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Abstract

In this paper we consider closed subalgebras of C(M) and study the struc-
ture of algebras \mathscr{A} satisfying \mathscr{A}_{b}=C(M) . We show that the Bourgain
algebra of A is contained in H^{\infty}(D)+C(\overline{D}) if A is between the disk alge-
bra A(D) and H^{\infty}(D) or between H^{\infty}(D) and H^{\infty}(D)+C(\overline{D}) , and the
Bourgain algebra of H^{\infty}\circ L_{m} is contained in H^{\infty}(D)+C(\overline{D}) if m is a
nontrivial point.

1. Introduction.

Let D be the open unit disk, and let H^{\infty}(D) be the algebra of all
bounded analytic functions on D. L^{\infty}(\partial D) denotes the usual space of
bounded measurable functions on \partial D , and let H^{\infty}(\partial D) (or simply H^{\infty} ) be
the subalgebra of L^{\infty}(\partial D) consisting of boundary values of functions in
H^{\infty}(D) .

Let M=M(H^{\infty}) denote the maximal ideal space of H^{\infty} The open
unit disk D can be identified as an open set in M. By using the Gelfand
transform we think of H^{\infty}(D) as a closed subalgebra of C(M) , the space
of continuous functions on M.

For \varphi , \tau\in M , the pseudohyperbolic distance between \varphi and \tau , denoted
by \rho(\varphi, \tau) , is defined by

\rho(\varphi, \tau)=\sup { |\varphi(f)| : f\in H^{\infty}-||f||<1 , and \tau(f)=0}.

The Gleason part of \varphi is denoted by P(\varphi) , and is defined by

P(\varphi)=\{\tau\in M:\rho(\varphi, \tau)<1\} .

For each \varphi\in M , Hoffman [H02] constructed a fundamental canonical
map L_{\varphi} of the unit disk D onto the part P(\varphi) . This map is defined by
taking a net \{w_{a}\} in D such that w_{a}arrow\varphi and defining

f \circ L_{\varphi}(z)=\lim_{a}f(\frac{w_{a}+z}{1+\overline{w_{a}}z})

for z\in D and f\in H^{\infty} the above limit exists and is independent of the net
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\{w_{a}\} provided that w_{a}arrow\varphi . Budde [Bu] extended the map L_{\varphi} from the
maximal ideal space M onto the closure of the part P(\varphi) in M. We shall
use the symbol L_{\varphi} for this extension.

If f is in C(M) (or L^{\infty}), then the closed subalgebra of C(M) (respec-
tively L^{\infty}) generated by H^{\infty}(D) (respectively H^{\infty}) and f is denoted by
H^{\infty}[f] .

Let A be a subalgebra of C(X) where X is a compact Hausdorff
space. Cima and Timoney [CT] introduced the notation of the Bourgain
algebra. The Bourgain algebra A_{b} consists of those f in C(X) such that
if f_{n}arrow 0 weakly in A, then dist(ffn,A)arrow 0 . The distance, dist(ff_{n}, A) is
the quotient norm of ff_{n}+A in the space C(X)/A. The proof in [CT]
shows that A_{b} is a closed subalgebra of C(X) and contains A. Several
authors have studied Bourgain algebras, [Bi], [CJY], [CSY 1], [CSY2],
[GSZ], [GIM], [I], [MY], [Y], [Z]. In this paper we consider close subal-
gebras of C(M) .

In Section 2, we present one lemma that will be used frequently in this
paper. In Section 3, we consider closed subalgebras \mathscr{A} of C(M) which
contain H^{\infty}(D) , and study the structure of \mathscr{A} satisfying \mathscr{A}_{b}=C(M) . In
Section 4, we consider algebras A between the disk algebra A(D) and
H^{\infty}(D) or between H^{\infty}(D) and H^{\infty}(D)+C(\overline{D}) and obtain that A_{b} is still
contained in H^{\infty}(D)+C(\overline{D}) . Also we show that (H^{\infty}\circ L_{m})_{b} is contained in
H^{\infty}(D)+C(\overline{D}) if m is a nontrivial point although H^{\infty}\circ L_{m} does not contain
the disk algebra A(D) in case m is a nonhomeomorphic point.

2. Preliminaries and notations.

A sequence \{z_{n}\} in D is called an interpolating sequence if for every
bounded sequence of complex numbers \{w_{n}\} there exists a function f in
H^{\infty} such that f(z_{n} } =w_{n} for all n . A Blaschke product

B(z)= \prod_{n=1}^{\infty}\frac{\overline{a_{n}}}{|a_{n}|}\frac{a_{n}-z}{1-\overline{a_{n}}z}

is said to be interpolating if its zero sequence \{a_{n}\} in D is an interpolating
sequence. Let Z(B)=\{x\in M(H^{\infty}) : B(x)=0\} , then by [G, p. 379], Z(B)=
ctosure\{a_{n}\} . The Blaschke product B is called thin if

\lim_{karrow\infty}\prod_{n\neq k}|\frac{z_{n}-z_{k}}{1-\overline{z_{n}}z_{k}}|=1 .

In this paper we use \overline{f} to denote the harmonic extension of f to the
unit disk D if f is a function on the unit circle \partial D . f^{*} denotes the nontan-
gential limit of f if f is defined on D and its nontangential limit exists.
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We use H^{\infty} to denote H^{\infty}(\partial D) or H^{\infty}(D) for simplicity. Since C(M) is an
algebra generated by H^{\infty}(D) and \overline{H^{\infty}(D)}, the nontagential limit f^{*} always
exists for each function f in C(M) .

Throughout this paper, the following lemma will be used several
times.

LEMMA 2. 1. Let m be a nontrivial point and \{z_{n}\} be a sequence in
D such that |z_{n}|arrow 1 , as narrow\infty . Then there exists a subsequence \{z_{n_{k}}\} of
\{z_{n}\} and a weakly null sequence \{f_{n}\} in H^{\infty} such that ||f_{n}||\leq 2 and

|f_{k} \circ L_{m}(z_{n_{k}})|>\frac{3}{4}, whenever m is a nontrivial point. Moreover \{f_{k}\circ L_{m}\} is

also a weakly null sequence in H^{\infty}\circ L_{m} .

PROOF. Let m be a nontrivial point, and let \phi_{n}=L_{m}(z_{n}) , and \phi\in

\bigcap_{n=1}^{\infty} closure \{\phi_{n}, \phi_{n+1}, \ldots\} . If \phi is in P(m) , then there is a point Zo in D
such that L_{m}(z_{0})=\phi . Since m is nontrivial, it follows from [Ho 2, p. 105]
that

\rho(\phi, \phi_{n})=\rho(L_{m}(z_{1}), L_{m}(z_{n}))=\rho(z_{0}, z_{n})arrow 1 ,

as narrow\infty . In case that \phi is not in P(m) , \rho(\phi, \phi_{n})=1 for all n . Thus the
proof of Theorem 3 in [AG2] still works, and from its proof we can see
that there are functions F_{n} and G_{n} in H^{\infty} such that for some subsequence
\{\phi_{n_{k}}\} of \{\phi_{n}\} ,

\sum_{n=1}^{\infty}|F_{n}(z)\prod_{j=1}^{n-1}G_{j}(z)|<2

and F_{k}(\phi_{n_{k}})=1 , and |1-( \prod_{j=1}^{k-1}G_{j})(\phi_{n_{k}})|<1/4 . Let f_{k}=F_{k} \prod_{j=1}^{k-1}G_{j} . Then

\sum_{k=1}^{\infty}|f_{k}(z)|<2

and |1-f_{k}(\phi_{n_{k}})|<1/4 . Thus |f_{k}\circ L_{m}(z_{n_{k}})|>3/4 , and f_{k} is a weakly null
sequence in H^{\infty}

Since m is nontrivial, by [H02] there exists a net z_{a} in D such that
z_{a}arrow m and

f_{k} \circ L_{m}(z)=\lim_{z_{a}arrow m}f_{k}(\frac{z+z_{a}}{1+\overline{z_{a}}z}) .

Thus \sum_{k=1}^{\infty}|f_{k}\circ L_{m}(z)|<2 . Thus \{f_{k}\circ L_{m}\} is a weakly null sequence in H^{\infty}\circ L_{m} ,

as desired.
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From the above proof we can easily get the following lemma.

LEMMA 2. 2. Let b be an interpolating Blaschke product. There are
points \{m_{n}\} in Z(b)-D and a weakly null sequence \{f_{n}\} such that ||f_{n}||\leq 2

and |f_{n}(m_{n})|>3/4 .

3. Subalgebras \mathscr{A} of C(M) satisfying \mathscr{A}_{b}=C(M) .
In this section we consider closed subalgebras \mathscr{A} of C(M) having the

property \mathscr{A}_{b}=C(M) . Here we present some properties that shed some
lights on the structure of these algebras.

THEOREM 3. 1. Let \mathscr{A} be a closed subalgebra of C(M) which con-
tains H^{\infty}(D) . If \mathscr{A}_{b}=C(M) , then \mathscr{A}\circ L_{m}\neq H^{\infty}\circ L_{m} whenever m is a

nontrivial point.

The proof of Theorem 3. 1 will be given at the end of this section.
Now let us mention the following consequences of Theorem 3. 1. If \mathscr{B} be
a subset of C(M) , we use H^{\infty}[\mathscr{B}] to denote the algebra generated by \mathscr{B}

over H^{\infty}

COROLLARY 3. 2. Let \mathscr{B} be a subset of the complex conjugates of H^{\infty} .

and let \mathscr{A}=H^{\infty}[\mathscr{B}] . If the Bourgain algebra \mathscr{A}_{b} is C(M), then any
nontrivial point is a maximal antisymmetric set for \mathscr{A}.

P. Gorkin and R. Mortini found examples of proper subalgebras \mathscr{A} of
C(M) such that \mathscr{A}_{b}=C(M) (private communication).

COROLLARY 3. 3. Let \mathscr{B} be a subset of the complex conjugates of H^{\infty}-

and let \mathscr{A}=H^{\infty}[\mathscr{B}] . If the Bourgain algebra \mathscr{A}_{b} is C(M) , then for any
inner function b with |b|=1 on trivial points, the conjugate of b is in \mathscr{A}.
In particular, \mathscr{A} contains the conjugate of every thin Blaschke product.

The following lemma will be used in the proof of Corollary 3. 2, which
first appeared in [Z]. Let \mathscr{B} be a subset of the complex conjugates of H^{\infty}-

We define
E(\mathscr{B})= { m\in M:f\circ L_{m} is not constant for some f\in \mathscr{B} }.

LEMMA 3. 4. If S is a maximal antisymmetric set for H^{\infty}[\mathscr{B}] , and
S\cap E(B) is not empty, then S contains only one point.

PROOF. Since S\cap E(B) is not empty, for some f in \mathscr{B}, S\cap E(f) is
not empty. From the proof of Theorem 1 in [AG2] it follows that there is
an interpolating Blaschke product b such that S is a subset of Z(b) . Now
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observe that Z(b) is totally disconnected because by [Ho 1, p. 205], it is
homeomorphic to the Stone-Cech compactification \beta N of N. Since S is
connected, this forces S to be just one point.

PROOF of COROLLARY 3. 2. Let S be a maximal antisymmetric set
for \mathscr{A}, and suppose that S contains a nontrivial point m. If m is not in
E(\mathscr{B}) , then \mathscr{A}\circ L_{m}=H^{\infty}\circ L_{m} , contradicting Theorem 3. 1. If m is in
E(\mathscr{B}) , then by Lemma 3. 4, S is just one point.

PROOF of COROLLARY 3. 3. Let b be an inner function such that |b|=
1 on any trivial point, and let S be a maximal antisymmetric set for \mathscr{A}.

If S does not contain any nontrivial point, then \overline{b}|_{s}=\frac{1}{b}|_{s} is in \mathscr{A}|_{s} . On

the other hand, if S contains any nontrivial point, then by Lemma 3. 4, S
is just one point. So \overline{b}|_{s} is in \mathscr{A}|_{s} . By Bishop antisymmetric decomposi-
tion theorem we have \overline{b} is in \mathscr{A}.

In particular, if b is thin, the zero set of b does not contain any triv-
ial point. So |b|=1 on trivial points [He]. From above we get \overline{b} is in \mathscr{A}.

Now we return to the proof of Theorem 3. 1.

PROOF of THEOREM 3. 1. Suppose that \mathscr{A}\circ L_{m}=H^{\infty}\circ L_{m} for some
nontrivial point m. Let

E=\{g\in C(M) : dist D(gf_{n}\circ L_{m}, H^{\infty})-0, for any weakly null
sequence f_{n}\in \mathscr{A}}.

It is easy to see that E is a closed vector space. Because \mathscr{A}^{\circ}L_{m}=

H^{\infty}\circ L_{m} , we see that E contains H^{\infty}(D) .
The rest of the proof will be divided into several steps.

STEP 1. The set E contains C(M)\circ L_{m} .
Since \mathscr{A}_{b}=C(M) , it suffices to show that E contains \mathscr{A}_{b}\circ L_{m} . Let f

be in \mathscr{A}_{b} . Then for any weakly null sequence \{f_{n}\} in \mathscr{A}, we have
dist_{D}(f\circ L_{m}f_{n}\circ L_{m}, H^{\infty})\leq dist_{D}(f\circ L_{m}f_{n}\circ L_{m}, H^{\infty}\circ L_{m})

=dist_{D}(f\circ L_{m}f_{n}\circ L_{m}, \mathscr{A}\circ L_{m})\leq dist_{D}(ff_{n}, \mathscr{A})arrow 0 ,

as narrow\infty . Thus f\circ L_{m} is in E, completing the proof of Step 1.

STEP 2. H^{\infty}[f]\subset E whenever f is in C(M)\circ L_{m} .
Let g be in H^{\infty} and f in C(M)\circ L_{m} . By Step 1, f is in E. Let \{f_{n}\} be

any weakly null sequence in \mathscr{A} Then
dist_{D}(gff_{n}\circ L_{m}, H^{\infty})\leq dist_{D}(gff_{n}\circ L_{m}, gH^{\infty})

\leq||g||_{\infty}dist_{D}(ff_{n}\circ L_{m}, H^{\infty})arrow 0 ,



296 R. Younis and D. Zheng

as narrow\infty because f is in E . Thus gf is in E .
Since C(M)\circ L_{m} is an algebra, and E is a closed vector space contain-

ing H^{\infty} . we get that \sum_{j=0}^{n}g_{j}f^{j} is in E for any gj in H^{\infty} . and that E contains
H^{\infty}[f] , as required.

STEP 3. There exists an interpolating Blaschke product b such that
\overline{b} is in E.

First we claim that there is a function f in H^{\infty}\circ L_{m} which is not con-
stant on some nontrivial point. To prove the claim we consider two
cases.

(i) L_{m}(z) is homeomorphic. Hence L_{m}(z) has an injective extension
on M . Let \tau be a nontrivial point in M/D and z\neq 0 in D . Since L_{m}(z) is
homeomorphic, by Theorem 1. 4 in [GLM] we have L_{m}\circ L_{\tau}(z)\neq L_{m}(\tau) .
Because H^{\infty} separates points of M, then there is a function g in H^{\infty} such
that g\circ L_{m}\circ L_{\tau}(z)\neq g\circ L_{m}(\tau) . Let f=g\circ L_{m} . Thus f is not constant on the
Gleason part P(\tau) .

(ii) L_{m}(z) is not homeomorphic. There are a nontrivial point \tau in
M/D and a point w in D such that L_{m}(\tau)=L_{m}(w) , we may assume that w

is 0. By Theorem 2. 5 of Chapter X in [G], then we have L_{m}\circ L_{\tau}(z)=

L_{m}(\alpha z) for some constant \alpha with |\alpha|=1 . Since H^{\infty} separates its maximal
ideal space M, there is a function g in H^{\infty} such that g\circ L_{m}(z) is not con-
stant. Let f=g\circ L_{m} . Thus f\circ L_{\tau}(z)=g\circ L_{m}\circ L_{\tau}(z)=g\circ L_{m}(\alpha z) is not con-
stant. This finishes the proof of our claim.

To finish the proof of Step 3, we let f be a function in H^{\infty}\circ L_{m} as
above. By Theorem 2 in [AG], there is an interpolating Blaschke product
b such that \overline{b} is in H^{\infty}[\overline{f}] . Since \overline{H^{\infty}\circ L_{m}} is a subset of C(M)\circ L_{m} , by
Step 2 we have H^{\infty}[\overline{f}]\subset E . Thus \overline{b} is in E, as promised.

Now we are ready to finish the proof of Theorem 3. 1. Let b the
interpolating Blaschke product b in Step 3 and let \{z_{n}\} be its zero set. By
Lemma 2. 1, we can choose a weakly null sequence \{f_{k}\} in \mathscr{A} such that

|f_{k} \circ L_{m}(z_{n_{k}})|>\frac{3}{4} . Since \overline{b} is in E, for such weakly null sequence \{f_{k}\} , we

have
0arrow dist_{D}(\overline{b}f_{k}\circ L_{m}, H^{\infty})\geq dist_{\partial D}(b^{*}f_{k}\circ L_{m}^{*}, H^{\infty})- .
=dist_{\partial D}(f_{k^{\circ}}L_{m}^{*}, b^{*}H^{\infty})=dist_{D}(f_{k} \circ L_{m}, bH^{\infty})\geq|f_{k}\circ L_{m}(z_{n_{k}})|\geq\frac{3}{4} .

This contradication shows that \mathscr{A}\circ L_{m}\neq H^{\infty}\circ L_{m} , and this completes the
proof of Theorem 3. 1.
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4. Bourgain algebras of some subalgebras of H^{\infty}(D)+C(\overline{D}) .
K. Hoffman [H02] showed that if m is a nontrivial point, then for any

f in H^{\infty}(D) , f\circ L_{m} is in H^{\infty}(D) . Thus H^{\infty}\circ L_{m} is a subalgebra of H^{\infty}(D) .
In many cases H^{\infty}\circ L_{m} does not contain A(D) . In case that m is locally
thin, then [GLM], H^{\infty}\circ L_{m}=H^{\infty}(D) . Nevertheless, we have the following
theorem.

THEOREM 4. 1. If m is a nontrivial point, then
(H^{\infty}\circ L_{m})_{b}\subset H^{\infty}(D)+C(\overline{D}) .

PROOF. Let f be in (H^{\infty}\circ L_{m})_{b} . First we claim that H^{\infty}[f^{*}]\subset H^{\infty}+C .
To prove the claim, by the Chang-Marshall theorem ([C] [G], [M]), it
suffices to show that H^{\infty}[f^{*}] doesn’t contain any conjugate of infinite Blas-
chke products.

Let \emptyset be an infinite Blaschke product with zeros \{z_{n}\} and assume that
\overline{\emptyset} is in H^{\infty}[f^{*}] . By Lemma 2. 1, there is a weakly null sequence \{g_{k}\} in

H^{\infty}\circ L_{m} such that |g_{k}(z_{n_{k}})|>3/4 . Pick some h_{i} in H^{\infty} for i=0, \ldots , n so that
|| \overline{\psi}-\sum_{i=0}^{n}h_{i}(f^{*})^{i}||_{\partial D}<1/8 . Let C= \max_{j=0,\cdots,n}||h_{j}||_{\partial D} . Since f^{i} is in (H^{\infty}\circ L_{m})_{b}

for i=0, \ldots , n , we choose f_{i} in H^{\infty}\circ L_{m} such that ||g_{k}f^{i}-f_{i}||_{D}< \frac{1}{8nC} for i=0,

..., n as k is sufficiently large. For such k, we have ||g_{k}^{*}(f^{*})^{i}-f_{i}^{*}||_{\partial D} \leq\frac{1}{8nC}

for i=0, \ldots , n . Now we obtain

|| \overline{\phi}g_{k}^{*}-\sum_{i=0}^{n}f_{i}^{*}h_{i}||_{\partial D}\leq||(\overline{\phi}-\sum_{i=0}^{n}h_{i}(f^{*})^{i})g_{k}^{*}||_{\partial D}+||\sum_{i=0}^{n}(h_{i}(f^{*})^{i}g_{k}^{*}-f_{i}^{*}h_{i})||_{\partial D}

\leq||g_{k}^{*}||_{\partial D}||\overline{\phi}-\sum_{i=0}^{n}h_{i}(f^{*})^{i}||_{\partial D}+\sum_{i=0}^{n}||h_{i}||_{\partial D}||(f^{*})^{i}g_{k}^{*}-f_{i}^{*}||_{\partial D}

\leq\frac{2}{8}+\sum_{i=0}^{n}||h_{i}||_{\partial D}\frac{1}{8nC}\leq\frac{1}{4}+\frac{1}{8}=\frac{3}{8} .

On the other hand, because |\overline{\phi}|=1a . e . on \partial D , we have
|| \overline{\phi}g_{k}^{*}-\sum_{i=0}^{n}f_{i}^{*}h_{i}||_{\partial D}=||g_{k}^{*}-\phi\sum_{i=0}^{n}f_{i}^{*}h_{i}||_{\partial D} .

As \sum_{i=0}^{n}f_{i}^{*}h_{i} , and g_{k}^{*} are in H^{\infty} . the maximum modulus principle yields

||g_{k}^{*}- \phi\sum_{i=0}^{n}f_{i}^{*}h_{i}||_{\partial D}=||g_{k}-\phi\sum_{i=0}^{n}f_{i}h_{i}||_{D}

\geq|g_{k}(z_{n_{k}})-\phi(z_{n_{k}})\sum_{i=0}^{n}f_{i}(z_{n_{k}})h_{i}(z_{n_{k}})|=|g_{k}(z_{n_{k}})| .
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Thus \frac{3}{8}\geq|g_{k}(z_{n_{k}})| . This contradicts the choice of g_{k} , which satisfy

|g_{k}(z_{n_{k}})|> \frac{3}{4} for any k. Thus H^{\infty}[f^{*}] doesn’t contain \overline{\emptyset}.

Now we have that f^{*} is in H^{\infty}+C . Thus the harmonic extension \overline{f}^{*}

is in H^{\infty}+C(\overline{D}) . Let g=f-\tilde{f}^{*} . Clearly g|_{\partial D}\equiv 0 . Now we are going to
show that g(z)arrow 0 as zarrow\partial D .

If not, then there is an interpolating sequence \{w_{n}\} in D such that
|g(w_{n})|>\delta , for some \delta>0 . By Lemma 2. 1, there exists a weakly null
sequence \{g_{k}\circ L_{m}\} in H^{\infty}\circ L_{m} such that |g_{k}\circ L_{m}(w_{n_{k}})|>3/4 .

Since f is in (H^{\infty}\circ L_{m})_{b} , there is a sequence \{l_{k}\} in H^{\infty}\circ L_{m} such that
||fg_{k}\circ L_{m}-l_{k}||_{D}arrow 0 . Because H^{\infty}(D)+C(\overline{D})=(H^{\infty}(D))_{b} [GSZ], \tilde{f}^{*} is in
(H^{\infty}(D))_{b} . Thus there exists a sequence \{u_{k}\} in H^{\infty}(D) such that ||\tilde{f}^{*}g_{k^{\circ}}

L_{m}-u_{k}||_{D}arrow 0 . Consequently ||gg_{k}\circ L_{m}-(l_{k}-u_{k})||_{D}arrow 0 .
Set h_{k}=l_{k}-Uk . Then we get ||h_{k}^{*}||_{\partial D}arrow 0 . But g vanishes on \partial D , and

hence ||h_{k}||_{D}arrow 0 . Thus ||gg_{k}\circ L_{m}||_{D}arrow 0 . But |g(w_{n_{k}})g_{k} \circ L_{m}(w_{n_{k}})|>\frac{3\delta}{4} . This

contradiction shows that g(z)arrow 0 as zarrow\partial D , completing the proof that g is
in C(\overline{D}) . Thus f=\tilde{f}^{*}+g is in H^{\infty}(D)+C(\overline{D}) , as required.

K. Izuchi [I] proved that the Bourgain algebra of a closed subalgebra
between A(\partial D) and H^{\infty} on L^{\infty}(\partial D) is always contained in H^{\infty}+C . Since
on the disk there are many closed subalgebras of C(M) which are
between H^{\infty}(D) and H^{\infty}(D)+C(\overline{D}) , the following theorem says that the
Bourgain algebra of a closed subalgebra between A(D) and H^{\infty}(D) or
between H^{\infty}(D) and H^{\infty}(D)+C(\overline{D}) is always contained in H^{\infty}(D)+C(\overline{D}) .

THEOREM 4. 2. Let \mathscr{A} be a closed subalgebra of C(M) . If A(D)\subset

\mathscr{A}\subset H^{\infty}(D) or H^{\infty}(D)\subset \mathscr{A}\subset H^{\infty}(D)+C(\overline{D}) , then (\mathscr{A})_{b} is contained in
H^{\infty}(D)+C(\overline{D}) .

PROOF. Case 1. \mathscr{A} is between A(D) and H^{\infty}(D) .
In this case the proof that (\mathscr{A})_{b} is contained in H^{\infty}+C is exactly the

same as the proof of Theorem 4. 1, but here we use the fact [I] that for
an interpolating sequence \{z_{n}\} in D, there is a weakly null sequence \{g_{k}\}

in the disk algebra A(D) such that |g_{k}(z_{n_{k}})|> \frac{3}{4} for a subsequence \{z_{n_{k}}\} of
\{z_{n}\} instead of Lemma 2. 1.

Case 2. \mathscr{A} is between H^{\infty}(D) and H^{\infty}(D)+C(\overline{D}) .
Let f be in (\mathscr{A})_{b} . The proof will be divided into two steps.
Step 1. The non-tangential limit f^{*} is in H^{\infty}+C .
If not, then by Chang-Marshall theorem there is an interpolating Bias-
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chke product b such that \overline{b} is in the Douglas algebra H^{\infty}[f^{*}] .
Define

\mathscr{A}_{2}=\{f\in C(M) : dist D(ff_{n}, H^{\infty}(D)+C(\overline{D}))arrow 0 , \forall f_{n}arrow 0 weakly in
\mathscr{A}\} .

It is easy to check that \mathscr{A}_{b}\subset \mathscr{A}_{2} , and that H^{\infty}[f^{*}]\subset \mathscr{A}_{b}|_{X}\subset \mathscr{A}_{2}|_{X} , where X
=M(L^{\infty}) . So for any weakly null sequence \{f_{n}\} in \mathscr{A},

(^{*}) dist_{X}(\overline{b}f_{n}^{*}, H^{\infty}+C)arrow 0 .

On the other hand,

dist_{X}(\overline{b}f_{n}^{*}, H^{\infty}+C)=dist_{X}(f_{n}^{*}, b(H^{\infty}+C))\geq||f_{n}||_{Z(b)-D} .

But by Lemma 2. 2, there is a weakly null sequence \{f_{n}\} in H^{\infty}(D) such
that ||f_{n}||_{Z(b)-D}>3/4 . Thus dist_{X}(\overline{b}f_{n}^{*}, H^{\infty}+C)>3/4 , which contradicts (^{*}) .
Thus the proof of Step 1 is now completed.

Step 2. Let g=f-\overline{f}^{*} . We are going to show that g is in C(\overline{D}) .
By Step 1, f^{*} belongs to H^{\infty}+C , and so \tilde{f}^{*} is in H^{\infty}(D)+C(\overline{D}) .

Thus g vanishes on \partial D , and g is continuous on D. In order to prove that
g is in C(\overline{D}) , we need only to show that g(z)arrow 0 as zarrow\partial D . If this is not
true, then we may assume that there is an interpolating sequence \{z_{k}\} in
D such that for some constant \delta>0 , |g(z_{k})|>\delta .

Let b be a Blaschke product with zeros \{z_{k}\} . By Lemma 2. 2, there is
a weakly null sequence \{f_{n}\} in H^{\infty}(D) such that |f_{n}(m_{n})|\geq 3/4 for some m_{n}

\in Z(b)-D . Since \tilde{f}^{*} is in H^{\infty}(D)+C(\overline{D}) , and f in \mathscr{A}_{b} , there is a
sequence \{g_{n}\}\subset H^{\infty}(D)+C(\overline{D}) such that
(^{**}) ||gf_{n}-g_{n}||_{D}arrow 0 .

Since g vanishes on \partial D , ||g_{n}^{*}||_{\partial D}arrow 0 . So ||\tilde{g}_{n}^{*}||_{D}arrow 0 . Since g_{n} is in H^{\infty}(D)

+C(\overline{D}),\tilde{g}_{n}^{*}|_{M-D}=g_{n}|_{M-D} , and so ||g_{n}||_{M-D}arrow 0 . Thus it follows from (^{**})

that
(^{***}) ||gf_{n}||_{M-D}arrow 0 .

But from above we have |g(m_{n})f_{n}(m_{n})|>\delta/2 . Thus the proof of Step 2 is
completed.

Since f=g+\tilde{f}^{*} . from Steps 1 and 2 we get that f is in H^{\infty}(D)

+C(\overline{D}) , and this completes the proof of Theorem 4. 2.
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