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Almost periodic solutions of functional differential equations
with infinite delays in a Banach space
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§1. Introduction and preliminaries

Let E be a Banach space with norm |« | and let J/=R=(—0o0, ) or
R_=(—o00,0]. We shall mean by C(J; E) the set of E-valued continuous
functions defined on J. By Cs(J; E) we denote the set of E-valued func-
tions continuous and bounded on J with the sup-norm ~». For each
tER and u=Cs(R: E), the symbol u: is defined by wu:(s)=u(t+s) for
sER_. Clearly u.€Cs(R-; E).

With these notations, we consider in this paper the following delay-
differential equation

(D.D.E) x'=F(t x,x:), tER.

Here F(t¢,x,¢) is an E-valued function defined on RXEX‘CB(R—;E)
which satisfies some conditions mentioned precisely later. By a solution
of (D.D. E), we mean a continuously differentiable function # defined on
R such that «'(¢t)=F(t, u(t), u:) for all t€R. In this paper the term
“ continuous ” means “ strongly continuous ”.

Recently, we proved the existence and uniqueness of a solution of
(D.D.E) in the case of E=R", the n-dimensional Euclidean space.
Moreover, we showed that if F(t, x, #) is almost periodic (a.p.for short)
with respect to ¢ uniformly for (x, #) in closed bounded subsets of R"X
Cs(R_: R"), then (D.D. E) has a unique a.p. solution ([4]). These
results give an affirmative answer to the open question proposed by
G. Seifert [10]. The results of and are essentially based on a
result of Medvedev which guarantees the existence of a bounded solu-
tion on R of a certain class of differential equation. The result of [8],
however, can be treated in the framework of our previous papers [2,3].
The purpose of this paper is to extend these results to the case of a func-

tional differential equation with infinite delay in a general Banach space.
We define the functional [ , ]: EXE—R by

[, 1= lim (I + 2yl —[x[)/ 2.
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The following two lemmas will be needed later. For the proofs of these
lemmas see [2, 3, 7].

LEMMA 1. Let x, y and z be in E. Then the functional [, ] has
the following properties :

(1) [x, yI=inf{(lx + Ayl —lxl)/ 7 ; h >0},

(2) Lz, y1I=1yl, [0, y1=1yl,

(3) [x,y+2]<[x, y]+I[x, 2],

(4) let u be a function from a real interval I into E such that the
strong derivative u'(k) exists for an interior point to of I then D\ u(t)|
exists and

Dilu(to)l=[ults), u'(t)],
where D.||\u(to)| denotes the right derivative of |u(t)| at b.

LEMMA 2. Let Q be a closed subset of E and let a=R. Suppose
that f is a continuous function from [a, o)X Q nto E satisfying the follow-
ing conditions :

(1) [x—w 7(t )=t WIS o(H)|x—y]

for all (¢, x), (¢ y)El[a, ©)X Q, where w is a real-valued continuous Sfunc-
tion defined on [a, );

(2) lig}jg’f d(x+nhf(t x), Q)/h=0
for all (¢ x)E[a, ©)XQ, where d(z, Q) denotes the distance from zEE to
Q. Then for each (r, 2)E[a, )X Q, the Cauchy problem
(L1 x'=f(tx), x(r)=2

has a unique global solution w onm [1, ) such that u(t)EQ for all te
[z, o).

Throughout this paper we assume that the E-valued function F is
defined on RX E X Cs(R-; E) and satisfies the following conditions :

(K1) for each » >0 there exist M(»)>0 and N(7)>0 such that
IF(2, 0, I<M(7) and |F(¢, x, 0)|SN(r)
for all tER, |x|=7 and |¢l|.<7, (4€Cs(R-; E));

(Kz) if for x(¢) uniformly continuous and bounded on R, F(¢, x(t), x¢)
is continuous on R and F(¢,y,x:) is continuous in (t, ¥) on R X B (0),
where B-(0)={x€E ;|x|<7};
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(Ks) if there exist positive numbers p, », L such that p>max{M(»)/7,
L}, where M(7) is as in (K;), such that

(1.2)  [x—y F(t,x, $)—F(t, v, )< —plx—y|+ Lid— ¢l
for all tER, |x|=7, [y|=7, |¢l-=7, |¢'l-=7 (¢, ¢'ECs(R-; E)).

REMARK 1. It can be easily seen that if F' is continuous on RX E X
Cs(R-; E), it satisfies (Kz). From (2) in Lemma 1, (X)) and (1.2) in (K3)
it follows that

(1.3)  F(, x, I<Lr+N(r)
for all (¢, x)ERXB;(0), |¢l-<r (4= Cs(R_: E)).

§ 2. Existence of a bounded solution on R

The following theorem is both an improvement and a generalization
of a result of Medvedev into a general Banach space.

THEOREM 1. Let A be an E-valued function defined on RXE and
let g C(R; E). Suppose that there exist positive numbers p, v, M such that
A is continuous on RXB,(0), |A(t 0)+g(t)|ISM (tER), M/p<r and

2.1)  [x—y At x)— Al )] —pllx—y|
for all (¢ x), (t, yY)ERXB0). Then the equation
(2.2)  x'=A{ x)+g(2)

has a solution u on R such that |u(t)|EM/p for all tER, and this solu-
tion is unique in G, where Gr={p<Cs(R; E);llo|<r}. Moreover, if v
is any solution of (2.2) such that |v(W)|EM/p for some toER, then
lo(Dl=M/p and

2.3)  lo@®)—u(®)l = lo(to) —u(to)l exp(—p(¢— 1))
for all tE[to, OO)

Proor. If A(¢,0)=0 for tER, we replace A(¢, x) and ¢(t) by
A(t, x)— A(t,0) and g(¢)+A(¢,0), respectively. We assume henceforth
that A(¢,0)=0 and |g(¢)|=M for all tER. Fix a ueSE with |ud|=M/p
and consider the following Cauchy problem for each positive integer .

(2. 4) x'=A(t, x)+9(t), x(—n)=u..
For each x€E with |x|=7, (2.1) and (3) in imply
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[x, A(t, x)+ ()] = [x, A(t, )] +]g(t)| = —plx|+ M
=—pr+M<N0.

It follows from the definition of the functional [ , ] that
lx+R(A(E, )+ g <|x|=7

for sufficiently small %2>0. It therefore follows that, for each (¢, x)E
[—n, )X B-(0) there exists an ko= /ho(, x) >0 such that

x+h(A(t, x)+9()EB,(0) for all 0< A< k.

can now be applied to guarantee the existence of a unique global
solution . of (2.4) on [—#n,®) such that wu.(¢)EB,0) for all te
[—#,00). Moreover, we can show that |u.(¢)|<M/p for all tE[—n, ).
In fact, (2.1) and (4) in imply

Dillun(Dl=[un(t), A(t, un(£))+ g(£)]< = plua( )|+ g()]
< — pllua(t)|+M

for all t&€[—n, ). Solving this differential inequality we obtain

leen( N Sl en(— n)llexp(— p(t +n)) +Mf_;exp( —p(¢t—s))ds

< exp(—p(t+n)+ 21 —exp(— p(1 +m)) =2

for all t€[—n, o) (see Proposition 1.3 in [7]). We next show that, for
an arbitrary fixed number <0, {«.} is a uniformly Cauchy sequence on
[a, ). Let m, n be positive integers such that #»=m > —qa, then

Dillun(t) = um(t)|=[un(t)— un(t), A(t, un(2))— A(t, un(t))]
< —plun(t)—un(t)| for all tE[—m, ).

It follows as above that

leen() — wn(t)] < exp(— p(t + m))l|ten( — ) — um(— m))
< exp(—pla+m))|un(—m)— uo

é%exp(—p(ﬁm))

for all t€[a, ). Thus, {#x} is a uniformly Cauchy sequence on [a, ).
Define u(t)zlnign un(t) for t€[a, ). Then [u(t)|<M/p for all tE[a, ).

Since

un(t)zun(a)wL/:(A(s, un(s))+g(s))ds
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for each tE[a, o), letting n—c° we have

u(t)=u(a)+ [ (Als, uls)+g(s)ds  (tEla, o))

This shows that # is a solution of (2. 2) on [a, ). Since a<0 is arbi-
trary, we conclude that there is a solution # of (2.2) on R such that
la(OHISM/p for all tER.

To prove the uniqueness of a solution of (2.2) in G, let w be another
solution of (2.2) in Gr. Then for each tER

Dillu(t)—w(|=[u(t)—w(t), A(t, u(t))— A(t, w(t))]
< —plu(t)—w(t)l.

This implies
lee(#)—w(t)] < exp(—p(t — s)uls)—w(s)| < 2rexp(—p(¢ —s))

for all s<¢. Letting s——oo, we get u(t)=w(t), tER. To show the last
assertion of the theorem, let v be any solution of (2.2) such that [v(%)|<
M/p for some HER. Then we have

D.Jo()=[v(2), Alt, () +g()]= = plo(t)| +]g(£)]
< —plo(OI+M

provided |v(¢)| < » for ¢t =4, and hence

() < exp(—p(¢— o)) v(t)l +Mft:eXp(—p(t —s))ds

é—%exp(— p(t—to))+%(1—exp(— p(t—to)))z—];[—.

Consequently, |o(¢)|€M/p for all ¢E€[h, ). By the same argument as
before we have also

lo(£)— u(t)| < exp(—p(¢ — to)|v(te) — u(to)]
for all tE[t, ). This completes the proof.

§ 3. Existence of an almost periodic solution

In this section we consider the delay-differential equation (D. D. E).
Let » be as in (K:) and let C,*={¢p=Cs(R ; E);|l¢l-=7 and ¢ is uniform-
ly continuous on R}. Then we have the following.

THEOREM 2. Suppose that (K\)—(Ks) are satisfied. Then there exists
a unique solution u of (D. D. E) in C/*.
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PROOF. Let », L be as in (K3) and N(#) be as in (Ki). Define S,=
{f€CR; E); I flle=r, 1f(t)—f(NS(Lr+N(»)It—¢t| for all ¢, t'ER},
then S- is a closed bounded subset of the Banach space Cs(R ; E) with the
sup-norm | * |l». Define

Alt, x, ¢)=F(¢t, x, p)—F(¢,0, ¢) and B(¢t, $)=F(t,0, $)

for (¢, x), (t,y)ERXB;(0) and |¢|l-=<7 (¢ECs(R-: E)). We now define
a mapping 7 : S,—S- as follows:
x(¢)=Tf(¢) is the unique solution in G, of

(2.5) x'=A(t, x, fe)+ B(t, f2),

where G, is as in and f€S,. Such a solution x exists by
and satisfies |x|-<M/p<r. In fact, (Ki) and (Kz) imply that
A(t, x, f;) is continuous in (¢, x) on RXB,(0) and B(¢, f:) is continuous
on R such that |B(¢, flSM(») for all t€R. Moreover, (1.2) in (K)
implies

[x—y, Alt, x, f1)—A(t, v, fo)]
=[x—y, F(¢, x, )= F(t, y, f)]
< —plx—yl for all (¢, x), (¢, y)€ RX B0).

Since

(D)= x(=| [ F(s, 2(5), fas| s (Lo + Nl =11

for all ¢, '€ R, we see that x&S,. We next show that T is a strict con-
traction on S,. For each f, g€ S, putting x=7f and y=Tyg, we see that

D:|x(t)—y(OI=[x(t)—3(2), F(¢, x(¢), fo)—F(¢, y(¢), g¢)]
< —plx(t)—y(OI+LIfi—g:l  for all tER.

Solving this differential inequality we have

lx(8) = y(O <exp(—p(t —s)lx(s)— y(s)
+L [ exp(—pt = )l fo— goldio

éwp(r) exp(—p(¢—s))

+%(1 —exp(—p(t =s))If — gl

~1@M()~ LIS —gl) exp(=plt =) +E17 =gl
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for all s<¢. Letting s— —o0, we obtain

(OB =Z1f gl forall t=R

and this shows that | 7/— Tg||m§%||f—g||w. Since 0<L/p<1 by (K. T

has a unique fixed point # in S, by the contraction principle. Clearly, «
is a solution of (D. D. E).

To show that the above solution # is unique in C,* (note that S,C

C,*), let v=C,* be another solution of (D. D. E). Then we have for each
he R

Dillu(t)—v(t)|=[u(t)—ov(t), F(t, u(t), us)— F(t, v(t), v:)]
< —plu(t)—v()|+Llu:—velw  for all t =+t

Solving this differential inequality we obtain
l2e(t +5) = v(t + s =exp(—p(t — to))l|w(to+s)— v(to+5)|
+L[::exp( —p(t +5—0)|ts— volodo
<exp(—p(t — to)lu(to+s)—v(to+5)|

—!——%(1 —exp(—p(t — 1)) wee — vello

for all €[4, ) and sSR-. Here we have used the fact that |us— vo| is
nondecreasing in o. It therefore follows that

L
l2te — vello < exp(— p(t — to))ll 2620 — Uto”w*‘j“”t — Vtfle

for all tE[#, ), and this implies

e~ vl 2 rexp(—p(t — )= vile  (t€ [, 20)) .

Consequently, we obtain

D e e e = G () LN

for all tE€[t, ). Letting t—o0, we get [#s,— vrl-=0 and this implies, in
particular, u(t)=uv(t).

THEOREM 3.  Suppose that (Ki)—(Ks) are satisfied. Suppose further
that F(t x, ¢) is a. p. in t uniformly for (x, ¢) in closed bounded subsets
of EXCs(R-;E). Then (D.D.E) has a unique a.p. solution in C,*,
where C.* is as in Theorem 2. Moreover, if v is any solution of
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(D. D. E) such that |veol«<M(7)/p for some LER, then v=u.

PROOF. Let u be the unique solution of (D.D. E) in C,* obtained in
Mheorem 2. Since Q=B,(0)x{¢=Cs(R-; E);|¢l|-=7} is a closed bound-
ed subset of EXCs(R-: E), for each €>0 there exists a positive number
[=1(e, Q) such that any interval of length / contains a r=1(e) for which

IFE(t+ 7, u(t+7), wese)—F(t, u(t+7), ueso)|<e
for all t€R. By virtue of (2)—(4) in and (1.2) in (K;) we have

Diu(t+7)—u(t)|=lu(t+1)—u(t), F(t+ 1, u(t + 1), Uesr)
—F(t, u(z‘), ut)]
—plu(t+7)— u(t)|+ Ll s+ — el
+HIF(t+7, u(t+71), uese)— F(t, u(t+1), teso)|
—plla(t +7)— u(Ol+ Ll teesr — el t €
for all t€ER.

Solving this differential inequality we obtain
le(t+74+5)—u(t+s)|<exp(—pBlu(t+r—B+s)—u(t—B+s)|
t+Ss
+Lf exp(— p(t+s—0)|to+r — ttollwdo
t+s—8

+%(1—exp(—pb’))
<2rexp(—pB)+ (1 exp(— PPN wesr— well

£
+1>

=27 exp(—j)/a’)+%||ut+r - ut||°°+ £

F)
for all t ER, s€R_ and A>0. Here we have used again the fact that
l2s+:— usle is nondecreasing in o, and #<C.*. It follows from this

(P ut"oo—-pp exp(— pB)—F——L— for all tER.

Choose B0>0 such that 27pexp(—pBs)<e, then
“u(t"'f)—u(t)“éllutH—utllmép—z_% for all tER.

Thus 7 is a 2¢/(p— L)—translation number for %, and since >0 is arbi-
trary u is an a. p. solution of (D. D. E).
To show the last assertion of theorem, let v be any solution of (D. D.
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E) such that |ve)e<M(7)/p for some HER. We note that |vele<M(»)/p
for all t={,. Define T'={t<[t, ) ; |v(s)|<#» for all sE[4, ¢]} and define
a=supl’. Then a>t because |vi|e<M(7)/p<r. Suppose, for contradic-
tion, that a<oo. For sufficiently large integer # there exists a t»<I" such

that %< a—%< tr. In view of (2)—(4) in and (1.2) in (K;) we

have

Di|v(s)I=[v(s), F(s, v(s), vs)]
<[w(s), F(s, v(s), vs)—F(s, 0, vs)] +|F(s, 0, vs)l
< —plv(s+M(»)  for all s€[t, t).

From this we get

ot Sexp(—pta— (] +-0 ~ exp(—pta — 1))

< M(7)
S

Letting n—o0, we conclude that |v(e)|<M(r)/p<r. By the continuity of
v at a, there exists a 6 >0 such that |v(a+¢)—v(e)|<7r—|v(a)| for |t|<6.
This implies that |v(a+¢)|<#» for |t|<8. Choosing a positive integer =
such that @—8<t,, it can easily be seen that

lo(OI=M(7)/p for tE[t, ta] and |o(I<r for tE[ta, a+3].

This contradicts to the definition of @. Consequently, ||v:]-=<M(#)/p holds
for all t€R. By the same argument as in the proof of we see
that v&€S,, and hence v=u by the uniqueness of solutions of (D.D. E) in
C*.

REMARK 2. The conditions (Ki), (Kz) of this paper are the same as
those of [4], but (KG) of this paper is somewhat stronger than that of [4].
The reason to strengthen the condition (K:) of is that we cannot use
the Ascoli-Arzela theorem in a general Banach space. The following con-
dition (Ki) of [4], however, is superfluous in this paper.

(Ky) If for x*(t), y*(¢), x(t) and y(¢) continuous and such that
lx* (=7, |y*()| £ for all tER and £=1 and x*(¢t)—x(2), v*(t)—y(t) as
k—o for t& R, we have

F(t, x*(t), yt) — F(t, x(t), y:) as k—co  for tER.

Acknowledgment. The author would like to express his hearty
thanks to the referee for his valuable comments and remarks.



474

[1]

S. Kato

References

. G. KARTSATOS, The Existence of Bounded Solutions on the Real Line of Perturbed

Nonlinear Evolution Equations in General Banach Spaces, Nonlinear Analysis,
17 (1991), 1085-1092.

. KATO, On the Global Existence of Unique Solutions of Differential Equations in a

Banach Space, Hokkaido Math. Jour., 7 (1978), 58-73.

. KATO, Some Remarks on Nonlinear Ordinary Differential Equations in a Banach

Space, Nonlinear Analysis, 5 (1981), 81-93.

. KATO, Almost Periodic Solutions of Functional Differential Equations with Infinite

Delays, submitted to Funkcialaj Ekvac.

. LAKSHMIKANTHAM and S. LEELA, Differential and Integral Inequalities, vol.Il.,

Academic Press, New York (1969).

. M. LEVITAN and V. V. ZHIKOV, Almost Periodic Functions and Differential Equa-

tions, Cambridge University Press, Eng. ed., (1982).

. H. MARTIN, ]Jr., Nonlinear Operators and Differential Equations in Banach Spaces,

Wiley Interscience, (1976).

. V. MEDVEDEV, Certain Tests for the Existence of Bounded Solutions of Systems of

Differential Equations, Differential'nye Uravneniya 4 (1968), 1258-1264.

. SEIFERT, Almost Periodic Solutions for a Certain Class of Almost Periodic Systems,

Proc. Am. Math. Soc. 84 (1982), 47-51.

. SEIFERT, Almost Periodic Solutions for Delay-Differential Equations with Infinite

Delays, J. Differential Equations, 41 (1981), 416-425.

. YOSHIZAWA, Stability Theory and the Existence of Perviodic Solutions and Almost

Periodic  Solutions, Lectures in Appl. Math,, vol. 14, Springer-Verlag, Berlin
and New York, (1975).

Kitami Institute of Technology
Kitami, Hokkaido, Japan



	\S 1. Introduction and ...
	\S 2. Existence of a bounded ...
	THEOREM 1. ...

	\S 3. Existence of an ...
	THEOREM 2. ...
	THEOREM 3. ...

	References

