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Abstract

In this paper we consider closed subalgebras of C(M) and study the struc-
ture of algebras .+ satisfying «»=C(M). We show that the Bourgain
algebra of A is contained in H*(D)+ C(D) if A is between the disk alge-
bra A(D) and H®(D) or between H>*(D) and H<®(D)+ C(D), and the
Bourgain algebra of H®°L, is contained in H*(D)+C(D) if m is a
nontrivial point.

1. Introduction.

Let D be the open unit disk, and let H*(D) be the algebra of all
bounded analytic functions on D. L*(dD) denotes the usual space of
bounded measurable functions on 0D, and let H*(dD) (or simply H*) be
the subalgebra of L™(dD) consisting of boundary values of functions in
H>(D).

Let M=M(H>) denote the maximal ideal space of H*. The open
unit disk D can be identified as an open set in M. By using the Gelfand
transform we think of H®(D) as a closed subalgebra of C(M), the space
of continuous functions on M.

For ¢, r€ M, the pseudohyperbolic distance between ¢ and r, denoted
by o(e, 7), is defined by

o(e, r)=suplle(f)|: FEH>, |fI<1, and =(f)=0}.
The Gleason part of ¢ is denoted by P(¢), and is defined by
P(p)={r€M : oo, r)<1}.

For each oM, Hoffman [Ho2] constructed a fundamental canonical
map L, of the unit disk D onto the part P(¢). This map is defined by
taking a net {w.} in D such that w.— ¢ and defining

fo L) =limf(222 )

1+ wez

for z€D and f€H", the above limit exists and is independent of the net
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{wa} provided that w.— ¢. Budde extended the map L, from the
maximal ideal space M onto the closure of the part P(¢) in M. We shall
use the symbol L, for this extension.

If 7 is in C(M) (or L*), then the closed subalgebra of C(M) (respec-
tively L®) generated by H>*(D) (respectively H*) and f is denoted by
H>[f].

Let A be a subalgebra of C(X) where X is a compact Hausdorff
space. Cima and Timoney introduced the notation of the Bourgain
algebra. The Bourgain algebra A, consists of those f in C(X) such that
if f»—0 weakly in A, then dist(ff», A)—0. The distance, dist(ff», A) is
the quotient norm of ff»+A in the space C(X)/A. The proof in
shows that A, is a closed subalgebra of C(X) and contains A. Several
authors have studied Bourgain algebras, [Bi], [CJY], [CSY1], [CSY2],
[GSZ], [GIM], [1], [MY] [Y] [Z] In this paper we consider close subal-
gebras of C(M).

In Section 2, we present one lemma that will be used frequently in this
paper. In Section 3, we consider closed subalgebras .« of C(M) which
contain H*(D), and study the structure of .« satisfying .«»=C(M). In
Section 4, we consider algebras A between the disk algebra A(D) and
H=(D) or between H*(D) and H*(D)+ C(D) and obtain that A, is still
contained in H*(D)+ C(D). Also we show that (H®°L,), is contained in
H>(D)+ C(D) if m is a nontrivial point although H*°L, does not contain
the disk algebra A(D) in case m is a nonhomeomorphic point.

2. Preliminaries and notations.

A sequence {z,} in D is called an interpolating sequence if for every
bounded sequence of complex numbers {w»} there exists a function f in
H= such that f(z.}=w. for all ». A Blaschke product

2 an an—2
B(z)—nlel lan| 1—anz
is said to be interpolating if its zero sequence {a.} in D is an interpolating
sequence. Let Z(B)={x&M(H*): B(x)=0}, then by [G, p.379], Z(B)=
closure{an}. The Blaschke product B is called thin if

Zn__Zk
1—2,2:

lim][]

kooop+k

=1.

In this paper we use f to denote the harmonic extension of f to the
unit disk D if f is a function on the unit circle dD. f* denotes the nontan-
gential limit of f if f is defined on D and its nontangential limit exists.
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We use H* to denote H*(0D) or H®(D) for simplicity. Since C(M) is an
algebra generated by H*(D) and H>(D), the nontagential limit /* always
exists for each function f in C(M).

Throughout this paper, the following lemma will be used several

times.

LEMMA 2.1. Let m be a nontrivial point and {z.} be a sequence in
D such that |z.|—1, as n—co. Then there exists a subsequence {zn.} of
{22} and a weakly null sequence {fn} in H™ such that |f.|<2 and

lfkoLm(an)l>%, whenever m is a nontrivial point. Moveover {fr°Lm} is
also a weakly null sequence in H”oLn.

PROOF. Let m be a nontrivial point, and let ¢.=Ln(z.), and ¢
Ns=y closure {¢n, Pns1, ...}. If ¢ is in P(m), then there is a point 2, in D
such that L.(2)=¢. Since m is nontrivial, it follows from [Ho2, p.105]
that

0(p, ¢n)=0(Ln(20), Ln(20))=0(20, 20)—1,

as #n—©. In case that ¢ is not in P(m), o(@, ¢»)=1 for all n. Thus the
proof of Theorem 3 in [AG2] still works, and from its proof we can see
that there are functions F, and G. in H” such that for some subsequence

{¢ﬂk} of {¢n},

© n—1
2Fx(2)11 Gi(z)| <2
and Fu(¢n)=1, and [1~(TL G)(n)I<1/4. Let i=F.I1 G, Then

Sfl2)l<2

and |1—fu($n)|<1/4. Thus |feoLn(zn.)|>3/4, and f. is a weakly null
sequence in H”.

Since m is nontrivial, by [Ho2] there exists a net z. in D such that
2¢a—m and

fkoLm(z)=1imfk< 2 Za )

2—m 1+ Z_aZ

Thus g}l|fk°Lm(z)|<2. Thus {fx°Ln} is a weakly null sequence in H° L,

as desired.



294 R. Younis and D. Zheng

From the above proof we can easily get the following lemma.

LEMMA 2.2. Let b be an interpolating Blaschke product. There are
points {mn} in Z(b)—D and a weakly null sequence {fn} such that |fa]<2

3. Subalgebras .« of C(M)satisfying &= C(M).

In this section we consider closed subalgebras % of C(M) having the
property .« »=C(M). Here we present some properties that shed some
lights on the structure of these algebras.

THEOREM 3.1. Let & be a closed subalgebva of C(M) which con-
tains H*(D). If «»=C(M), then & °Ln+H L, whenever m is a
nontrivial point.

The proof of [Theorem 3.1 will be given at the end of this section.
Now let us mention the following consequences of [Theorem 3.1. If Z be
a subset of C(M), we use H*[#] to denote the algebra generated by %
over H”.

COROLLARY 3.2. Let Z be a subset of the complex conjugates of H”,
and let & =H*[Z). If the Bourgain algebra v is C(M), then any
nontrivial point is a maximal antisymmetric set for .

P. Gorkin and R. Mortini found examples of proper subalgebras .« of
C(M) such that .« ,=C(M) (private communication).

COROLLARY 3.3. Let % be a subset of the complex conjugates of HT,
and let & =H*[#]. If the Bourgain algebra s is C(M), then for any
inner function b with |b|=1 on trivial points, the conjugate of b is in .
In particular, & contains the conjugate of every thin Blaschke product.

The following lemma will be used in the proof of [Corollary 3.2, which
first appeared in [Z]. Let % be a subset of the complex conjugates of H”.
We define

E(#)={mEM : foLn is not constant for some fE Z}.

LEMMA 3.4. If S is a maximal antisymmetric set for H>[ %], and
SNE(B) is not empty, then S contains only one point.

PROOF. Since SN E(B) is not empty, for some f in %, SNE(f) is
not empty. From the proof of Theorem 1 in [AG2] it follows that there is
an interpolating Blaschke product & such that S is a subset of Z(5). Now
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observe that Z(b) is totally disconnected because by [Hol, p.205], it is
homeomorphic to the Stone-Cech compactification AN of N. Since S is
connected, this forces S to be just one point.

PROOF of COROLLARY 3.2. Let S be a maximal antisymmetric set
for ., and suppose that S contains a nontrivial point ». If m is not in

E(#), then & oLn=H%>Ln, contradicting fTheorem 3.1. If m is in
E(#), then by [Lemma 3.4, S is just one point.

PROOF of COROLLARY 3.3. Let b be an inner function such that |b|=
1 on any trivial point, and let S be a maximal antisymmetric set for .«

. .. . - 1, . .
If S does not contain any nontrivial point, then b|s:?|s is in &[s. On

the other hand, if S contains any nontrivial point, then by Lemma 3.4, S
is just one point. So b&|s is in #/|s. By Bishop antisymmetric decomposi-
tion theorem we have & is in %,
In particular, if b is thin, the zero set of & does not contain any triv-
ial point. So |b|=1 on trivial points [He]. From above we get b is in .«
Now we return to the proof of [Theorem 3. 1.

PROOF of THEOREM 3.1. Suppose that % oL,=H%"°L, for some
nontrivial point m. Let

E={9€C(M): dist p(gfn°Lm, H*)—0, for any weakly null
sequence fn< &},

It is easy to see that E is a closed vector space. Because o oL n,=
H%°Ln, we see that E contains H*(D).
The rest of the proof will be divided into several steps.

STEP 1. The set E contains C(M)° L.
Since «,=C(M), it suffices to show that E contains .#s°L.. Let f
be in #,. Then for any weakly null sequence {f.} in %, we have

diStD(fomenoLm, Hw)édiStD(fomenoLm, HoooLm>
:disfo(fomenoLm,M°Lm)£di3t0(ffn,u9/)_’0,

as n—. Thus feLu is in E, completing the proof of Step 1.

STEP 2. H”[f]CE whenever f is in C(M)° L.
Let g be in H” and f in C(M)°Ln.. By Step 1, f isin E. Let {f.} be
any weakly null sequence in .«#. Then

disto(gffue Ln, H*) < disto(gffno Lm, gH®)
<||gllwdisto(ffro Ln, H*)—0,
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as n—© because f isin E. Thus gf is in E.
Since C(M)°L is an algebra, and E is a closed vector space contain-

ing H*, we get that Zogjfj is in E for any g¢; in H*, and that E contains
H*[f], as required.

STEP 3. There exists an interpolating Blaschke product & such that
b isin E.

First we claim that there is a function f in H”°L, which is not con-
stant on some nontrivial point. To prove the claim we consider two
cases.

(i) Ln(2) is homeomorphic. Hence Ln(z) has an injective extension
on M. Let r be a nontrivial point in M/D and 2+#0 in D. Since Ln(z) is
homeomorphic, by Theorem 1.4 in we have LneL:(2)#Ln(7).
Because H* separates points of M, then there is a function g in H® such
that goLnoL.(2)#goLn(r). Let f=geLs Thus f is not constant on the
Gleason part P(r).

(ii) Ln(2) is not homeomorphic. There are a nontrivial point r in
M/D and a point w in D such that Ln(r)=Ln(w), we may assume that w
is 0. By Theorem 2.5 of Chapter X in [G], then we have LnoL:(2)=
Ln(az) for some constant @ with |¢|=1. Since H® separates its maximal
ideal space M, there is a function g in H* such that g°Ln(z) is not con-
stant. Let f=g°Ln. Thus foL.(2)=geLn°L.(2)=g°Ln(az) is not con-
stant. This finishes the proof of our claim.

To finish the proof of Step 3, we let f be a function in H%°Ln» as
above. By Theorem 2 in [AG], there is an interpolating Blaschke product
b such that 5 is in H*[f]. Since H®°Ln is a subset of C(M)°Ln, by
Step 2 we have H*[ f]CE. Thus b is in E, as promised.

Now we are ready to finish the proof of [Theorem 3.1 Let & the
interpolating Blaschke product 4 in Step 3 and let {z.} be its zero set. By
Lemma 2.1, we can choose a weakly null sequence {fx} in .« such that

|fkoLm(zn,,)|>—43—. Since b is in E, for such weakly null sequence {f:}, we
have

O—disto( bfxo Lm, H*) = distan(b* feo Lk, H”).

— distoolfue L, b* H™)=disto(f* Ln, bH™) 2o Ln(zn) =~

This contradication shows that . cLn,#H"°Ly,, and this completes the
proof of [(Theorem 3. 1.
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4. Bourgain algebras of some subalgebras of H*(D)+ C(D).

K. Hoffman [Ho2] showed that if » is a nontrivial point, then for any
fin H*(D), feLn is in H*(D). Thus H*°L. is a subalgebra of H*(D).
In many cases H*°Ln does not contain A(D). In case that m is locally
thin, then [GLM], H*°L,=H>(D). Nevertheless, we have the following
theorem.

THEOREM 4.1. If m is a nontrivial point, then
(H®°Ln)sCH*(D)+ C(D).

PROOF. Let f bein (H*°Lux)s. First we claim that H*[f*]CH"+C.
To prove the claim, by the Chang-Marshall theorem ([C] [G] [M)), it
suffices to show that H*[f*] doesn’t contain any conjugate of infinite Blas-
chke products.

Let ¢ be an infinite Blaschke product with zeros {z.} and assume that
¢ is in H*[f*]. By Lemma 2.1, there is a weakly null sequence {g.} in
H®° L, such that |g«(zx.)|>3/4. Pick some #4; in H* for i=0, ..., n so that

lg— éhi(f*)i”au<1/8. Let C=max;=o,x|l;lsp. Since f* is in (H™°Ln)s

for i=0, ..., n, we choose f; in H*>Ln such that |gsfi— fillp < 0,

1 for 1=
8nC
..., n as k is sufficiently large. For such %, we have |g¥(*)'—f*|an g%

for 1=0, ..., n. Now we obtain
|| Jgf—l%fi*hi”aoﬁ“( J_ ghi(f*)i)gf||ao+ Hig(hi(f*)igf—fz'*hi)”an
<[ g#{lan| SZ_Zz)hi(f*)i”ao‘f‘ig()”hi”w”(f*)iglf—fi*"aD

1 _1.1_3

2 n
<t Blhdog, < +5=7%

On the other hand, because |¢|=1 a.e. on ¢D, we have

— n n
|| S/’Qf‘%fi*hz‘”w:“g:_ ¢’§)fi*hi||an-
As Zofz'*hi, and g¥ are in H*, the maximum modulus principle yields

lgt — ¢ 272 o=l — & 2 fihil
> gu(2n) = $(2n) 2 fizn ) hilzn)| =|ga(zns).
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Thus % >|gx(2ne)|. This contradicts the choice of g., which satisfy

|9k(2n,)] >~§— for any .. Thus H*[f*] doesn’t contain ¢.

Now we have that f* is in H*+C. Thus the harmonic extension 7 *
is in H*+C(D). Let g=f— f*. Clearly gls»=0. Now we are going to
show that g(z)—0 as z—aD.

If not, then there is an interpolating sequence {w»} in D such that
|g(wa)| > 8, for some 6>0. By Lemma 2.1, there exists a weakly null
sequence {g°Ln} in H”> Ly such that |geo Ln(wn.)| >3/4.

Since f is in (H®°Ln)s, there is a sequence {/x} in H*° L, such that
|fgro Ln—lelo—0. Because H>*(D)+C(D)=(H=(D)), [GSZ], f* is in
(H*(D))s. Thus there exists a sequence {ux} in H*(D) such that | 7 *gs°
Ln—ux|p—0. Consequently |gge°Ln—(lx— uz)|o—0.

Set hx=1Iv—ur. Then we get |h¥|s:s—0. But g vanishes on 0D, and

hence |Zxlo—0. Thus |ggxeLnlo—0. But |g(wnk)gkoLm(wnk)|>%. This

contradiction shows that g(z)—0 as z—dD, completing the proof that ¢ is
in C(D). Thus f= f*+g is in H*(D)+ C(D), as required.

K. Izuchi proved that the Bourgain algebra of a closed subalgebra
between A(0D) and H* on L*(0D) is always contained in H*+ C. Since
on the disk there are many closed subalgebras of C(M) which are
between H*(D) and H>(D)+ C(D), the following theorem says that the
Bourgain algebra of a closed subalgebra between A(D) and H®(D) or
between H*(D) and H*(D)+ C(D) is always contained in H*(D)+ C(D).

THEOREM 4.2. Let & be a closed subalgebra of C(M). If A(D)C
& CH*(D) or H*(D)C & CH>(D)+ C(D), then (%), is contained in
H=(D)+C(D).

PrROOF. Case 1. .« is between A(D) and H>(D).

In this case the proof that (&), is contained in H*+ C is exactly the
same as the proof of [ITheorem 4.1 but here we use the fact that for
an interpolating sequence {z,} in D, there is a weakly null sequence {g:}

in the disk algebra A(D) such that |gk(2nk)|>% for a subsequence {zn.} of

{zx} instead of Lemma 2.1
Case 2. & is between H*(D) and H*(D)+ C(D).
Let f be in («),. The proof will be divided into two steps.
Step 1. The non-tangential limit /* is in H*+C.
If not, then by Chang-Marshall theorem there is an interpolating Blas-
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chke product & such that 4 is in the Douglas algebra H=[f*].
Define

& 2={fEC(M): dist p(ffn, H=(D)+ C(D))—0, V f—0 weakly in
).

It is easy to check that &, C %, and that H*[f*]C % ,|xC .%|x, where X
=M(L"). So for any weakly null sequence {f,} in .,

(*) distx(bf¥, H*+ C)—0.
On the other hand,
distx(bf¥, H*+ C)=distx (¥, b5(H*+ C)) = fullz¢6)-b.

But by Lemma 2.2, there is a weakly null sequence {f»} in H*(D) such
that [|fallzw-0>3/4. Thus dist«(dfF, H*+ C)>3/4, which contradicts (*).
Thus the proof of Step 1 is now completed.

Step 2. Let g=f— f*. We are going to show that ¢ is in C(D).

By Step 1, /* belongs to H”+C, and so f* is in H™(D)+ C(D).
Thus g vanishes on 0D, and g is continuous on D. In order to prove that
g is in C(D), we need only to show that g(z)—0 as z—dD. If this is not
true, then we may assume that there is an interpolating sequence {z.} in
D such that for some constant >0, |g(z)|> 6.

Let b be a Blaschke product with zeros {z:}. By Lemma 2.3, there is
a weakly null sequence {f»} in H*(D) such that |f.(m.)|=3/4 for some m,
€Z(b)—D. Since f* is in H"(D)+C(D), and f in &5, there is a
sequence {g.}CH=(D)+ C(D) such that

(**) “gfn_gn”D“’O.

Since ¢ vanishes on oD, llgklao—0. So [gx>—0. Since g is in H=(D)
+C(D), Gxlu-0=gnlu-o, and so |gulw-o—0. Thus it follows from (**)
that

(***) lg/fallar-p—0.

But from above we have |g(#)f2(m4)|>8/2. Thus the proof of Step 2 is
completed.

Since f=g+ f* from Steps 1 and 2 we get that f is in H=(D)
+ C(D), and this completes the proof of Theorem 4. 2.
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