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Abstract

If f Xarrow X is a continuous function, x\in X is called a periodic point
if some iterate f^{k} of f leaves x fixed. In 1953 F. B. Fuller proved a basic
result for the existence of periodic points. He showed that if X is a com-
pact absolute neighborhood retract with non-zero Euler characteristic and
if N(X) is the larger of the sums of the odd and even real Betti numbers
of X, then for any homeomorphism f on Xy f^{k} has a fixed point for some
k, 1\leq k\leq N(X) . Actually Fuller’s result holds for any space X for which
the Lefschetz Fixed Point Theorem is valid.

In this paper the authors first establish a number of extensions of the
Fuller Theorem. They next consider G-spaces and extend results of
Mann on periodic points and invariant orbits. In the last section they
turn to the Riemannian category using the volume function on the orbit
space to obtain additional results and examples on periodic points and
invariant orbits for groups of isometries. They conclude the paper by
using the Fuller Theorem, together with a result of Kobayashi relating the
Lefschetz number of an isometry and the Euler characteristic of its fixed
point set, to establish a new result on the existence of common periodic
points for commuting isometries.

1. Introduction

For a compact space X, let b_{q}(X) denote the q^{th} real Betti number
of X, i . e. , the dimension of the vector space H^{q}(X,\cdot R) , and \chi(X) the
associated Euler characteristic. If f:Xarrow X is a continuous function, x\in

X is called a periodic point if some iterate f^{k} of f leaves x fixed. In
1953 F. B. Fuller [7] proved the following basic result for the existence of
periodic points. We use the formulation in [5].

THEOREM 1.1. (Fuller) Let X be a compact ANR {absolute neighbor-
hood retract) such that \chi(X)\neq 0 . Let N(X) be the larger of the two inte-
gers
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\sum_{qodd}b_{q}(X) and \sum_{qeven}b_{q}(X) .

If f : Xarrow X is any homeomorphism, then f^{k} has a fifixed point for some k,
1\leq k\leq N(X) .

Actually Fuller’s result holds for any space X for which the Lefschetz
Fixed Point Theorem is valid [5] as the proof proceeds by showing that
the Lefschetz number of some iterate f^{k} , k\leq N(X) , is non-zero.

In Section 2 we establish a number of extensions of the Fuller TheO-
rem. In Section 3 we consider G-spaces and extend results of Mann [14]
on periodic points and invariant orbits. We turn in Section 4 to the
Riemannian category using the volume function on the orbit space to
obtain additional results and examples on periodic points and invariant
orbits. We conclude by using the Fuller Theorem, together with a result
of Kobayashi [12] relating the Lefschetz number of an isometry and the
Euler characteristic of its fixed point set, to establish a result on the exis-
tence of common periodic points for commuting isometries.

2. Extensions of the Fuller Theorem

For a locally compact space X we will use Alexander-Spanier c0-
homology with compact supports; our coefficient group will be the reals
R . In most cases, however, X will be compact.

A continuous self-map f of X induces homomorphisms

f^{*q} : H^{q}(X)arrow H^{q}(X) .

Define

\chi_{f}(X)=\sum_{q=0}^{\infty}(-1)^{q} dim Im f^{*q} ,

and

N_{f}(X)= \max[\sum_{qodd} dim Im f^{*q}. \sum_{qeven} dim Im f^{*q}] .

Compare \chi_{f}(X) with the Fuller Index F(f) as defined in [6, p. 26]. Also
note that if f is a homeomorphism, \chi_{f}(X)=\chi(X) and N_{f}(X)=N(X) .

We now suppose M is a closed connected oriented n-manifold and g :
Marrow M continuous. Define

g_{*}^{q} : H^{q}(M;R)arrow H^{q}(M;R)

by
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\langle g_{*}^{q}\alpha\cup\beta, [M]\rangle=\langle\alpha\cup g^{*(n-q)}\beta, [M]\rangle , \alpha\in H^{q}(M ; R) ,
\beta\in H^{n-q}(M ; R) .

The following result for deRham cohomology is contained in [8].

LEMMA 2. 1. If deg g\neq 0 ,

g_{*}^{q}=(\deg g)(g^{*q})^{-1} .

PROOF.
\langle g_{*}^{q}g^{*q}\alpha\cup\beta, [M]\rangle=\langle g^{*q}\alpha\cup g^{*(n-q)}\beta, [M]\rangle

=\langle g^{*n}(\alpha\cup\beta), [M]\rangle

=\langle\alpha\cup\beta, g_{*n}[M]\rangle

=\langle \alpha\cup\beta , (deg g) [M]\rangle

=\langle(\deg g)\alpha\cup\beta, [M]\rangle .

But H^{q}(M: R)\cross H^{n-q}(M; R)arrow R where (\alpha, \beta)- \langle\alpha\cup\beta, [M]\rangle is non-
degenerate so

g_{*}^{q}g^{*q}=(\deg g)(Identity) .

LEMMA 2. 2. If deg g\neq 0 and

f^{*q}\circ g^{*q}=g^{*q}\circ f^{*q}, all q,

then
(f^{k})^{*q}\circ(g_{*}^{k})^{q}=(f^{*q}\circ g_{*}^{q})^{k}, all k and all q .

PROOF. It suffices to show that
f^{*q}\circ g_{*}^{q}=g_{*}^{q}\circ f^{*q} .

But
f^{*q}\circ g_{*}^{q}=f^{*q}\circ(\deg g)(g^{*q})^{-1}

=(\deg g)(g^{*q})^{-1}\circ f^{*q}

=g_{*}^{q}\circ f^{*q} .

We are now in a position to generalize Fuller’s Theorem to a pair of
continuous maps f, g:Marrow M . Define the Lefschetz number of the pair
(f, g) by

L_{f,g}= \sum_{q=0}^{n}(-1)^{q}Tr(f^{*q}\circ g_{*}^{q}) .

The following result is well-known [15].

THEOREM 2. 3. {Lefschetz Coincidence Theorem) If L_{f,g}\neq 0 , then
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there exists x\in M such that

f(x)=g(x) .

For f,g : Marrow M also define

\chi_{f,g}(M)=\sum_{q=0}^{n}(-1)^{q} dim {\rm Im}(f^{*q}\circ g_{*}^{q})

and

N_{f,g}(M)= \max[\sum_{qodd} dim {\rm Im}(f^{*q} \circ g_{*}^{q}),\sum_{qeven}\dim{\rm Im}(f^{*q}\circ g_{*}^{q})] .

Observe that for g=identity, \chi_{f,g}(M) and N_{f,g}(M) reduce to \chi_{f}(M)

and N_{f}(M) respectively as previously defined.

THEOREM 2. 4. (Fuller Coincidence Theorem). Suppose f, g are con-
tinuous self-maps of a closed connected oriented n-manifold M. If
\chi_{f,g}(M)\neq 0 , deg g\neq 0 , and

f^{*q}\circ g^{*q}=g^{*q}\circ f^{*q} , all q ,

then there exists x\in M such that

f^{k}(x)=g^{k}(x)

for some k, 1\leq k\leq N_{f,g}(M) .

PROOF. We show L_{f,g}kk\neq 0 for some k\leq N_{f,g}(M) and apply TheO-
rem 2. 3. Suppose, on the contrary, that

(1) L_{f^{k},g^{k}}=0 , k=1,2 , \ldots , N_{f,g}(M) .

We shall prove \chi_{f,g}(M)=0 which contradicts our hypothesis.
Let \lambda_{q,j} , j=1,2 , \ldots

i_{q} , be the non-zero eigenvalues of f^{*q}\circ g_{*}^{q} where
i_{q}=\dim{\rm Im}(f^{*q}\circ g_{*}^{q}) .

Then

(2) Tr[(f^{*q} \circ g_{*}^{q})^{k}]=\sum_{j=1}^{iq}\mathcal{A}_{q,j}^{k} .

From our restrictions on f and g and Lemma 2. 2, we have,

(3) Tr[(f^{k})^{*q}\circ(g_{*}^{k})^{q}]=Tr[(f^{*q}\circ g_{*}^{q})^{k}] .

Since L_{f^{k},g^{k}}=0 , it follows from (2) and (3) that
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(4) \sum_{qodd}\sum_{j=1}^{iq}\lambda_{q,j}^{k}=\sum_{qeven}\sum_{j=1}^{iq}\mathcal{A}_{q,j}^{k} , k=1,2 , \ldots N_{f,g}(M) .

Now using the same argument as presented in [5, p. 46] in the proof of the
Fuller Theorem, we can argue that

(5) \sum_{qodd}i_{q}=\sum_{qeven}i_{q} or \chi_{f,g}(M)=0 .

REMARK 2. 5. Theorem 2. 4 is similar to Theorem 23 of Halpern in
[9]. In both cases some type of commutativity is assumed. If we take g

=identity, we obtain a result similar to Theorem 5. 5 in [6]. Actually we
can relax the hypothesis of 2. 4. Since deg g\neq 0 , g^{*q} is an isomorphism
for all q and N_{f,g}(M)=N_{f}(M) . Moreover \chi_{f,g}(M)=(\deg g)\chi_{f}(M) , so
\chi_{f}(M)\neq 0 implies \chi_{f,g}(M)\neq 0 .

We have various immediate consequences of Theorem 2. 4.

COROLLARY 2. 6. Suppose f, g are continuous self-maps of a closed
connected oriented manifold M. If \chi_{f,g}(M)\neq 0 , deg g\neq 0 , and f is
homotopic to g, then there exists x\in M such that

f^{k}(x)=g^{k}(x)

for some k, 1\leq k\leq N_{f,g}(M) .

COROLLARY 2. 7. Suppose f , g are continuous self-maps of a closed
connected oriented manifold M. If \chi_{f}(M)\neq 0 and g is homotopic to the
identity, then there exists x\in M such that

f^{k}(x)=g^{k}(x)

for some k, 1\leq k\leq N_{f}(M) .

PROOF. If g is homotopic to the identity, deg g=1\neq 0 and g^{*q}=

identity. Hence
\chi_{f,g}(M)=\chi_{f}(M)\neq 0

and

N_{f,g}(M)=N_{f}(M) .

The reader is referred to the beginning of Section 3 for the terminol-
ogy involving transformation groups in the next several consequences of
2. 4.

COROLLARY 2. 8. Suppose G is a compact connected Lie group acting
effectively on a closed connected oriented manifold M. If f is a
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continuous self-map of M with \chi_{f}(M)\neq 0 , then for any g\in G , there exists
x\in M such that

f^{k}(x)=g^{k}(x)

for some k, 1\leq k\leq N_{f}(M) .

PROOF. If g\in G , g is homotopic to the identity. Clearly if f is
equivariant, we can remove the condition that G be connected.

COROLLARY 2. 9. Suppose G is a compact Lie group acting effectively
on a closed connected oriented manifold M, \chi(M)\neq 0 . If f, g\in G , there
exists x\in M such that

f^{k}(x)=g^{k}(x)

for some k,

1\leq k\leq|G/G^{0}| ,

where G^{0} denotes the identity component of G, and |G/G^{0}| , the order of
the fifinite group G/G^{0} .

Moreover, letting [f] , [g] denote the coset classes in G/G^{0} .

i) If [f]=[g] , k=1 ;
ii) If [f][g]=[g][f] , 1 \leq k\leq\min\{|G/G^{0}|, N(M)\} .

PROOF. Since f and g are homeomorphisms,

\chi_{f,g}(M)=\chi(M)\neq 0 and N_{f,g}(M)=N(M) .

Let m=|G/G^{0}| . Then

[f^{m}]=[g^{m}]=identity element of G/G^{0} .

Hence

(f^{k})^{*q}=(g^{k})^{*q}=identity

for k=m, q\geq 0 .
If [f]=[g] ,

(f^{k})^{*q}=(g^{k})^{*q}

for k=1 , q\geq 0 . Thus in either case by 2. 1 we have,

L_{f^{k},g^{k}}=( \deg g)\sum_{q\geq 0}(-1)^{q}Tr[(f^{k})^{*q}\circ(\{f^{k}\}^{*q})^{-1}]

=(\deg g)\chi(M)\neq 0 .
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Hence by 2. 3, there exists x\in M such that

f^{k}(x)=g^{k}(x) .

Finally if [f][g]=[g][f] ,

f^{*q}\circ g^{*q}=g^{*q}\circ f^{*q} , all q\geq 0 ,

and we may apply 2. 4 to conclude

k\leq N_{f,g}(M)=N(M) .

COROLLARY 2. 10. Suppose S^{n} , n even, is the unit sphere in R^{n+1}

with standard metric. If f, g:S^{n}arrow S^{n} are isometries, there exists x\in S^{n}

such that

f^{k}(x)=g^{k}(x)

for some k, k=1 or 2.

PROOF. Note f, g\in Isom(S^{n})=O(n+1) and N(S^{n})=2 . Actually k=
1 if f, g\in SO(n+1) or f, g\not\in SO(n+1) .

3. Periodic points and invariant orbits of equivariant maps

Associated with a G-space X are basic objects such as the fixed point
set F(G, X) , the orbit space X/G, and the orbits themselves. In [14]
Mann made observations concerning the existence of points in F(G, X)
which are left fixed and orbits which are left invariant by some interate
f^{k} of an equivariant self-map f of X. In this section we continue such
investigations.

We begin with some background material on topological transforma-
tion groups. Roughly speaking (X, G) is called a G-spacc if X is a
topological space, G is a topological group, and G acts on X as a group
of homeomorphisms [3]. The fixed point set F(G, X) consists of those
points of X left fixed by each g\in G , the orbit G(x) of x\in X is the subset
\{g(x) : g\in G\} , and the orbit space X/G, which we denote often simply by
X^{*} . is the space of orbits under the decomposition topology, \pi:Xarrow X^{*}

denotes the natural projection.
The isotropy subgroup G_{\chi} of G at x is the subgroup \{g\in G:g(x)=x\} ;

isotropy subgroups of points on the same orbit are mutually conjugate.
The action of G on X is called effective if \bigcap_{x\in X}G_{x} is simply the identity

element of G. In a natural way G(x) may be identified with the left
coset space G/G_{\chi} . A continuous map f : Xarrow X is called equivariant if
f(g(x))=g(f(x)) , all g\in G and x\in X .
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We will be considering effective G-spaces (X, G) where X is a
closed n-manifold M and G is a compact connected Lie group. An orbit
G(x) is called a principal orbit if G(x) is of maximal dimension among all
orbits and G_{x} has a minimal number of components among all orbits of
maximal dimension. The associated isotropy subgroup is called a princi-
pal isotropy subgroup and it follows that any two principal isotropy sub-
groups are conjugate. It is known [3; IX] that the union of the principal
orbits forms a connected open dense subset of M. Orbits which are not
principal are of 2 types, exceptional (orbits of maximal dimension) and
singular (orbits of lower dimension). We let S(G, M) denote the union of
the singular orbits.

THEOREM 3. 1. Suppose \chi(G(x))=0 for a principal orbit G(x) or
\chi(M^{*}-S(G, M)^{*})=0 , then

\chi(M)=\chi(S(G, M)) .

PROOF. Since dim S(G, M)\leq n-2 , M-S(G, M) is connected
[3; IX] . If there are no exceptional orbits in M-S(G, M) , we have the
fibration:

(1) G/Harrow M-S(G, M)arrow M^{*}-S(G, M)^{*}\pi .

where H is a principal isotropy subgroup. Now the Leray sheaf H^{*}(G/H ;
R) over M^{*}-S(G, M)^{*} is constant since G acts trivially on H^{*}(G/H ;
R) [ 2 ; VIII]. Hence by [2; IX] ,

(2) \chi(\psi-S(G, M))=\chi(G/H)\cdot \chi(M^{*}-S(G, M)^{*}))

and it follows from our hypothesis that

(3) \chi(M-S(G, M))=0 .

If, on the other hand, there are exceptional orbits, let G/K be such an
orbit with K\supset H . Then K/H is a finite set and we have the fibration:

K/Harrow G/Harrow G/K.

By the Vietoris-Begle mapping theorem, we can argue that

H^{*}(G/K;R)\cong H^{*}(G/H,\cdot R) ,

and establish (2) via the spectral sequence of the continuous map \pi

instead of the spectral sequence of the fibration. Hence, in any case, we
have,
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(4) \chi(M-S(G, M))=0 .

The result now follows from the exact sequence of the pair (M, S(G, M))
using Alexander-Spanier cohomology with compact supports.

THEOREM 3. 2. Suppose f:Marrow M is an equivariant homeomorphism,
G(x) is a principal orbit, and one of the following conditions hold:

i) \chi(M)\neq 0 , and \chi(G(x))=0 or
\chi(M^{*}-S(G, M)^{*})=0 ;

ii) \chi(M)=0 , \chi(G(x))\neq 0 , and
\chi(M^{*}-S(G, M)^{*})\neq 0 .

Assume, moreover, that the Lefschetz fifixed point theorem is valid for S(G ,
M) . Then there is a singular orbit G(y) such that every point of G(y) is
a periodic point of f_{r}

PROOF. Under ( i ) , it follows from 3. 1 that \chi(S(G, M))=\chi(M)\neq 0 .
Under ( ii) it follows from (2) in the proof of 3. 1 that \chi(M-S(G, M))\neq

0 . Hence \chi(S(G, M))\neq\chi(M)=0 . Since the Lefschetz fixed point theorem
is assumed valid for S(G, M) , we can apply the Fuller Theorem to f :
S(G, M)arrow S(G, M) and obtain the result.

COROLLARY 3. 3. Suppose f:Marrow M is an equivariant homeomor-
phism and G acts on M with principal orbits of codimension one with M^{*}

a closed interval. If one of the following conditions hold:

i) \chi(M)\neq 0 .
ii) \chi(G(x))\neq 0 , where G(x) is a principal orbit,

then there is a singular orbit G(y) such that every point of G(y) is a
periodic point of f.

PROOF. Since \chi(M^{*}-S^{*}(G, M)^{*})\neq 0 , the result follows from 3. 2.
Note since dim M=\dim G(x)+1 , \chi(M)\neq 0 implies \chi(G(x))=0 . Compare
3. 3 with Theorem 4. 2. of [14].

COROLLARY 3. 4. Suppose f:Marrow M is an equivariant homeomor-
phism and G acts on M with principal orbits of codimension two and with
at least one singular orbit. Suppose H_{1}(M;Z)=0 , where Z denotes the
coefficient group of integers, and one of the following conditions hold:

i) \chi(M)\neq 0 and \chi(G(x))=0 , where G(x) is a principal orbit,
ii) \chi(M)=0 and \chi(G(x))\neq 0 .
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Then there is a singular orbit G(y) such that every point of G(y) is a
periodic point of f .

PROOF. It is known that M^{*} is a 2-disk with S(G, M)^{*}=\partial M^{*}[4] ,
so that \chi(M^{*}-S(G, M)^{*})=1\neq 0 . The result now follows from 3. 2.

EXAMPLE 3. 5. Let G=SO(p_{1})\cross\cdots\cross SO(p_{k})\cross K , p_{i}\geq 2 , be a compact
connected Lie group acting effectively on M=S^{p_{1}}(1)\cross\cdots\cross S^{p_{k}}(1)\cross K/H ,
where K acts transitively on K/H and each SO(p_{i}) acts on the unit
sphere S^{p_{i}}(1) via the standard action which has two fixed points \{a_{i}, b_{i}\} ,
and principal orbits S^{p_{i}-1}(\theta_{i}) , 0<\theta_{i}<\pi . There are no exceptional orbits
and the singular orbits have the form:

G(y)=V_{1}\cross\cdots\cross V_{k}\cross K/H ,

where

V_{i}=a_{i} , b_{i} or S^{p_{i}-1}(\theta_{i}) , 0<\theta_{i}<\pi ,

with at least one i where V_{i}=a_{i} or b_{i} .
Furthermore

M^{*}=\{(\theta_{1}, \theta_{2}, \ldots, \theta_{k}):0\leq\theta_{i}\leq\pi;i=1,2, \ldots, k\}

and

\partial M^{*}=S(G, M)^{*}\wedge

We apply 3. 2. If f:Marrow M is an equivariant homeomorphism, then

i) If \chi(M)\neq 0 , there exists a singular orbit G(y) such that every point
in G(y) is a periodic point of f. In fact, there is an orbit G(y)\approx

K/H with this property.

ii) If \chi(G(x))\neq 0 for a principal orbit G(x) , the same conclusion fol-
lows.

EXAMPLE 3. 6. Let SO(p_{1}+1)\cross\cdots\cross SO(p_{k}+1) , p_{i}\geq 1 , act diagonally
on R^{p_{1}+1}\cross\cdots\cross R^{p_{k}+1}=R^{n+k} . n=p_{1}+\cdots+p_{k} . We have an induced action on
the unit sphere S^{n+k-1}(1) in R^{n+k}- Finally let

G=SO(p_{1}+1)\cross\cdots\cross SO(p_{k}+1)\cross K ,

K a compact connected Lie group, and

M=S^{n+k-1}(1)\cross K/H .

The orbit space M^{*} of the action of G on M is given by the (k-1)-disk,
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M^{*}= { (\theta_{1} , \theta_{2} , \ldots , \theta_{k} ) :\theta_{i}\geq 0 and \theta_{1}^{2}+\cdots+\theta_{k}^{2}=1 }.

The orbits are of the form:
G(z)=S^{p_{1}}(r_{1})\cross\cdots\cross S^{p_{k}}(r_{k})\cross K/H ,

where r_{1}^{2}+\cdots+r_{k}^{2}=1 , r_{i}\geq 0 . (Here we assume S^{p_{i}}(0) is a point). Now
G(z) is a singular orbit if at least one r_{i}=0 . If follows that

S(G, M)^{*}=\partial M^{*}

and we can apply 3. 2 to this action.

4. Isometries

In this section we turn to the Riemannian category where our G-space
(M, G) is a compact connected Lie group G acting effectively as a group
of isometries on a closed connected Riemannian n-manifold M. We
denote \pi(G(x)) by x^{*} where \pi is the projection \pi:Marrow M^{*}- The volume
function

V:M^{*}arrow R

is defined as follows:

V(x^{*})= m\cdot vol(G(x)) , if G(x) is an exceptional orbit
-

0, if G(x) is a singular orbit

where m=the number of cosets in K/H for K an isotropy subgroup of the
exceptional orbit and H a principal isotropy subgroup. If we denote the
union in M of the principal orbits by M_{(H)} , it follows from the Slice TheO-
rem that V is continuous on M^{*} and differentiate on M_{(H)}^{*}[11] . More-
over, it is known that an orbit of mmimal volume is a minimal sub-
manifold of M[10] .

We will suppose that f:Marrow M is an equivariant isometry and study
the geometric structure of periodic points and periodic orbits of f. It will
be instructive to first examine two examples.

The following arise out of standard well-known examples; see, for
example, [13, p. 23].

EXAMPLE 4. 1. Let G=SO(n) be the product action on R^{n+1}=R^{n}\cross

R where the action on the first factor is the standard orthogonal action
and the action on the second factor trivial. Then G acts on the unit
sphere M=S^{n}(1) of R^{n+1} isometrically with
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M^{*}=\{(x, y)\in R^{2} : x\geq 0, x^{2}+y^{2}=1\}

=\{ ( \cos\theta , sin \theta ) :- \frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}\}

\approx\{\theta:-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}\}

The volume function V:M^{*}arrow R is given by

V(\theta)=\alpha_{n-1}\cos^{n-1}\theta , \alpha_{n-1}=volumeS^{n-1}(1) .

V has a unique maximum at \theta=0 with corresponding orbit G(x_{1})\approx

S^{n-1}(1) which is a principal orbit and a minimal submanifold of M. If
now f:Marrow M is an equivariant isometry, it follows that G(x_{1}) is invar-
iant under f. If n is odd, it follows from Fuller’s Theorem that every
point of G(x_{1}) is a periodic point of f since \chi(G(x_{1}))=\chi(S^{n-1})=2 .

V assumes minimum values at \theta=-\frac{\pi}{2} and \frac{\pi}{2} with corresponding

orbits G(x_{2}) and G(x_{3}) which are fixed points of G . Hence x_{2} and x_{3} are
periodic points of f.

EXAMPLE 4. 2. Let G=SO(p)\cross SO(q) act diagonally on R^{p}\cross R^{q} via
the standard orthogonal actions. The orbit at

(x, y)\in R^{p}\cross R^{q} is S^{p-1}(||x||)\cross S^{q-1}(||y||) .

G induces an action of G on M=S^{n}(1) , n=p+q-1 . The volume func-
tion V is given by

V(||x||, ||y||)=\alpha_{p-1}\alpha_{q-1}||x||^{p-1}||y||^{q-1} .

Hence V has a maximum at (||x||, ||y||) where

||x||^{2}= \frac{p-1}{p+q-2}, ||y||^{2}= \frac{q-1}{p+q-2},

and minimums at x=0 and y=0. It follows, that if f is an equivariant
isometry on M that f has 3 periodic orbits, i . e . orbits which are invar-
iant under some iterate of f :

(1) G(x_{1})=S^{p-1}(\sqrt{\frac{p-1}{p+q-2}})\cross S^{q-1}(\sqrt{\frac{q-1}{p+q-2}}) ,

where G(x_{1}) is a principal orbit, a minimal submanifold of M, and invar-
iant under f.

(2) G(x_{2})=S^{p-1}(1) and G(x_{3})=S^{q-1}(1) ,
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which are singular orbits. Moreover G(x_{2}) (respectively G(x_{3}) ) is a mini-
mal submanifold of M if p\neq 1 (respectively q\neq 1 ).

If both p and q are odd, then every point in all the orbits G(x_{i}) , i=1 ,

2, 3 is a periodic point of f. If n is even and either p or q odd, say p

odd, then every point of G(x_{2}) is a periodic point of f. More generally
we have the following result.

THEOREM 4. 3. Let G act on M with principal orbits of codimension
one with M^{*} a closed interval. If f is an equivariant isometry on M,

there exists at least 3 periodic orbits G(x_{i}) , i=1,2,3, such that:

i) G(x_{1}) is a principal orbit and a minimal submanifold of M.
ii) G(x_{2}) and G(x_{3}) are singular orbits, each of which is either a mini-

mal submanifold of M or a fifixed point of G .
iii) If \chi(G(x_{i}))\neq 0 for some i=1,2 , 3 then every point in G(x_{i}) is a

periodic point of f .
iv) If \chi(M)\neq 0 , either G(x_{2}) or G(x_{3}) is a minimal submanifold with

each point a periodic point of f .

PROOF. The volume function V on M^{*} assumes minimums at the 2
end points of M^{*}; hence ( ii) follows.

Suppose V has a maximum at x^{*} with V(x^{*})=a . Then V^{-1}(a) is a
closed subset of M^{*} If C_{1} , \cdots , C_{k} are the components of V^{-1}(a) , each C_{i}

is either a point or a closed subinterval I_{i} of M^{*} . Since f is an isometry,
it preserves the volume of each orbit and, hence, f_{*} , the induced mapping
on M^{*} . must permute the C_{i} . It follows that for each i , there exists a
positive integer k_{i} such that

f_{*}^{k_{i}} : C_{i}arrow C_{i} , i=1,2 , \cdots , k .

If C_{i} is a point, f_{*}^{k_{i}}(C_{i})=C_{i} and \pi^{-1}(C_{i})=G(x_{1}) is a periodic orbit of f.
If C_{i}=I_{i} , f_{*}^{k_{i}} has a fixed point x_{1}^{*} on C_{i} by the Brower fixed-point the0-
rem. So again G(x_{1}) is a periodic orbit of f and clearly a principal orbit
and minimal submanifold of M. This establishes ( i ) . (iii) follows from
the Fuller Theorem and (iv) from 3. 3.

The same argument of 4. 3 can be used to establish:

THEOREM 4. 4. Let G be a compact connected Lie group of isometries
on a closed connected Riemannian n-manifold M. Let a\in R be a non
-zero critical value of the volume function on M^{*} and write

V^{-1}(a)=C_{1}\cup C_{2}\cdots\cup C_{k}

as the union of its components. Suppose fifinally for some i , 1\leq i\leq k , that
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\chi(C_{i})\neq 0 and that the Lefschetz fifixed point theorem is valid for C_{i} .
If f is an equivariant isometry on M , there exists a periodic orbit

G(x_{i}) , x_{i}^{*}\in C_{i} , which is a minimal submanifold of M and either a princi-
pal or exceptional orbit. Moreover, if \chi(G(x_{i}))\neq 0 , each point in G(x_{i}) is
a periodic point.

We return briefly to Examples 3. 5 and 3. 6. In 3. 5 the volume func-
tion on M^{*} is given by

V(\theta_{1}, \cdots, \theta_{k})=\alpha_{p_{1}-1}\cdots\alpha_{p_{k}-1}\sin^{p_{1}-1}\theta_{1}\cdots\sin^{p_{k}-1}\theta_{k} .

Hence there exists a unique maximum at

\theta_{1}=\cdots=\theta_{k}=\pi/2 .

The orbit is

G(x)=S^{p_{1}-1}(1)\cross\cdots\cross S^{p_{k}-1}(1)\cross K/H

which is principal and a minimal submanifold of M. If \chi(G(x))\neq 0 , i . e .
p_{i} is odd for all i and \chi(K/H)\neq 0 , and f is an isometry of M, each point
of G(x) is a periodic point of f.

In 3. 6 the volume function on M^{*} is given by V(\theta_{1}, \cdots, \theta_{k})=\alpha_{p_{1}}\ldots

\alpha_{p_{k}}\theta_{1}^{p_{1}}\cdots\theta_{k}^{p_{k}}

where

M^{*}= { (\theta_{1} , \cdots , \theta_{k} ) :\theta_{i}\geq 0 and \theta_{1}^{2}+\cdot+\theta_{k}^{2}=1 }.

So V has a maximum at
\theta_{i}^{2}=p_{i}/n , i=1 , \cdots , k ,

and

G(x)=S^{p_{1}}(\sqrt{\frac{p_{1}}{n}})\cross\cdots\cross S^{p_{k}}(\sqrt{\frac{p_{k}}{n}})\cross K/H

is the unique principal orbit of maximum volume which is, of course, a
minimal submanifold of M. Again if \chi(G(x))\neq 0 , i . e . p_{i} is even for all i
and \chi(K/H)\neq 0 , and f is an isometry of M, each point of G(x) is a peri-
odic point of f.

The following is a special case of Theorem 3. 2 of [14].

THEOREM 4. 5. Let G be a toral group, i . e.y compact connected
abelian Lie group, of isometries acting on a closed connected Riemannian
n-manifold M , \chi(M)\neq 0 . Then, if f:Marrow M is an equivariant isometry,
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f^{k} : F(G, M)arrow F(G, M)

has a fifixed point for some k\leq N[F(G, M)] . Moreover

N[F(G, M)]\leq N(M) .

COROLLARY 4. 6. Let M be a closed connected Riemannian n-mani-
fold with \chi(M)\neq 0 , and Z an infinitesimal isometry of M with Y=Zero(Z) ,

the zerO-set of Z. If f is an isometry of M with

df(Z_{X})=Z_{f(\chi)} , all x\in M ,

then

f^{k} : Yarrow Y

has a fifixed point for some k\leq N(Y) . Moreover

N(Y)\leq N(M) .

PROOF. Let G be the closure of the 1-parameter subgroup of
Isom(M) generated by Z . Then G is a toral group and

F(G, M)=Zero(Z)=Y

The following result may be found in [12, p. 63].

THEOREM 4. 7. (Kobayashi) Let M be a closed Riemannian mani-
fold and f an isometry of M. If F denotes the fifixed point set of f and
L(f) , the Lefschetz number of f .

L(f)=\chi(F) .

REMARK 4. 8. The Fuller (1. 1) and Kobayashi (4. 7) results hold
without the assumption of connectedness of the space. In the remainder
of the paper, for technical reasons, we will not assume that our Rieman-
nian manifold M is connected, e . g . M might consist of components of
different dimensions.

We conclude this section with a result on the existence of common
periodic points for commuting isometries, which appears to be new.

THEOREM 4. 9. Let M be a closed Riemannian manifold with
\chi(M)\neq 0 . If f_{1} , f_{2} , \cdots , f_{r} are commuting isometries on M , then there exists
l\geq 1 such that

f_{i}^{l}(x)=x for some x\in M , 1\leq i\leq r .

PROOF. By the proof of the Fuller Theorem (1. 1), there exists
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k_{1}\leq N(M) such that
L(f_{1}^{k_{1}})\neq 0 .

Let

F_{k_{1}}=F(f_{1}^{k_{1}}, M) .

Now F_{k_{1}} is a Riemannian manifold [12, 5. 1] and by the Kobayashi the0-
rem (4. 7),

\chi(F_{k_{1}})=L(f_{1}^{k_{1}})\neq 0 .

Since f_{1} and f_{2} commute,

f_{2} : F_{k_{1}}arrow F_{k_{1}} , \chi(F_{k_{1}})\neq 0 .

By (1. 1) again, there exists k_{2}\leq N(F_{k_{1}}) such that
L(f_{2}^{k_{2}}|F_{k_{1}})\neq 0 .

Now F(f_{2}^{k_{2}}, F_{k_{1}}) is a Riemannian manifold and
F(f_{2}^{k_{2}}, F_{k_{1}})=F_{k_{1}}\cap F_{k_{2}} ,

where F_{k_{2}}=F(f_{2}^{k_{2}}, M) so by (4. 7) again,

\chi(F_{k_{1}}\cap F_{k_{2}})=\chi[F(f_{2}^{k_{2}}, F_{k_{1}})]=L(f_{2}^{k_{2}}|F_{k_{1}})\neq 0 .

Since f_{1} , f_{2} , and f_{3} commute,

f_{3} : F_{k_{1}}\cap F_{k_{2}}arrow F_{k_{1}}\cap F_{k_{2}}

and, proceeding in this way, we obtain k_{3} , \ldots , k_{r} and the associated fixed
point sets F_{k_{3}} , \cdots , F_{kr} . Finally let

l=lcm(k_{1}, k_{2}, \ldots, k_{r})

and

x\in F_{k_{1}}\cap F_{k_{2}}\cap\cdots\cap F_{kr} ,

which is non-empty since
\chi(F_{k_{1}}\cap F_{k_{2}}\cap\cdots\cap F_{kr})\neq 0 .

CONJECTURE 4. 10. We can choose
l\leq[N(M)]^{r}

in 4. 9.

REMARK 4. 11. If f_{1} , f_{2} , \cdots , f_{r} in 4. 9 lie in the same maximal torus T
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of Isom(M), it follows immediately that they have a common fifixed point, i .
e. , l=1 . This is a consequence of the fact that if a toral group T acts on
M, \chi[F(T, M)]=\chi(M) ; see for example [12, 5. 5(1)] .

We observe that the Fuller theorem also holds for compact complex
manifolds with self-holomorphic diffeomorphisms using the Dolbeault c0-

homology and the holomorphic Lefschetz fixed point theorem. More gen-
erally, we can obtain Fuller type theorems using cohomology of elliptic
complexes and the Lefschetz fixed point theorem of Atiyah-Bott [1].
Hence we can show that if a toral group T acts effectively and smoothly
on a closed connected smooth manifold M with signature, Sign (M)\neq 0 ,

and if f:Marrow M is an equivariant diffeomorphism, then f has a periodic
point on F(T. M) .
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