac{M(r)}{p} .

Letting narrow\infty , we conclude that ||v(\alpha)||\leqq M(r)/p<r . By the continuity of
v at \alpha , there exists a \delta>0 such that ||v(\alpha+t)-v(\alpha)||<r-||v(\alpha)|| for |t|\leqq\delta .
This implies that ||v(\alpha+t)||<r for |t|\leqq\delta . Choosing a positive integer n
such that \alpha-\delta<t_{n} , it can easily be seen that

||v(t)||\leqq M(r)/p for t\in[t_{0}, t_{n}] and ||v(t)||<r for t\in[t_{n}, \alpha+\delta] .

This contradicts to the definition of \alpha . Consequently, ||v_{t}||_{\infty}\leqq M(r)/p holds
for all t\in R . By the same argument as in the proof of Theorem 2 we see
that v\in S_{r} , and hence v=u by the uniqueness of solutions of (D. D. E) in
C_{r}^{*} .

REMARK 2. The conditions (K_{1}) , (K_{2}) of this paper are the same as
those of [4], but (K3) of this paper is somewhat stronger than that of [4].
The reason to strengthen the condition (K_{3}) of [4] is that we cannot use
the Ascoli-Arzela theorem in a general Banach space. The following con-
dition (K_{4}) of [4], however, is superfluous in this paper.

(K_{4}) If for x^{k}(t) , y^{k}(t) , x(t) and y(t) continuous and such that
||x^{k}(t)||\leqq r , ||y^{k}(t)||\leqq r for all t\in R and k\geqq 1 and x^{k}(t)arrow x(t) , y^{k}(t)- y(t) as
karrow\infty for t\in R , we have

F(t, x^{k}(t) , y_{t}^{k}) - F(t, x(t), y_{t}) as karrow\infty for t\in R .
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