Bourgain algebras on $M(H^{\infty})$

R. YOUNIS and D. ZHENG (Received May 14, 1993, Revised August 27, 1993)

Abstract

In this paper we consider closed subalgebras of C(M) and study the structure of algebras \mathscr{A} satisfying $\mathscr{A}_b = C(M)$. We show that the Bourgain algebra of A is contained in $H^{\infty}(D) + C(\overline{D})$ if A is between the disk algebra A(D) and $H^{\infty}(D)$ or between $H^{\infty}(D)$ and $H^{\infty}(D) + C(\overline{D})$, and the Bourgain algebra of $H^{\infty} \circ L_m$ is contained in $H^{\infty}(D) + C(\overline{D})$ if m is a nontrivial point.

1. Introduction.

Let D be the open unit disk, and let $H^{\infty}(D)$ be the algebra of all bounded analytic functions on D. $L^{\infty}(\partial D)$ denotes the usual space of bounded measurable functions on ∂D , and let $H^{\infty}(\partial D)$ (or simply H^{∞}) be the subalgebra of $L^{\infty}(\partial D)$ consisting of boundary values of functions in $H^{\infty}(D)$.

Let $M = M(H^{\infty})$ denote the maximal ideal space of H^{∞} . The open unit disk D can be identified as an open set in M. By using the Gelfand transform we think of $H^{\infty}(D)$ as a closed subalgebra of C(M), the space of continuous functions on M.

For φ , $\tau \in M$, the pseudohyperbolic distance between φ and τ , denoted by $\rho(\varphi, \tau)$, is defined by

 $\rho(\varphi, \tau) = \sup\{|\varphi(f)| : f \in H^{\infty}, ||f|| < 1, and \tau(f) = 0\}.$

The Gleason part of φ is denoted by $P(\varphi)$, and is defined by

$$P(\varphi) = \{\tau \in M : \rho(\varphi, \tau) < 1\}.$$

For each $\varphi \in M$, Hoffman [Ho2] constructed a fundamental canonical map L_{φ} of the unit disk D onto the part $P(\varphi)$. This map is defined by taking a net $\{w_{\alpha}\}$ in D such that $w_{\alpha} \rightarrow \varphi$ and defining

$$f \circ L_{\varphi}(z) = \lim_{\alpha} f\left(\frac{w_{\alpha}+z}{1+\overline{w_{\alpha}}z}\right)$$

for $z \in D$ and $f \in H^{\infty}$, the above limit exists and is independent of the net

 $\{w_{\alpha}\}$ provided that $w_{\alpha} \rightarrow \varphi$. Budde [Bu] extended the map L_{φ} from the maximal ideal space M onto the closure of the part $P(\varphi)$ in M. We shall use the symbol L_{φ} for this extension.

If f is in C(M) (or L^{∞}), then the closed subalgebra of C(M) (respectively L^{∞}) generated by $H^{\infty}(D)$ (respectively H^{∞}) and f is denoted by $H^{\infty}[f]$.

Let A be a subalgebra of C(X) where X is a compact Hausdorff space. Cima and Timoney [CT] introduced the notation of the Bourgain algebra. The Bourgain algebra A_b consists of those f in C(X) such that if $f_n \rightarrow 0$ weakly in A, then $dist(ff_n, A) \rightarrow 0$. The distance, $dist(ff_n, A)$ is the quotient norm of $ff_n + A$ in the space C(X)/A. The proof in [CT] shows that A_b is a closed subalgebra of C(X) and contains A. Several authors have studied Bourgain algebras, [Bi], [CJY], [CSY1], [CSY2], [GSZ], [GIM], [I], [MY], [Y], [Z]. In this paper we consider close subalgebras of C(M).

In Section 2, we present one lemma that will be used frequently in this paper. In Section 3, we consider closed subalgebras \mathscr{A} of C(M) which contain $H^{\infty}(D)$, and study the structure of \mathscr{A} satisfying $\mathscr{A}_b = C(M)$. In Section 4, we consider algebras A between the disk algebra A(D) and $H^{\infty}(D)$ or between $H^{\infty}(D)$ and $H^{\infty}(D)+C(\overline{D})$ and obtain that A_b is still contained in $H^{\infty}(D)+C(\overline{D})$. Also we show that $(H^{\infty} \circ L_m)_b$ is contained in $H^{\infty}(D)+C(\overline{D})$ if m is a nontrivial point although $H^{\infty} \circ L_m$ does not contain the disk algebra A(D) in case m is a nonhomeomorphic point.

2. Preliminaries and notations.

A sequence $\{z_n\}$ in D is called an interpolating sequence if for every bounded sequence of complex numbers $\{w_n\}$ there exists a function f in H^{∞} such that $f(z_n) = w_n$ for all n. A Blaschke product

$$B(z) = \prod_{n=1}^{\infty} \frac{\overline{a_n}}{|a_n|} \frac{a_n - z}{1 - \overline{a_n} z}$$

is said to be interpolating if its zero sequence $\{a_n\}$ in D is an interpolating sequence. Let $Z(B) = \{x \in M(H^{\infty}) : B(x) = 0\}$, then by [G, p. 379], $Z(B) = closure\{a_n\}$. The Blaschke product B is called thin if

$$\lim_{k\to\infty}\prod_{n\neq k}\left|\frac{z_n-z_k}{1-\overline{z_n}z_k}\right|=1.$$

In this paper we use \tilde{f} to denote the harmonic extension of f to the unit disk D if f is a function on the unit circle ∂D . f^* denotes the nontangential limit of f if f is defined on D and its nontangential limit exists.

We use H^{∞} to denote $H^{\infty}(\partial D)$ or $H^{\infty}(D)$ for simplicity. Since C(M) is an algebra generated by $H^{\infty}(D)$ and $\overline{H^{\infty}(D)}$, the nontagential limit f^* always exists for each function f in C(M).

Throughout this paper, the following lemma will be used several times.

LEMMA 2.1. Let *m* be a nontrivial point and $\{z_n\}$ be a sequence in D such that $|z_n| \rightarrow 1$, as $n \rightarrow \infty$. Then there exists a subsequence $\{z_{n_k}\}$ of $\{z_n\}$ and a weakly null sequence $\{f_n\}$ in H^{∞} such that $||f_n|| \leq 2$ and $|f_k \circ L_m(z_{n_k})| > \frac{3}{4}$, whenever *m* is a nontrivial point. Moreover $\{f_k \circ L_m\}$ is also a weakly null sequence in $H^{\infty} \circ L_m$.

PROOF. Let *m* be a nontrivial point, and let $\phi_n = L_m(z_n)$, and $\phi \in \bigcap_{n=1}^{\infty} closure \{\phi_n, \phi_{n+1}, \ldots\}$. If ϕ is in P(m), then there is a point z_o in *D* such that $L_m(z_0) = \phi$. Since *m* is nontrivial, it follows from [Ho2, p.105] that

$$\rho(\phi, \phi_n) = \rho(L_m(z_0), L_m(z_n)) = \rho(z_0, z_n) \rightarrow 1,$$

as $n \to \infty$. In case that ϕ is not in P(m), $\rho(\phi, \phi_n)=1$ for all n. Thus the proof of Theorem 3 in [AG2] still works, and from its proof we can see that there are functions F_n and G_n in H^{∞} such that for some subsequence $\{\phi_{n_k}\}$ of $\{\phi_n\}$,

$$\sum_{n=1}^{\infty} |F_n(z) \prod_{j=1}^{n-1} G_j(z)| < 2$$

and $F_k(\phi_{n_k}) = 1$, and $|1 - (\prod_{j=1}^{k-1} G_j)(\phi_{n_k})| < 1/4$. Let $f_k = F_k \prod_{j=1}^{k-1} G_j$. Then

$$\sum_{k=1}^{\infty} |f_k(z)| < 2$$

and $|1-f_k(\phi_{n_k})| < 1/4$. Thus $|f_k \circ L_m(z_{n_k})| > 3/4$, and f_k is a weakly null sequence in H^{∞} .

Since *m* is nontrivial, by [Ho2] there exists a net z_{α} in *D* such that $z_{\alpha} \rightarrow m$ and

$$f_k \circ L_m(z) = \lim_{z_a \to m} f_k \left(\frac{z + z_a}{1 + \overline{z_a} z} \right).$$

Thus $\sum_{k=1}^{\infty} |f_k \circ L_m(z)| < 2$. Thus $\{f_k \circ L_m\}$ is a weakly null sequence in $H^{\infty} \circ L_m$, as desired.

From the above proof we can easily get the following lemma.

LEMMA 2.2. Let b be an interpolating Blaschke product. There are points $\{m_n\}$ in Z(b)-D and a weakly null sequence $\{f_n\}$ such that $||f_n|| \le 2$ and $|f_n(m_n)| > 3/4$.

3. Subalgebras \mathscr{A} of C(M) satisfying $\mathscr{A}_b = C(M)$.

In this section we consider closed subalgebras \mathscr{A} of C(M) having the property $\mathscr{A}_b = C(M)$. Here we present some properties that shed some lights on the structure of these algebras.

THEOREM 3.1. Let \mathscr{A} be a closed subalgebra of C(M) which contains $H^{\infty}(D)$. If $\mathscr{A}_b = C(M)$, then $\mathscr{A} \circ L_m \neq H^{\infty} \circ L_m$ whenever m is a nontrivial point.

The proof of Theorem 3.1 will be given at the end of this section. Now let us mention the following consequences of Theorem 3.1. If \mathscr{B} be a subset of C(M), we use $H^{\infty}[\mathscr{B}]$ to denote the algebra generated by \mathscr{B} over H^{∞} .

COROLLARY 3.2. Let \mathscr{B} be a subset of the complex conjugates of H^{∞} , and let $\mathscr{A} = H^{\infty}[\mathscr{B}]$. If the Bourgain algebra \mathscr{A}_b is C(M), then any nontrivial point is a maximal antisymmetric set for \mathscr{A} .

P. Gorkin and R. Mortini found examples of proper subalgebras \mathscr{A} of C(M) such that $\mathscr{A}_b = C(M)$ (private communication).

COROLLARY 3.3. Let \mathscr{B} be a subset of the complex conjugates of H^{∞} , and let $\mathscr{A} = H^{\infty}[\mathscr{B}]$. If the Bourgain algebra \mathscr{A}_b is C(M), then for any inner function b with |b|=1 on trivial points, the conjugate of b is in \mathscr{A} . In particular, \mathscr{A} contains the conjugate of every thin Blaschke product.

The following lemma will be used in the proof of Corollary 3.2, which first appeared in [Z]. Let \mathscr{B} be a subset of the complex conjugates of H^{∞} . We define

 $E(\mathscr{B}) = \{ m \in M : f \circ L_m \text{ is not constant for some } f \in \mathscr{B} \}.$

LEMMA 3.4. If S is a maximal antisymmetric set for $H^{\infty}[\mathscr{B}]$, and $S \cap E(B)$ is not empty, then S contains only one point.

PROOF. Since $S \cap E(B)$ is not empty, for some f in \mathscr{B} , $S \cap E(f)$ is not empty. From the proof of Theorem 1 in [AG2] it follows that there is an interpolating Blaschke product b such that S is a subset of Z(b). Now

observe that Z(b) is totally disconnected because by [Ho1, p.205], it is homeomorphic to the Stone-Cech compactification βN of N. Since S is connected, this forces S to be just one point.

PROOF of COROLLARY 3.2. Let S be a maximal antisymmetric set for \mathscr{A} , and suppose that S contains a nontrivial point m. If m is not in $E(\mathscr{B})$, then $\mathscr{A} \circ L_m = H^{\infty} \circ L_m$, contradicting Theorem 3.1. If m is in $E(\mathscr{B})$, then by Lemma 3.4, S is just one point.

PROOF of COROLLARY 3.3. Let *b* be an inner function such that |b| = 1 on any trivial point, and let *S* be a maximal antisymmetric set for \mathscr{A} . If *S* does not contain any nontrivial point, then $\overline{b}|_s = \frac{1}{b}|_s$ is in $\mathscr{A}|_s$. On the other hand, if *S* contains any nontrivial point, then by Lemma 3.4, *S* is just one point. So $\overline{b}|_s$ is in $\mathscr{A}|_s$. By Bishop antisymmetric decomposition theorem we have \overline{b} is in \mathscr{A} .

In particular, if b is thin, the zero set of b does not contain any trivial point. So |b|=1 on trivial points [He]. From above we get \overline{b} is in \mathscr{A} . Now we return to the proof of Theorem 3.1.

PROOF of THEOREM 3.1. Suppose that $\mathscr{A} \circ L_m = H^{\infty} \circ L_m$ for some nontrivial point *m*. Let

 $E = \{g \in C(M) : dist_{D}(gf_{n} \circ L_{m}, H^{\infty}) \rightarrow 0, \text{ for any weakly null} sequence f_{n} \in \mathscr{A}\}.$

It is easy to see that E is a closed vector space. Because $\mathscr{A} \circ L_m = H^{\infty} \circ L_m$, we see that E contains $H^{\infty}(D)$.

The rest of the proof will be divided into several steps.

STEP 1. The set E contains $C(M) \circ L_m$.

Since $\mathscr{A}_b = C(M)$, it suffices to show that E contains $\mathscr{A}_b \circ L_m$. Let f be in \mathscr{A}_b . Then for any weakly null sequence $\{f_n\}$ in \mathscr{A} , we have

 $dist_D(f \circ L_m f_n \circ L_m, H^{\infty}) \le dist_D(f \circ L_m f_n \circ L_m, H^{\infty} \circ L_m)$ = $dist_D(f \circ L_m f_n \circ L_m, \mathscr{A} \circ L_m) \le dist_D(ff_n, \mathscr{A}) \rightarrow 0,$

as $n \to \infty$. Thus $f \circ L_m$ is in *E*, completing the proof of Step 1.

STEP 2. $H^{\infty}[f] \subseteq E$ whenever f is in $C(M) \circ L_m$.

Let g be in H^{∞} and f in $C(M) \circ L_m$. By Step 1, f is in E. Let $\{f_n\}$ be any weakly null sequence in \mathscr{A} . Then

$$dist_D(gff_n \circ L_m, H^{\infty}) \le dist_D(gff_n \circ L_m, gH^{\infty}) \\ \le \|g\|_{\infty} dist_D(ff_n \circ L_m, H^{\infty}) \to 0,$$

as $n \rightarrow \infty$ because f is in E. Thus gf is in E.

Since $C(M) \circ L_m$ is an algebra, and E is a closed vector space containing H^{∞} , we get that $\sum_{j=0}^{n} g_j f^j$ is in E for any g_j in H^{∞} , and that E contains $H^{\infty}[f]$, as required.

STEP 3. There exists an interpolating Blaschke product b such that \overline{b} is in E.

First we claim that there is a function f in $H^{\infty} \circ L_m$ which is not constant on some nontrivial point. To prove the claim we consider two cases.

(i) $L_m(z)$ is homeomorphic. Hence $L_m(z)$ has an injective extension on M. Let τ be a nontrivial point in M/D and $z \neq 0$ in D. Since $L_m(z)$ is homeomorphic, by Theorem 1.4 in [GLM] we have $L_m \circ L_\tau(z) \neq L_m(\tau)$. Because H^{∞} separates points of M, then there is a function g in H^{∞} such that $g \circ L_m \circ L_\tau(z) \neq g \circ L_m(\tau)$. Let $f = g \circ L_m$. Thus f is not constant on the Gleason part $P(\tau)$.

(ii) $L_m(z)$ is not homeomorphic. There are a nontrivial point τ in M/D and a point w in D such that $L_m(\tau) = L_m(w)$, we may assume that w is 0. By Theorem 2.5 of Chapter X in [G], then we have $L_m \circ L_\tau(z) = L_m(\alpha z)$ for some constant α with $|\alpha|=1$. Since H^{∞} separates its maximal ideal space M, there is a function g in H^{∞} such that $g \circ L_m(z)$ is not constant. Let $f = g \circ L_m$. Thus $f \circ L_\tau(z) = g \circ L_m \circ L_\tau(z) = g \circ L_m(\alpha z)$ is not constant. This finishes the proof of our claim.

To finish the proof of Step 3, we let f be a function in $H^{\infty} c L_m$ as above. By Theorem 2 in [AG], there is an interpolating Blaschke product b such that \overline{b} is in $H^{\infty}[\overline{f}]$. Since $\overline{H^{\infty} c L_m}$ is a subset of $C(M) c L_m$, by Step 2 we have $H^{\infty}[\overline{f}] \subset E$. Thus \overline{b} is in E, as promised.

Now we are ready to finish the proof of Theorem 3.1. Let *b* the interpolating Blaschke product *b* in Step 3 and let $\{z_n\}$ be its zero set. By Lemma 2.1, we can choose a weakly null sequence $\{f_k\}$ in \mathscr{A} such that $|f_k \circ L_m(z_{n_k})| > \frac{3}{4}$. Since \overline{b} is in *E*, for such weakly null sequence $\{f_k\}$, we have

$$0 \leftarrow dist_D(\overline{b}f_k \circ L_m, H^{\infty}) \ge dist_{\partial D}(\overline{b^*}f_k \circ L_m^*, H^{\infty}).$$

= $dist_{\partial D}(f_k \circ L_m^*, b^*H^{\infty}) = dist_D(f_k \circ L_m, bH^{\infty}) \ge |f_k \circ L_m(z_{n_k})| \ge \frac{3}{4}.$

This contradication shows that $\mathscr{A} \circ L_m \neq H^{\infty} \circ L_m$, and this completes the proof of Theorem 3.1.

4. Bourgain algebras of some subalgebras of $H^{\infty}(D) + C(\overline{D})$.

K. Hoffman [Ho2] showed that if m is a nontrivial point, then for any f in $H^{\infty}(D)$, $f \circ L_m$ is in $H^{\infty}(D)$. Thus $H^{\infty} \circ L_m$ is a subalgebra of $H^{\infty}(D)$. In many cases $H^{\infty} \circ L_m$ does not contain A(D). In case that m is locally thin, then [GLM], $H^{\infty} \circ L_m = H^{\infty}(D)$. Nevertheless, we have the following theorem.

THEOREM 4.1. If m is a nontrivial point, then

 $(H^{\infty} \circ L_m)_b \subset H^{\infty}(D) + C(\overline{D}).$

PROOF. Let f be in $(H^{\infty} \circ L_m)_b$. First we claim that $H^{\infty}[f^*] \subset H^{\infty} + C$. To prove the claim, by the Chang-Marshall theorem ([C] [G], [M]), it suffices to show that $H^{\infty}[f^*]$ doesn't contain any conjugate of infinite Blaschke products.

Let ψ be an infinite Blaschke product with zeros $\{z_n\}$ and assume that $\overline{\psi}$ is in $H^{\infty}[f^*]$. By Lemma 2.1, there is a weakly null sequence $\{g_k\}$ in $H^{\infty} \circ L_m$ such that $|g_k(z_{n_k})| > 3/4$. Pick some h_i in H^{∞} for i=0, ..., n so that $\|\overline{\psi} - \sum_{i=0}^n h_i(f^*)^i\|_{\partial D} < 1/8$. Let $C = \max_{j=0, ..., n} \|h_j\|_{\partial D}$. Since f^i is in $(H^{\infty} \circ L_m)_b$ for i=0, ..., n, we choose f_i in $H^{\infty} \circ L_m$ such that $\|g_k f^i - f_i\|_D < \frac{1}{8nC}$ for i=0, ..., n as k is sufficiently large. For such k, we have $\|g_k^*(f^*)^i - f_i^*\|_{\partial D} \le \frac{1}{8nC}$ for i=0, ..., n. Now we obtain

$$\begin{split} \|\overline{\psi}g_{k}^{*} - \sum_{i=0}^{n} f_{i}^{*}h_{i}\|_{\partial D} &\leq \|(\overline{\psi} - \sum_{i=0}^{n} h_{i}(f^{*})^{i})g_{k}^{*}\|_{\partial D} + \|\sum_{i=0}^{n} (h_{i}(f^{*})^{i}g_{k}^{*} - f_{i}^{*}h_{i})\|_{\partial D} \\ &\leq \|g_{k}^{*}\|_{\partial D} \|\overline{\psi} - \sum_{i=0}^{n} h_{i}(f^{*})^{i}\|_{\partial D} + \sum_{i=0}^{n} \|h_{i}\|_{\partial D} \|(f^{*})^{i}g_{k}^{*} - f_{i}^{*}\|_{\partial D} \\ &\leq \frac{2}{8} + \sum_{i=0}^{n} \|h_{i}\|_{\partial D} \frac{1}{8nC} \leq \frac{1}{4} + \frac{1}{8} = \frac{3}{8}. \end{split}$$

On the other hand, because $|\overline{\psi}|=1$ a.e. on ∂D , we have

$$\|\overline{\psi}g_k^* - \sum_{i=0}^n f_i^* h_i\|_{\partial D} = \|g_k^* - \psi \sum_{i=0}^n f_i^* h_i\|_{\partial D}.$$

As $\sum_{i=0}^{n} f_{i}^{*} h_{i}$, and g_{k}^{*} are in H^{∞} , the maximum modulus principle yields

$$\begin{aligned} \|g_{k}^{*} - \psi \sum_{i=0}^{n} f_{i}^{*} h_{i} \|_{\partial D} &= \|g_{k} - \psi \sum_{i=0}^{n} f_{i} h_{i} \|_{D} \\ \geq |g_{k}(z_{n_{k}}) - \psi(z_{n_{k}}) \sum_{i=0}^{n} f_{i}(z_{n_{k}}) h_{i}(z_{n_{k}})| &= |g_{k}(z_{n_{k}})|. \end{aligned}$$

Thus $\frac{3}{8} \ge |g_k(z_{n_k})|$. This contradicts the choice of g_k , which satisfy $|g_k(z_{n_k})| > \frac{3}{4}$ for any k. Thus $H^{\infty}[f^*]$ doesn't contain $\overline{\psi}$.

Now we have that f^* is in $H^{\infty} + C$. Thus the harmonic extension \tilde{f}^* is in $H^{\infty} + C(\overline{D})$. Let $g = f - \tilde{f}^*$. Clearly $g|_{\partial D} \equiv 0$. Now we are going to show that $g(z) \rightarrow 0$ as $z \rightarrow \partial D$.

If not, then there is an interpolating sequence $\{w_n\}$ in D such that $|g(w_n)| > \delta$, for some $\delta > 0$. By Lemma 2.1, there exists a weakly null sequence $\{g_k \circ L_m\}$ in $H^{\infty} \circ L_m$ such that $|g_k \circ L_m(w_{n_k})| > 3/4$.

Since f is in $(H^{\infty} \circ L_m)_b$, there is a sequence $\{l_k\}$ in $H^{\infty} \circ L_m$ such that $\|fg_k \circ L_m - l_k\|_D \to 0$. Because $H^{\infty}(D) + C(\overline{D}) = (H^{\infty}(D))_b$ [GSZ], \tilde{f}^* is in $(H^{\infty}(D))_b$. Thus there exists a sequence $\{u_k\}$ in $H^{\infty}(D)$ such that $\|\tilde{f}^*g_k \circ L_m - u_k\|_D \to 0$. Consequently $\|gg_k \circ L_m - (l_k - u_k)\|_D \to 0$.

Set $h_k = l_k - u_k$. Then we get $||h_k^*||_{\partial D} \to 0$. But g vanishes on ∂D , and hence $||h_k||_D \to 0$. Thus $||gg_k \circ L_m||_D \to 0$. But $|g(w_{n_k})g_k \circ L_m(w_{n_k})| > \frac{3\delta}{4}$. This contradiction shows that $g(z) \to 0$ as $z \to \partial D$, completing the proof that g is in $C(\overline{D})$. Thus $f = \tilde{f}^* + g$ is in $H^{\infty}(D) + C(\overline{D})$, as required.

K. Izuchi [I] proved that the Bourgain algebra of a closed subalgebra between $A(\partial D)$ and H^{∞} on $L^{\infty}(\partial D)$ is always contained in $H^{\infty}+C$. Since on the disk there are many closed subalgebras of C(M) which are between $H^{\infty}(D)$ and $H^{\infty}(D)+C(\overline{D})$, the following theorem says that the Bourgain algebra of a closed subalgebra between A(D) and $H^{\infty}(D)$ or between $H^{\infty}(D)$ and $H^{\infty}(D)+C(\overline{D})$ is always contained in $H^{\infty}(D)+C(\overline{D})$.

THEOREM 4.2. Let \mathscr{A} be a closed subalgebra of C(M). If $A(D) \subset \mathscr{A} \subset H^{\infty}(D)$ or $H^{\infty}(D) \subset \mathscr{A} \subset H^{\infty}(D) + C(\overline{D})$, then $(\mathscr{A})_{b}$ is contained in $H^{\infty}(D) + C(\overline{D})$.

PROOF. Case 1. \mathscr{A} is between A(D) and $H^{\infty}(D)$.

In this case the proof that $(\mathscr{A})_b$ is contained in $H^{\infty} + C$ is exactly the same as the proof of Theorem 4.1, but here we use the fact [I] that for an interpolating sequence $\{z_n\}$ in D, there is a weakly null sequence $\{g_k\}$ in the disk algebra A(D) such that $|g_k(z_{n_k})| > \frac{3}{4}$ for a subsequence $\{z_{n_k}\}$ of $\{z_n\}$ instead of Lemma 2.1.

Case 2. \mathscr{A} is between $H^{\infty}(D)$ and $H^{\infty}(D) + C(\overline{D})$. Let f be in $(\mathscr{A})_b$. The proof will be divided into two steps. Step 1. The non-tangential limit f^* is in $H^{\infty} + C$. If not, then by Chang-Marshall theorem there is an interpolating Blaschke product b such that \overline{b} is in the Douglas algebra $H^{\infty}[f^*]$.

Define

$$\mathscr{A}_{2} = \{ f \in C(M) : dist_{D}(ff_{n}, H^{\infty}(D) + C(\overline{D})) \rightarrow 0, \forall f_{n} \rightarrow 0 weakly in \mathscr{A} \}.$$

It is easy to check that $\mathscr{A}_b \subset \mathscr{A}_2$, and that $H^{\infty}[f^*] \subset \mathscr{A}_b|_X \subset \mathscr{A}_2|_X$, where $X = M(L^{\infty})$. So for any weakly null sequence $\{f_n\}$ in \mathscr{A} ,

(*)
$$dist_X(\overline{b}f_n^*, H^\infty + C) \rightarrow 0.$$

On the other hand,

$$dist_X(bf_n^*, H^{\infty}+C) = dist_X(f_n^*, b(H^{\infty}+C)) \ge ||f_n||_{Z(b)-D}.$$

But by Lemma 2.2, there is a weakly null sequence $\{f_n\}$ in $H^{\infty}(D)$ such that $||f_n||_{Z(b)-D} > 3/4$. Thus $dist_X(\overline{b}f_n^*, H^{\infty}+C) > 3/4$, which contradicts (*). Thus the proof of Step 1 is now completed.

Step 2. Let $g=f-\tilde{f}^*$. We are going to show that g is in $C(\bar{D})$.

By Step 1, f^* belongs to $H^{\infty}+C$, and so \tilde{f}^* is in $H^{\infty}(D)+C(\overline{D})$. Thus g vanishes on ∂D , and g is continuous on D. In order to prove that g is in $C(\overline{D})$, we need only to show that $g(z) \rightarrow 0$ as $z \rightarrow \partial D$. If this is not true, then we may assume that there is an interpolating sequence $\{z_k\}$ in D such that for some constant $\delta > 0$, $|g(z_k)| > \delta$.

Let b be a Blaschke product with zeros $\{z_k\}$. By Lemma 2.2, there is a weakly null sequence $\{f_n\}$ in $H^{\infty}(D)$ such that $|f_n(m_n)| \ge 3/4$ for some $m_n \in Z(b)-D$. Since \tilde{f}^* is in $H^{\infty}(D)+C(\bar{D})$, and f in \mathscr{A}_b , there is a sequence $\{g_n\} \subset H^{\infty}(D)+C(\bar{D})$ such that

$$(**) \qquad \|gf_n - g_n\|_D \to 0.$$

Since g vanishes on ∂D , $||g_n^*||_{\partial D} \to 0$. So $||\tilde{g}_n^*||_D \to 0$. Since g_n is in $H^{\infty}(D) + C(\overline{D})$, $\tilde{g}_n^*|_{M-D} = g_n|_{M-D}$, and so $||g_n||_{M-D} \to 0$. Thus it follows from (**) that

 $(***) \qquad \|gf_n\|_{M-D} \rightarrow 0.$

But from above we have $|g(m_n)f_n(m_n)| > \delta/2$. Thus the proof of Step 2 is completed.

Since $f=g+\tilde{f}^*$, from Steps 1 and 2 we get that f is in $H^{\infty}(D) + C(\overline{D})$, and this completes the proof of Theorem 4.2.

References

[AGI] S. AXLER and P. GORKIN, Sequences in the maximal ideal space of H^{∞} , Proc. AMS. V. 108, N. 3 (1990) 731-740.

- [AG 2] S. AXLER and P. GORKIN, Algebras on the disk and doubly commuting multiplication operators, Transactions AMS. (2) 309 (1988), 711-723.
 - [Bi] C. BISHOP, A characterization of some algebras on the disk, Preprint.
 - [Bo] J. BOURGAIN, New Banach space properties of the disc algebra and H[∞], Acta. Math. 152 (1984), 1-48.
 - [Bu] P. E. BUDDE, Support sets and Gleason parts of $M(H^{\infty})$, PH. D. thesis, Univ. of California, Berkeley, 1982.
 - [C] S. A. CHANG, A characterization of Douglas subalgebras, Acta Math. 137 (1976), 81-89.
 - [CT] J. A. CIMA and R. TIMONEY, The Dunford-Pettis Property for certain planar uniform algebra, Michigan Math. J. 34 (1987) 99-104.
- [CJY] J. A. CIMA, S. JANSON and K. YALE, Completely continuous Hankel operators on H^{∞} and Bourgain algebras, Proc. AMS. 105, No.1 (1989), 121-125.
- [CSY1] J. A. CIMA, K. STROETHOFF, and K. YALE, Bourgain algebras on the unit disk, Preprint.
- [CSY 2] J. A. CIMA, K. STROETHOFF, and K. YALE, The Bourgain algebras of the disk algebra, Preprint.
 - [G] J. B. GARNETT, Bounded analytic functions, Academic Press, New York 1981.
 - [GSZ] P. GHATAGE, S. SUN, and D. ZHENG, A remark on Bourgain algebras on the disk, Proc. AMS. 114 (1992), 395-398.
 - [GIM] P. GORKIN and K. IZUCHI, R. MORTINI, Bourgain algebras of Douglas algebras, Can. J. Math., 44 (1992), 797-804.
- [GLM] P. GORKIN, H. -M. LINGENBERG, and R. MORTINI, Homeomorphic disks in the spectrum of H^{∞} , Indiana Univ. Math. J., Vol. 39, No. 4 (1990), 961-983.
 - [He] H. HEDENMALM, Thin interpolating sequences and three bounded algebras of bounded functions, Proc. AMS. 99 (1987), 489-495.
- [Ho1] K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- [Ho 2] K. HOFFMAN, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74-111.
 - [I] K. IZUCHI, Bourgain algebras of the disk, polydisk and ball algebras, Duke Math. J., 66 (1992), 503-519.
- [M] D. E. MARSHALL, Subalgebras of L^{∞} containing H^{∞} , Acta Math. 137 (1976), 91–97.
- [MY] R. MORTINI, and R. YOUNIS, Douglas algebras which are invariant under Bourgain map, Arch. Math., 59 (1992), 371-378.
 - [Y] K. YALE, Bourgain algebras, Proceeding of conference on function space, ed. by K. JAROSZ, Lecture Notes in Pure and Appl. Math., to appear, Marcel Dekker.
 - [Z] D. ZHENG, Bourgain algebras of some algebras on the disk, Preprint.

Department of Mathematics University of United Arab Emirates AL-AIN, United Arab Emirates

Department of Mathematics University of California Berkeley, CA 94720