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The asymptotic behaviour of the radially symmetric
solutions to quasilinear wave equations in
two space dimensions
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Abstract. In this paper, we study the behaviour of solutions to quasilinear wave equa-
tions in two space dimensions. We obtain blow-up results near the wave front. More
precisely, any radially symmetric solution with small initial data is shown to develop sin-
gularities in the second order derivatives in finite time, while the first order derivatives
and itself remain small. Moreover, we succeed to represent the solution explicitely near
the blowing up point.
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1. Introduction

This paper deals with the initial value problem:

1 1
Upp — 02(ut,u7~)<urr + ;ur) = —u,G(ut, ur),
T
(r,t) € (0,00) x (0,T%), (1.1

u(r,0) = ef(r), us(r,0) = eg(r), r € (0,00) (1.2)
where

A (ug, up) = 14 a1u? + agusu, + agu? + O(|ug|® + lup|3),
G (us, ur) = O(furl® + [ur|?)

near u; = u, = 0 and the initial data are smooth and have compact sup-
port. The equation is the radially symmetric form of quasi-linear wave
equations in two space dimensions. In , we have shown that the smooth
solution to the initial value problem [1.1) and (1.2) exists almost globally,
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that is
. 2 > -
;1_1}(1)6 log(1+1T;) 2 e
where

Ho = max(—(a1 —a; + a3) F' () 7" (p))-

The quantity 7, stands for the lifespan of the smooth solution to (1.1) and
and the function F(p) is the Friedlander radiation field with respect
to f and g defined in below. It has been proved that the smooth solution

to and exists globally provided ¢2(us, u,) — 1 = O(|ug)® + |ur|?)
by M. Kovalyov [9]. Even in the present case, by provided Ho = 0 [2] has
proved the smooth solution exists globally. In other words, null condition
guarantees the existence of global solutions.

Our main purpose in this paper is to show that the smooth solution to
and blows up in finite time if Hy does not vanish. We have two
points of view to study. One is to determine the blowing up time of the

smooth solution to and exactly. We will prove

1
. 2 s T
;1_1)1(1)6 log(1+1T;) = o

in below. The constant Hy is the same as the earlier one, thus we conclude

. 2 _
31_1)1(1)5 log(1+T:) = T

When the coefficient ¢? of the Laplacian has the form
A (ug) = 1+ aug + O(Jue?), a#0

and G(us,u,) = 0, F. John [3]-[5] and L. Hérmander |1} have obtained in
three space dimensions,

1
i - 1.
21_51(1)6 log(1 + T¢) T, (1.3)
where

H, = max(%f”(p))

pER
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and L. Hormander [1] has also shown in two space dimensions,

1
lim e TE = F (14)
2

e—0

where

1/
Hy = max(aF"(p)).

Secondly, we turn our interest to the behaviour of the solution near
the blowing up point. To make our purpose clear, it is worth noting how
the blowing up of the smooth solution occurs. Let w;(r,t) be a directional
derivative of u,(r,t), whose direction intersects orthogonally the pseudo-
characteristic curve to the equation in (r,t)-plane. If we denote the
value of wy (r,t) along the pseudo-characteristic curve by wi(t), then w;(t)
diverges as t tends to T for sufficiently small initial data, while v and the
first order derivatives of u are still small. Thus it is natural for you to
wonder about the action of wy(t). We will represent w (t) explicitely near
the blowing up point as a limit when ¢ tends to 0. It has not been studied
yet for the cases of F. John and L. Hormander.

For an application of our results we consider the equation of vibrating
membrane:

V14 |Vul?

The radially symmetric form of this equation is written in the form of
with a; = a2 = 0 and a3 = —3/2. The solution u stands for the vertical
motion of the vibrating membrane, thus our blowing up results imply that
the curvature of the membrane brakes at some points while the difference
of the membrane and the speed of the vibration become small. Further
consideration for the vibrationg membrane will be developed in Section 7.

\Y
Ut — div (—'U/) = O, (fL‘,t) € R2 X (O,TE)

2. Statement of results

To state our results for the initial value problem [1.1) and [1.2) we set
the assumption more clearly. We assume ¢, G € C®(R?),

cQ(Ut,ur) =1+ alut2 + asut, + a3u,2, + O(|u,g|3 + |u,~|3),
G(ug, ur) = O(luel® + |ur|?),
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near u; = u, = 0 and assume f(|z|), g(|z|) € C(R?), |f|] + |g| Z 0 and
supp f, suppg C [—M, M]. We also need a; — ag + a3 # 0 so that Hy does
not vanish. We define the Friedlander radiation field F(p) by

F(p) = r%uo(r,t) along p=r—t,

where u®(r,t) is the solution of linear wave equation:

W0 —ul — %u,‘} —0,  (r,t) € (0,00) x (0,00), (2.1)
uO(r,0) = f(r), ud(r,0) = g(r) r € (0,00) (2.2)

F(p) is strictly expressed as

F(p) = ﬁ/;o(s—p)"

where Rj(s) is the Radon transform of h(|z|) € C°(R?), i.e.,

Ru(s)= [ LEME) e

Moreover, F(p) has the properties:

N =

(Rg(s) — R(s))ds,

Z_F(p)| £ Cr1+|pl) 2% for peR,

F(p) =0 for p=2 M.

(e.g. L. Hormander [1]). Thus the quantity

Ho = max(~aF'(p)F"(p)) = ~aF"(po) 7" (o)
is well-defined for some pg and non negative. Our assumption |f|+ |g| Z 0
and a = a; — az + ag # 0 guarantee that Hy > 0, which is shown in [2].
The lifespan T of the solution u to and means the supremum of
7 such that the solution exists in C*°((0, 00) x (0,7)).
At first, we will prove the following

Theorem 2.1

1
limsupe?log(l+T.) £ —.
e—0 Hy



Quasilinear wave equations in two space dimensions 579

Combining the result

1
. . 2 2
llIEIl)lglf e“log(1+T;) 2 i

obtained in [2| with Theorem 1, we have
Corollary
1

. 2 _
ggr%)s log(1+T;) = T

This blowing up result will be obtained as
wi(t) 200 as t— T,

for some function wi(t) constructed by the second order derivatives of w.
With regard to w;(t), we will prove

Theorem 2.2
w1 (t) 1

1
lim (——ezlo 1+t)__:_f// '
e—0, 2 log(1+t)—->HL0 0 g( ) € H, (Po)

We define the function wj (t) describing the outline of the proof of The-
orem 1 and Theorem 2. First we fix a constant B > Hy. Set p = r — t,
s = e%log(1 +t) and consider the Burgers’ equation:

Us(pys) + < (Up(p,5)* = 0, (p,5) €R
U(p,0) = F(p), peER

0, 5]
"B

For the solutions U of the above Burgers’ equation and u of the initial value
problem (1.1) and (1.2), we will find that

1 m m 1 5 _1
aic'?tmu(r,t%)—sr 2(—1) aj,+ U(r~t%,§)‘§054r 2
1

for r—t%Z—g and I,meNU{0} (I+m #0),

where t,/p = exp(1/e?B) — 1, i.e., e?log(1 + ti/g) = 1/B. Moreover, on
characteristic curves A in (p, s)-plane, we approximate U by the Friedlander
radiation field F for 0 £ s £ 1/B. These give u approximation by F at
t = ty/p. These will be proved in Section 3. Next we investigate the
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behaviour of u after t = ¢, ,p in Section 4. If we set v(r,t) = r/2y(r,t) and

wl(rat> = %a
w(r,t) = ST

the following a priori estimates hold:

lo(r,t)| < Cez,  |u(r,t)], |vp(r,t)| < C,
lwa(r, t)] < Ce3

as long as u exists. On the other hand, we define a pseudo-characteristic
curve Z! in (r,t)-plane as a solution of

dr

pri
connected with some A at t = t;,5. We denote (r(t),t) € Z' and set
wi(t) = wi(r(t),t), this is the definition of w;(¢t). Using above a priori
estimates, we construct an ordinary differential equation with respect to
w1 (t). Solving the ordinary differential equation, we will find that Theorem
1 and Theorem 2 hold in Section 5 and 6.

In the end of this section, we mention the case of F. John and L.
Hormander (1.3) and [1.4). We also expect

¢,

1 t 1
lim (-—— —elog(1l+ t)) wi(t) = —F"(po),
e—0, zslog(1+t)—>}+1 1 € H,

lim (—1— - 8\/13) wilf) _ HL27"(P0)

e—0, s\/f—>HL2 2 €

respectively. These would be proved in parallel.

3. Approximation for u by the solution of Burgers’ equation
It can be easily seen that the following lemma leads Theorem 1.

Main Lemma  For any A > Hy, there exists an €4 > 0 such that for
0<e<ey,

1

2
e‘log(1+T.) S —
g( ) H,
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holds.

To prove Main [Lemmal we consider the following Bergers’ equation:

U+ 2WU,)3=0, (p,5) €Rx [0, i], (3.1a)
6 B
U(p,0) =F(p), pER, (3.2a)
or
Ups + g(U,,)2U,,,, =0, (ps)€ERX [0, %} (3.1b)
Up(p,0) = F'(p),  pER, (3.2b)

where a = a; —as + a3, B > Hyp, p=r—t and s = e?log(l +t). We

find that the Cauchy problem and is equivalent to and
(3.2b) because there exists a smooth solution U, to and (3.2b) and

integral of U, satisfies and (3.2a). For the solutions U of and
and u of and [1.2), we will prove

1
SO u(r, 3 ) — 5r_%(—1)m8f,+mU(r —ty, E) ‘ O

B

1
fi —t1 > —— d [ 0, 3.3
or r 1 32 an +m # ( )

where we denote t;/p = exp(1/Be?) — 1.

The main task in this Section is to prove (3.3). To do this, we introduce
the vector fields used in S. Klainerman [6] and state some results used
through this paper.

Lo =1t0; + a:l(’)xl + wgamz, L; =x;0; + tawi, for 1=1,2,
81'17 8.’1:2a at)

named I';, I'g,---,'¢ respectively. These operators satisfy commutation
relations:

[T, (0] = L0 — O, = 26,00 for p=1,2,-,86,
[,T] = 5T, [T,d] = %9, (3.4)

where [] = 82—/ and X stands for a finite linear combination with constant
coefficients. For a € Z8 (Z; = N U {0}) we write T = T'{'T'9? ... T'¢® and
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define the norms

lo@)lle = D IT%(E)]]12 ),

o<k

@)k = D IT(E)|| 100 re)-

|a|<k

In [2], we proved that

IT*0rul, |T*0u| = Co pe(1 + t)"% for 0S¢t<t1, a€Zl. (3.5)
B

For the solution u° to [2.1, [2-2), we set F(1/r,p) = r/2u%(r,t). Then L.
Hormander showed in [1] that

1
8L87F (2, p)| £ Cum(1+ o)) 2™ for 0<z< p (3
and
a(qk d* 1k -1
['*(0,F (2, p) — gﬁ;f(p)) S Cak,(1+|p])275(1 +¢)
for 2Lt and t=21. (3.7)

Here M > 0 is the radius of support of initial data and L > 0. Furthermore,
U(p, s) satisfies

1
8L0™U (p, )| £ Crmp(1+|p —gmlAm g 0Sss—, (38
PS8 PLEAS] B
1

U(p,s)=0 for p=2M, Oésé—é,

(3.9)

which will be proved in Appendix 1.
We choose a cut-off function x € C*°(R) equal to 1 in (—o0,1) and 0
in (2,00), and define a function w(r,t) by

w(r,t) = ex(et)ul(r,t) — e(1 — x(et))x(~3ep)r "2 U p, s).
Using (3.5), (3.6), (3.7) and (3,8), we will prove

for 05ttt

N

ITw(r,t)] < Cope(1+1)"2(1+ |p|)”

IT*J ()]0 < Cop(ei(1+8)75 +e*(1+1)7Y) for 0Lt <t
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where
J(r,t) = O w — (aw? + aywsw, + azw?)Aw.

First we prove (3.10). Since the following decay estimate for u° (showed
in L. Hérmander [1]) holds

ml»—a

Teu(r, )| < Ca(1+1)72(1 + o))" (3.12)
we find that the first term of w satisfies (3.10). On the other hand, we get
t+1<6r=6(t+M),

in the support of (1 — x(et))x(—3ep)U(p, s). The second term of w satisfies
(3.10) if we prove

IDA(r=3)| £ Cp(1 +1)73, (3.13a)
ITP(1 — x(et))| £ Cg, (3.13b)
IT?(x(—3ep))| < Cp, (3.13¢)
PP, )] < C(1+1l) 2. (3.13d)

Indeed, |(3.13b) follows in principle from the inequalities

kE J
LEQ = x(et)] £ Ce Y3 a7 XY (et)]
§=01=0
k .
< Cp Y )P (et)
j=0
§ Ck for @ = 1,2,

where the last inequality holds since et < 2, in the support of xU)(et).
(3.13c) follows from the inequalities

k 7 T _
LE 36| £ G 33 "'t 1o X (~3¢p)]
§=0 1=0

k
< Cp Y& pIx) (—3ep)]
=0
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< Cy for i=1,2,

where the last inequality holds since e|p| < 2/3 in the support of x /) (—3ep).
(3.13d) follows from (3.8) and a similar calculation as above.
Next we show (3.11) by dividing the proof into three cases.

Case 1: 0= et <1. Since
w(r,t) = eu®(r,t),
we find
J(r,t) = —53(a1ug2 + agudul + agugz)Auo.
It follows from (3.12) that
T (r,t)| < Coed(1 +t)2.
Since
t+M
T (r, £)|de = 2r / T (r, ) 2rdr,
R2 0
we get
ITT(r,t)|lo S Cac®(1+1)72(t + M)
< Coued(1+1)72
< Caeg(l + t)'%,
where the last inequality follows from the fact
e(l+t)Se+1=52.
This is what we wanted.

Case 2: 1 £ et £ 2. Since the same estimate holds for nonlinear term
—(a1w? + agwyw, + azw?2)Aw, we have only to examine

Ow = e[ [(1 - x(et) {x(~3ep)r"2U(p, 5) — u°(r,t)}]
= 00 {(1 — x(et)) (x(~3ep) — 1)u}

+e0{(1 = x(et)x(-3ep)} (Ul0.5) - F(1.0) )
= J1 + Jo,
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where F'(1/r, p) is the one in (3.6) and the last equality is the definition of
J1 and Jo. In the support of 1 — x(—3ep), we have 6r < 5t. Hence we find

IP%8L™ul (1, 1)| £ Coym(1+8)7175™ for t21.

Since

607 {(1 = X(e0)) (x(~3p) — D} £ Cume*™

(3.14)

and the support of u® is the same as that of U, it follows from [3.13b),

and (3.14) that

ITJy(r,t)] £ Co(EQ 4+t +2(1+1)72)
< Coe?(1+1)72

IT*J1(t)lo £ Cag®(1+14)7"
< Cuei(l+1)74.

On the other hand, in the support of J3, we have 1 +t < 6r < 6(t + M)

and then obtain (3.13). Moreover we prove that

for 0Ss<1/B,r 21/(2M). Indeed,

82U(p,s):8l (p,0 +/ 582 (p, As)dA

d*
— E-]-'(p)%—e log(1 +t) / Bl(‘? U(p, As)dA.

By (3.8), (3.13d), et < 2 and the fact
(e log(1 +1))| < Cg,
we find that
T (2 log(1 + t) /01 3,’,83U(p, sA)dA)|

< Cu(?log(1+ t)(1 + |p)"27H4)
< Co(1+ )21 +1)7!

1
v (o400, F (5.0) ) £ U1+ DA+ 0)

(3.15)
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Thus it follows from (3.7) that

0040 (.5) = 04 (1.0) )| £ Calt + o Ea +7,

which implies (3.15). Now, since

Ou=r"2 (Btz - 9% - —1—) (r2v),

4r2
we get
Jy = er73(8 — 8,)(8: + 8,){(1 — x(et))x(—3ep)(U — F)}
+er~3(1 - x(et))x(—3ep)(U — F)
= Jy+J3,

where the last equality is the definition of J} and J§. By (3.6), we have

N

PP (1.0)| < o1+ o). (3.16)

Then it follows from (3.13), (3.16) and 1+t < 6r that

N =

ITYJY| € Coer™2(1+ ) 2(1 + |p|) 2.
Since (8; 4+ 8;)p = 0, we obtain
T3] < Cal®r™2|T{(8 — 8r) (X (et)x(~3p) (U — F))}
_1 _92 _1
ter2(14+8)7%(1+ |pl)™2),
where we have used (3.13), (3.16), 1 +¢ < 6r < 6(t + M) and et < 2.
Moreover using (3.13) and (3.15), we find that
IT*{(8: — ) (X' (et) x(=3ep)(U — F))}|
< Cale(M+ )7 A +1p)7 + (1 +1) 711+ o))
< Co(1+1)7H (1 +p])72.

[l

)

N

Thus we get

N|—

IToJ5) < Coer™2(1 +¢)"2(1 + |p|)~

and then we have

[N

IT*Jy| < Coer~2(1+1)"2(1 + |p|) "2,
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[T J2|lo

+
o~
—

3
—~
[l
O
o”
—~~
o~
_|_
s
N~—
[N

<
<

which implies (3.11) for 1 < et

I
B

Case 3: 2 < et S et1. In this case, we have

1.
B

D=

w(r,t) = z—:r*%x(—3€p)U(p, s) =er 2U(p, s).

We divide J into three parts:
I'*J = Q1+ Q2+ Qs,

where

Q1 = I*(d w+263r_%f]ps),
Qy = Fa(_2€3,,.—%[jps — (a1 —ag + a3)(0p)20pp),
Qs = I'*((a; —az + a3)e3r—%(f]p)2ﬁpp
— (a1 w? + aqwiw, + azw?) Aw).
Thus our purpose is converted to
1Qillo = O (1+1)% +e*(1+¢)7Y) for i=1,2,3.

In the support of @Q;, we have 1 +t < 3r £ 3(t + M) and then we have
(3.13). First we consider ;. We get

ro0 w(r,t) = T%er=3 (8 — 8,)(8, + 8,) U (p, s) + isr_%[j(p, 5))
= Rl + R2a

where the last equality is the definition of R; and Rz. Using (3.13) and
1+t < 3r, we get

|Ry| € Coer™2(14+1)2(1 + |p|)”
and then

|| R2llo

N

< Coe(1+1t)~2(log(t + M))2
< Cuet(1+1)74.
Since (0; + 8,)p = 0, we have

Ry =T%(e%r~3(8, — 8,){(1 + 1) Us(p, 5)}).
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Moreover, by (3.8) and (3.13), we get

IRy + 263T%(r~2 (1 + £) 20, (p, 5))|

< Coe®r 3 (1+1)72(1 + [pl) 77,
Ry + 26 % (r 30, (p, )| S Cac®r™3 (14 1) (1 + o]) 5,
where we have used the fact
~ _7
IT*(pUsp(p, 8))| = Ca(l + |p])"=.
Thus we obtain
_3
1Q1llo £ [|Ry +T*(2e°r2Us,(p, 5))llo + || R2llo
< Co(3(1+1)2 i (1+1)74)
< Chet(l+1)74. (3.17)

Next we consider Q3. Using (3.13), we get
|ra(a§a,tnw(r, t) — er~2 (—1)la;+mﬁ(p, s))| = C’a,l,mar"% (1+¢)"L.
This estimate yields
Q3] < Coedr~2(1+¢)!
and then we get

1Qs|lo £ Cae®(1 +1)72(t + M)
S Casi(1+1)7+. (3.18)

ot

Finally we estimate Q2. When x(—3ep) is equal to 1 or 0, we find Q2 =0
by (3.1b). Thus we can assume 1 < —3ep < 2, i.e., (14 |p|)~! < 3e. Using

(3.8), and 1+t < 3r, we have

Q2] € Cag®r3(1+8) 11+ |p]) 2,
1Q2llo < Cae*(1+1)71. (3.19)

Nfw

Combining [3.17), [3.18) and (3.19), we find that (3.11) is valid for 2 < et <
ety/p and then that is valid for 0 =t < ¢y p.

To finish the poof of (3.3), we need the following propositions.
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Proposition 3.1 Let v € C? satisfy a wave equation:

2
Hou(z,t) = Z Yap(x,t)0a0gv(z,t) + h(z,t),
a,3=0

(z,t) € R? x [0, 00),
where 0y = Oy and
2 1
h/(t)l() = Z |'Yaﬁ(t)|0 < '2‘ fO’I“ 0st<T.
a,B=0

Assume that for any fized t, v vanishes for large |x|. Then we have for
0st<T

1D (0o £ 301Du@)lo + [ 1(llodr)exp( [ 1Dr()odr),

where

2

Dv = (8pv,01v,800) and |[DY(T)lo= Y [857as(7)lo-
a,,6=0

Proposition 3.2 For a smooth function v(z,t) radially symmetric with
respect to x,

_n—-1 _1
v(@,t)| = Cu(1 4|z +1)7 = (1 + [t = [of])72|[o()]][2]41
holds where [s] stands for the largest integer not exceeding s.

Proposition 3.1 is obtained by integration by parts and Gronwall’s in-
equality. Proposition 3.2 is so-called Klainerman’s inequality which has
proved in S. Klainerman [7] and F. John [5].

If we show that

IT*D(u(r, t) — w(r,t))|jo < Capei forany acZ8,  (3.20)

we find that (3.3) is valid. Indeed, it follows from (3.20) and Proposition
3.2 that

|af,a;“(u(r, t) —w(r,t))| < Cl,m’Bsgr_% 0St<ta

B

for any ! and m. Moreover when ¢t = 2/ and r —t 2 —1/3¢, w(r,t) =
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er~12U(p,s). Then
Lo w(r,t) = sr—%(—l)maffmU(p, s) + O(sr—%)

holds. By combining above inequality and equality, the desired estimate is
obtained. Thus we have only to prove (3.20). If we set v(r,t) = u(r,t) —

w(r,t), by v satisfies
1
Do = (a1u? + agusur + azu’ + O(|Dul*)) Au + ;urG(ut,ur)
— J(r,t) — (a1w? 4 aqwiw, + azw?)Aw
1
= (a1u? + agusu, + azu?)Av + O(|Du|4|Au|) —|—;—u,~G(ur, ut)

+ {(1,1 (ut + wt)vt + az(utvr + wrvt)
+ az(ur + wr)v fAw — J(r,t). (3.21)

By (3.5), we have for sufficiently small € > 0

|

|avuf () + azu(t)ur () + agur(t)]o <

Thus we can apply [Proposition 3.1] to [3.21). Since v(r,0) = 0, we obtain
for0st =< t%

[Dv(®)lfo = C/Otll(lDU(T)lJrIDW(T)|)|DU(T)| |Aw(r)] + |J(7)]
+ |Dul*|D?u| + [urG(7)| |lodT
X eXp (c /O " Du(r)|- |D2u(7)|d¢).
It follows from (3.5), (3.10), (3.11) and &®log(1 + t,5) = 1/B that
|1Dv(t)llo
< Ces /Ot{s%(l F1)7 + 1+ 07 + €21+ )" Y| Do(r)||o}dr
<cei+C /Ot e2(1+ 7)"Y||Do(7)||odr-

Gronwall’s inequality yields

o

: t
|| Dv(t)]]o < ce%exp(c/ e2(1 +t)‘1d7) < Cet.
0
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This implies that (3.20) is valid for « = 0. To prove (3.20) by induction,
we assume that (3.20) holds for |a] = s — 1. For any a with |a| = s, (3.3)
admits

%y = Z P (O w) 4+ T (a1u? + agusu, + azu?)Av}
1Bl<la
+ T*{ (a1 (us + wi)vs + az(ugv, + wpvy)

+ a3(ur + wy)vy)Aw} + O(|Dul*| Aul)
+ %urG(ur,ut) —TeJ
= (a1u? + agupu, + azu?) AT
+ O((|Du| + | Dw|)| Aw| - |DT*v| + [T*~ Du|(|T° Dul?
+ D5 w|?) + [T2J| + T Du|*|T* Aul

n |FS(‘71;UT‘G(uT’ut))|)’

where Df = (0;f,0,f) and I'® = Z I'\. By [Proposition 3.1, we get for
[A|=s

Ogtgtl/B

IDT%0(#)]lo = C/Ot | (IDu(7)] + [ Dw(7)])| Aw(r)] - | DT%v(7)|

+ P Do(7)|(|T* Du(7)[* + |T**! Duw(r)[?)
+ T2 J(7)||T° Du(r) [0 Au(r)]

+10*(urG ()l lodr
X exp (c /O " Du(r)|- |D2u(7)|dr>.

Proceeding as above, by (3.5), (3.10), (3.11), e*log(1 + t;,5) = 1/B and
the assumption, we have
¢
IDTu(t)]]p < c/ (1) fretato
0
+e2(1 +t)7 Y| DI (7)||o }dT
t
< Cel +c/ e2(1+ 7)Y DT (1) [odr-
0



592 A. Hoshiga

Gronwall’s inequality yields

FSE,

t
|IDT%v(t)[Jo = Ces exp<C/ e2(1+ T)—ldT) < Ce
0
Again using and the assumption, we obtain
[T Do (t)||o < Cet,

for any a with |a| = s. This completes the proof of (3.20).

At the end of this section, we investigate the value of the solution
U=U(p,s)at s=1/Bi.e.,t =t g We assume that the maximum in
the definition of Hy is attained at p = po, i.e.,

H() - ——af/(po)f”(po). (3.22)

In (p, s)-plane, we consider a characteristic curve A4(¢g € R) which is defined
by the solution of the following differential equation:

dp a 9
- = _ > = -
s 2(Up(p, s))¢ for s=20, p=gq for s=0.
If we denote a point on A, by (p(s),s), then we find
1.1 ,
UP(/)(E)’ E) = F"(po) (3.23)
1 1 1
- = (3.24)

U5 %) Ho B
Indeed, by (3.1b) and (3.2b), we have along A,

d a 1

EUp(p(S),S) = Ups + §(Up)2Upp =0 0 g S é E
Hence we have

1

Uy(p(s),8) = Up(po,0) = F'(po) 0<s< B’ (3.25)
which implies [(3.23). Similarly, it follows from [3.1b) and [3.25) that

d a

%Upp(f’(s)vs) = Upps(p(s),8) + §(UP(P(5)’5))2Uppp(:0(3)a3)

= — aU,(p(s), 5)(Upp(p(s), 5))*
= —aF (o) ([Upp(p(5),9))°.
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Solving this equation , we obtain by and

Upp(po, 0)

Upp(p(s),s) = 1+ aF'(po)Upp(po,0)s’

1 1
Unp(0(8),5)  F(po)

+ a’f,(pO)Sa

1.€.,

1 1
:———s,

—aF'(po)Upp(p(s),s)  Ho
for 0 < s < 1/B. Thus follows from this equality.

4. A priori estimates

From now on, we investigate the behaviour of u after ¢t = ¢,,g. If we
set v(r,t) = r%u(r, t), the equation can be written as

1
vy — 2 (ug, uyp) (v,.,n + Zr_zvr) = 'r_%urG(ut,ur). (4.1)

Moreover we define functions wi(r,t), we(r,t) by

CUpp — Upt Lov
wy (r,t) = _% = — 2cr’

CUrr + e LU
wa(rnt) = =5 — =5

where £ = 0; + ¢0,, Lo = 0y — c¢dr. We find that w; and w9 satisfy
w1 + w2 =V, (w2 —w1) = vre,

and these imply

_1 1 _3
’U,r =T 21)1' - 51. 2U,
_1 _3 3 s
Upp =17 2(w1 + W) — T 20, + L
1
Upt = cr_%(wg —wy) — 57'_%1),5. (4.2)
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Then using [4.2), we obtain the equalities:

Lrwy = {C<alut + %W) - %’Ut — agu, + O(|Du|3)} roiw?

+ O({r~%|Dul - |we| + 72| Dv| - | Dy
5 5
+ 772|Du| - |v|}Hwi| + 77 2 |wy| - |Dul - |v]
+ 173 |ws| - |Du| - |Dv| + 2| Dv| + 773|v|) (4.3)

Lowy = O({r~2|wy| - |Du| + r~%|Dul - |Dv| + 2| Du| - o]} wy]|
+772|Dul - lwa|? + 72| Du| - | Dv| - |w,]
+ 75| Dws| - | Du| - [v] + 2| Do| + r3Jv]). (4.4)
In what follows, we assume that there exists a T' (t;,p < T' < ty/4) such
that the Cauchy problem [[1.1}, has a solution u(r,t) for 0S¢t < T. In

r,t)-plane, we consider pseudo-characteristic curves Z} and Z2 which are
’ Y A n
given by solutions of differential equations:

dr
1, _ — _
Zy : o = c(ug, ur) for tZt_é_, r-/\—i—t% for t—t%,
Z2'—dr———c(u up) for t2t1, r=p—t for t=t1
p,'dt ty Ur 3’ fraclB =

We set

D={(rt)|tL St<T, (nt)€Z}, -N <A< M},
Dt*ZDﬂ{(T,t)lt% étét*},

where the constant N is sufficiently greater than |pg|. Moreover we define
the functions

r2(7)
I(t) = max /2 lwy (r, 7)|dr,

tysrstUr(r)

V) = v(r, 7)|,
© = ey, o)

V(o) = max (o) + (),

Wo(t) = S lwa(r, )],
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where (r1(7),7) € Z!, and (ra(7),7) € Z};. Then the purpose of this
section is following.

There exists a constant C > 0 independent of A and an €4 > 0 such
that

1+¢

I(t) < Ce, V()<é 2,
)<C r> (4.5)

V(t) < Ce, Wy(t

for (r,t) € D and 0 < € < eg4.
To obtain we just have to show:

holds at t = t,g,
(2) If holds for ¢1,p St < t1, also holds at t = 1.
At first we prove (1). If (r,t,/5) € Z; N D, it follows that

r=t%+)\, ~-NSAS M, (4.6)
then we find that

t1 —N<rst: 4+ M.

B B

If we take e sufficiently small as

1
t% =exp(§) — 1> max(M —2,2N + 1),

then we obtain

1+t
5 E < r(t

For (r,ti) € Z}, it follows from (3.5), and that

t1 +M
‘/1 9 u(M,t5))dA

S Jty + M- rl |ur<t%>|o

) <2(1+11). (4.7)

tUIH

I

C€(1+t%)‘%|)\+M|

IIA

C(M +N)e(1+ty )2
V2C(M + N)er % Coer™2,
which implies V (t;/5) < Coel/2. 1t follows from [3.4), and V(t,/p) <

A
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Coel/? that for (r, tip) € D,

)l

1
—Cort
+ 5 or €

r~Yo(r t

|

N | =

1
or(ryt )] = [r2up(r,ta) +

N|=
N=

< Crie(l1+ t%)_

1 1 -1
< \/§CE+ECOE2(1+t%) .

If we take ¢ sufficiently small, we obtain

(141y)7" = (exp(—B%)>—l <&, (4.8)

Thus we find

C
|vr(r,t%)| < —2-16.

Similarly we have

C
|vg (, t%)] < 716.

Therefore we obtain V(tl/B) < Cie. Using (3.5), (4.8), V(ti/B) < Coel/?,
V(t1/8) < Cie and an equality

1 T T
8 + 8, = ———(L0+—1L1+—2L2),
t+r T T

we have for (r,t,,p) € D,

Uty + CUpy
|w2(T,t%)| = ‘t—zc—
"vr +vrr|
= t—2“ + O((lvrti + lvrr|)|Du|2)
= O((t1 + T)_lbvr(t%)h
+(Jor(t 1 )lo + |vr,(tl)|0)|Du(t%)|§)

= O(e(1 +t%)‘1 +e%(1 +t%)_1)
= O(e?).

This implies Wa(t1/p) < C2¢”. Finally we consider I(t;,p). It follows from
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(3.5), (4.8) V(t1/B) < Coe'/? and V(tl/B) < Cie that for (r,t1/5) € D,

Upt — CUpp
2

Urt| + |Ur

Cetl 2] oo+ fre DI D)

C"(e+e3(1+ t%)_l)

C'e.

|w1(7‘at-§)| =

AN TA

On the other hand, it follows from (r1(t1,p),t1/8) € Z1y, (r2(t1/B), t1/B) €

ZJ}/I and that

|ro(t

r2(t1)
)= / B |wy(r,t1)|dr £ C'(M 4+ N)e < Cae.
Tl(t%) B

If we take C' > 0
é > maX{007C1702703}’

is valid at t = t;,p for sufficiently small . Thus we have proved (1).

To prove (2) we assume that for fixed ¢, holds for t,,p =t < t;.
The smoothness of the solution u guarantees that the inequalities which are
altered < by < in hold at ¢ = t;. First we show r > (1 +¢1)/2 if
e < ea. By and the assumption €%log(1 + T) < 1/A, we obtain for
(r(t),t) € Z3, tyyp St t

d(r —t)
dt

—c—1=0(|Duf?) = O(*(1 + t)1),

t
r(t)—t—X < C [ Q47 tdr

t)

B

Ce?log(1 +t)

%. (4.9)

A

1%\
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This leads to

C C 1414
)2t 4+ A — 2t —M— —
r(t) 2t + A= A> 2

provided t,,5 > 2M + 2C/A + 1, which is attained for 0 < e < ey if ey is
sufficiently small. Next we estimate v(r,¢1). By [4.5)] and (4.9), we obtain
for 0 < e < ey,

t1+M
o(r, 11| = —/ or (A, £1)dA

< Celty + M — |
. (C
< C’(Z—i—M—i—N)s

~ 1

< Cez,

if e4 < (C/A+ M + N)=2. Thus V(¢;) < Ce? holds.
To prove I(t;) < Ce, we consider exterior derivatives of differential
forms wydr — cwidt and wodr + cwsydt:

d(wy(dr — cdt)) = — (ﬁlwl + ?uq)dr A dt, (4.10)
T
Oc

d(w2 (d’f‘ + Cdt)) = — (Lz’wz — Eu&) dr A dt. (4.11)

We set,

K = {(r,t1) € Dy, |wi(r,t1) > 0},

K' = {(r,t1) € Dy, |wy(r,t1) < 0}.
Since these are open sets in R, K and K’ are the unions of at most denu-
merable families {K;} and {K]} of open intervals, no two of which have

common points. Assume that K = {(r,t1)|r1(t1) < r < ro(t1)}. Then,
integrating (4.10) over D;, and using Green’s formula, we obtain

r2(t1)
// (Elwl + —w1>d'rdt / s wydr +/ w1 (dr — cdt)
D 7‘1(t1)

—/ wydr —/ wi (dr — cdt).
K AR
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Since

/1 wi(dr —cdt) =0 for any A,
V/

we have

T2(t1
/ widr < |w1|dr+//
K T1(t1)

Furthermore, assume that K' = {(r,t1)|r1(t1) £ 7 < ro(t1)}. Then, the
same argument gives

ro(t1 1
—/‘wmré hmwr+/7
! ri(ty)

B

Oc
Liwy + —w; | drdt.

or

drdt.

Oc
Liwy + 51

Summing up such inequalities corresponding to K; and K], we obtain

Tz(tl) t
/ |wy |dr §/ B |w1|dr+//
r1(t1) r1(t
+ I

It follows from (4.2}, (4.3) and [(4.5) that

Oc
Liw] + —wq|drdt

or

—

I(t

~— UJ

Liw + ~—w1 drdt. (4.12)

1
B

8
Lywn + 5wy = O({r~2|Dul - hwa| + 77| Dol - |Dul
-5 -5
+772|Dul - [v[}wi| + 772 |wy| - [Dy| - o]
+ r_%|w2| - |Dul - |Dv| + 72| Dv| + r73|v|)

= O((e* 14+ t) P+ 21 + ) D)|wy| +e(1 + t)72).
Note that, from (4.9), we have

Ir1(t) —re(t)] < |r1(t) —t+ N|+ 1t —r2t) + M|+ M+ N
2C

<=L M+N
S LM+

Then it follows from [4.5), (4.8) and the assumption ?log(1+T) < 1/A
that
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[,

t1 TZ(t)
:o(/ (54(1+t)‘1+52(1+t)‘2)dt/ [y |dr
ty Tl(t)
B

t r2(t)
+ s(1+t)_2dt/ dr)

t1 r1(t
it 1(t)

drdt

Oc
Liwy + b—rwl

— 0(55 log(1+t1) + (3;12 + M+ N)s(l + t%)”l)

g3 2C 4
O<Z+ (I‘l'M-I-N)&Z )

Thus we obtain

A~

I(t1) < C3e + O(?) < Ce,

for € < e4 if €4 is sufficiently small.
Next we estimate v,. We fix a point (r,t1) € D;,, then there exist Ag
and po such that (r,¢;) € Z )1\0 N ZZO. Integrating the following equality

L1vy = Upt + CUpp = 2cwy,
along Z}\O from ¢,,p to t;, we find

t1d

vr(r,tl)——vr(/\o-i—t%,t%) = Ei(vr(r(t),t))dt

to

where (r(t),t) € Z) . To estimate the last integral in the above equality,
we set

E={(rt) € Dyl(r,t) € Z3NZ,, X <A and p< pol.
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By the same argument to obtain {4.12), we get from (4.11)
Oc

/ | (dr + cdt) < g |dr + / / Lowy — Loy drdt.
7! Bnft=ty ) or
It follows from and that
/ 1mmg/ lws|dr
Eﬁ{t:tl} Dy 1
B B
< Walty)Iralty) - ralty)| = O,

The same argument to estimate the integral of |£iw; + (0¢/0r)w1| over Dy,

/] ﬂ
D
d’

On the other hand, we find
t1
/ fwol(dr + cdt) = / wa(r(2),2)| <— + c)dt
Zi t% dt

£2’LU2 - —-UJQ £2w2 — —w2 drdt = 0(62).

t1
=2 [ clws(r(t),t)|dt

t1
B

t1
> [ funlr(e), o),
ta
B

for sufficiently small €. These imply

/t t lwa(r(2), £)|dt = O(c2). (4.13)

Thus we obtain
vr(rt) = vr(Xo +ta1,t1) + 0(g?), (4.14)

and

A

C C
lop(ry t1)| < —215 +0(?) < >
Similarly we have

v (r,t1) = ve(Ao +t1,t1) + O(e?), (4.15)
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and
C
|Ut(r7 t1)| < 56.
Thus V(tl) < Ce holds. More precisely, we have for (r(t),t) € Z;(I/B)’
Lo u(r(t),t) = (—1)™er™2F'(po) + O(eir™3)
for I+m=1, (4.16)

where p(1/B) is the one in (3.23) or [3.24). Indeed, if we write ry/p =

p(1/B) +t1p, (3.3) and imply

3 m m 1 1 5
r%@fﬁt u(r%,t%) = ¢(-1) U,,(p(E), E) + O(e*)
= (~1)"eF(po) + O(e*). (4.17)
When m = 1 and [ = 0, using with A\g = p(1/B) and we obtain
for (r(t),t) € Z;(l/B)

rzuy(r(t),t) = r ut(r%,t%)+0(e2)

['n|..aw|r—‘

= —eF(p) + O(ed).

The other case shall be obtained by using and [(4.17).
Finally we estimate wy(r,t1). We fix a point (r,¢1) € Dy, and take a

constant u such that (r,t;) € Z2. Then, it follows from [4.4), (4.8) and the
assumption e®log(1 + T') < 1/A that for (r(t),t) € Z2,

wa(r,t1) — wa(p — t1, t1)

B
" d t),t)dt
= [ 0
B
t1
= Lows(r(t), t)dt

ti
B

= O( tl{&??(l +) M el 4+t 4+ €7|w1(r(t),t)|}dt>

ti
B

— O<s4 4 /tl (wy (r (), t)ldt).

ta
B
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By the same argument to obtain [(4.13), we have

/ttl |lwi(r(t),t)|dt = O(e) for (r(t),t) € Zﬁ.

This implies
wa(r,t)] = hwa(u —ty,25)] + O

< C3ed +0(eY)
< Ce3,

for € < €4 if €4 is sufficiently small. Thus we have finished proving (2) and

then [4.5).

5. Proof of the Main Lemma

The following lemma play an important role in the proof of Main
Lemmal It will be proved in Appendix 2.

Lemma Let w be a solution in [tg, T| of the ordinary differential equation:

dw
i ao(t)w(t)? + en(Hw(t) + az(t),
where o are continuous and ag 2 0. Let
T T
K = |a2(t)|dtexp(/ |a1(t)|dt>.
to to

If w(ty) > K, w(t) must satisfy

w(t) exp(— /t: ()40(T)dT>

> wito) K __ 5.1
1= (w(to) — K) [y, ao(T) exp(f;, 1 (€)d€)dr
and
w(t) exp (— /t: ao(T)dT)
< w(ty) + K (5.2)

1 — (w(ty) + K) ftf’; ao(T) exp( [y, a1 (€)d€)dE
fortg S t<T.
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By and [(4.5), we find that w;(¢) = wy(r(t),t) satisfies

%wl(t) = ap(t)wy () + a1 (t)wy(t) + az(t) for t1 St<T, (5.3)

along Z;(I/B), where

a a
ap(t) = {c(alut + —2—2—ur> - éut - agur} 7"_%,

a1(t) = O(e*(L+t) "1 +2(1+ )72,
as(t) = O(e(1 +t)72).

It follows from [4.5), (4.9) and (4.16) that

ao(t) = —aeF (po)r~ + O(e%r_l)

_ / -1 5 -1 l . 1
= —aeF (po)(1+t)" + O<€4(1 +t) "+ (r 141 t)s)
= —aeF (po)(1+t)" 1+ O(et (1 + 1))

Since Hy = —aF'(po)F"(po) > 0, we can assume without loss of generality

that —aF'(po) > 0 and F"(po) > 0. This assumption guarantees ag(t) > 0
for sufficiently small e. Moreover we find that

exp (i /t: ay(7)dr = exp(O(/; ef(1+ T)_1d7)>)

= exp(O(e* log(1 + t)) + O(e* log(1 + t%)))

= exp(O(¢))
=1+4+0(e) for t1 St T,

K = /tT |a2(t)1exp(— /; al('r)d7'>dt

B B

_ o<(1 +s2)5/T(1 +t)_2dt>

= O(e(1 + t%)_l) +0(e(1+T)7Y)
= ()(53)’
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ti

)d’r
B

= (14 O(e))(—aeF'(po) + O(e

ap(T) exp (

J

-

o

D[ aentar

= (—aeF(po) + O(e1)) (log(1 + t) — log(1 + 1))
for t% StsT,

if ¢ < e4 (< A). On the other hand, by (3.5) and

w1 (t

)

bl
i~
<
3
~~
o~
=
~—
|
<
<
o~
—~~
o~

N = DN =
=

g
3
3
—~~

o~
N

[~

[ I
£
o~

[=F%I | = el

£
3
3

N

=
= |

~~
o~

=
gl

N | =

where 71,5 = t1,5 + p(1/B). Using [3.2b), we obtain

)

1
B

1

wl(t%):sUpp<p< ,—é) +O(s%).

605

By [3.24), we have U,,(p(1/B),1/B) > 0 and therefore wi(t,/p) > K.

Thus, applying to w = wy with to = t;/p, we find that w

(14 Ce)w(t)

1 must satisfy

2

where U,,(1/B) = U,y(p(1/B),1/B) and C is a constant depending only
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on B, f, g, po, a and M and it varies from line to line. By (3.24), we get

1
wl(t) > (1 N CE) UPP(%) — Ces
1
¢ 1— (—aF"(po)Upp() — Ced)(e?log(1 + t) — )
Up (%) — Cet
e2log(1+t)— & 1 15,1
1-— —H_%T%TE‘FC(X— 3)64
1
HLOF”(—lB—) — Cet

Hio—z-:Qlog(l—l—t)+C'

St<T, (5.4)

™
ool

if e < ea(< (1/A —1/B)78). Since the right term of (5.3) is positive, the
follwing must hold

o=

1
e?log(1+T) < — + Ces.
Hy

If we take €4 such that 1/Hy + Ce'/8 < 1/A for € < £4, we have

1
e2log(1+7T) < 71 for e<ea.

This completes the proof of the Main [Lemmal

6. The asymptotic behaviour of the solution near the blow up
point

As we stated in Section 2, we study the behavior of wj(t). Note that
since w; is defined by the solution u, w; does not always exist.

Theorem 6.1 For any § > 0 there exists an €5 > 0 such that wi(t) is
well-defined in t; g St Sty s, if ¢ < es and at the point t = t1/p,_s

wl(t) N L
9 N H()

lim (Hio —e%log(1 + t))

e—0

F"(po)

holds. Here we use the notation €% log(1 + t1/Hy—s) = 1/Ho — 0.

As a corollary to this theorem we obtain Theorem 2 in Section 2. In [2],
we have proved that there exists an €;(6) > 0 such that for € < €1(6) the

Cauchy problem [1.1), has a smooth solution in t,p <t < t; 5, _s and
therefore wj(t) is well-defined in the same interval. Thus we have only to
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prove that for any n > 0 there exists an £¢(6,7) > 0 such that for e < £¢(6, )

HLO — e?log(1 +t) 8(t) — FO]:”( po)| <7
holds at t = t/p,-5. As we stated in above, for e < 1(8) since w;(t) is
well-defined, the ordinary differential equation (5.3) make sense in t;,p <
t < ti/fg,—s- Thus we obtain (5.4) with T' = t,,p,_s. Notice that we are
able to change €!/8 with €'/4 in (5.4) because of 1/Hy — & < 1/Hy. If we
take t = tl/Hg—(S in (54),

(HLO — e2log(1 + t)) wi(t)

£
2(1}_” %) ——s 2log(1 +t)
Ho Hi—szlog 1+t)+C’€4
1 ) Céei
0 6+ Cei 6+ Ced
1 1
1 Ce1 Coes
= E—f”(PO) - T 1
0 5§+ Cet 6+ Cet

holds. There exists an €2(6,1) > 0 such that for € < e9(6,7)

Cei Céei
T + T <,
6+Ces b4 Ces
i.€.,
1 2 wl(t) 7
— —2log(l+t _1lr -
(5~ 1o+ ) 222 = - F(p0) > —n

holds. Similarly, using we find that there exists an €3(6,17) > 0 such
that for € < e3(6,7)

1 wi (¢) i
(Fo—elog(1+t)) . _FOJ:( po) <M

holds. Thus if we take £¢(6,7) = min(e1(6),e2(6,7),e3(6,7n)), we get for
e < eo(6,m)

—e2log(1 + 1)) E(t) —-7:,/( 0)| <m,

which implies that [Theorem 6.1 holds.
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7. Application

The vertical motion of nonlinear vibrating membrane is governed by
the equation:

uy — div (__Vu_) =0, (z,t) € Q x (0, 7). (6.1)

VIt VaP

The total energy F(t) at time ¢ has a form

E(t) = /Q(uf + /14 [Vuf?)dz,

where 2 is a bounded domain in R? with smooth boundary 8. Let a solu-
tion u to (6.1) satisfy initial condition and Diriclet or Nuemann boundary
condition,

w(z,0) = ef(z), u(z)=eg(x), z€Q, (6.2)

u=0 or n-Vu=0, (z,t) € 09 x (0,T), (6.3)

where n stands for the outer unit normal vector to 8. Then the conserva-
tion law of the energy holds:

E(t) = E(0).

For the equation of nonlinear vibrating string corresponding to one space di-
mension, S. Klainerman and A. Majda [8] have proved that smooth solutions
with small initial data and with Diriclet or Neumann boundary condition
always develop singularities in the second order derivatives in finite time.

For our problem when €2 is a ball in R2 with radius R, radially sym-
metric solutions to the initial-boundary value problem (6.1), and (6.3)
blow up in finite time, though we can not determine the radius R in advance.
In fact, if we write r = |z| the equation (6.1) is rewritten as

1 U
— 2 — —
Uty — C (ur) (urr + T“r) - G(ur)
with
3
Alup) =1— §u,2, +O0(Jur*), G(uy) = O(|us|?) near u, =0.
Thus applying Theorem 1 to the initial value problem (6.1) and (6.2}, we
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obtain

1
. 2 -
t1111%5 log(1+T;) = o
where

H,= rygﬁc(%f’(p)f"(p))-

This fact implies that if we take T' > 1/H,, then for sufficiently small g we
have

T
T, < exp(—z) -1
€0
If we take the radius R greater than exp(T/e?) — 1+ M, the solution s blow
up before the distervances reach the boundary. Thus the solution to (6.1)

and is also the solution to (6.1), and (6.3) which blows up in

finite time.
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Appendix

1. Proof of (3.8) and (3.9)

It remains to prove

1
407U (p, 8)| < Cimp(1+ o) 274" for 0<s< =, (38)

U(p,s)=0 for p= M, (3.9)

for the solution U(p,s) of the initial value problem |3.1a), {(3.2a). Along
the same argument to obtain we get for (p(s),s) € Aq

Up(p(s), s) = Up(a,0) = F'lg) for 0s<—. (A1)

D:J

Hence, by the definition of characteristic curves A4, p(s) can be written as

p(s) =q+ - (.7:’( ))2s for 0<s< % (A.2)

On the other hand, it has been known that F satisfies

dk

- Cr(l+p))"27% for peR, (A.3)
P

—Fo)| =

Flp)=0 for p2M (A.4)
e.g. L. Hérmander [1] . Then we have

|a|C1 _

Cl
~ 2B b

S (@)

where the last inequality is the definition of C]. At first we prove (3.8) for
| =1and m = 0. When |p(s)| £ 2C}, we find that for (p(s),s) € A,

Us(p(s), 8)| = |Fo(q)] < C1 < Cy(1+2C0)3(1+2C))~3
< Cr(1+2C)3(1+ o) 2

When |p(s)| 2 2C] , it follows from (A.2) that

ol = |ols) ~ 5 (F'(@))?s| 2 ol - € 2 510l
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Thus we obtain
~ 3 ~ _3
Us(p(s), )| = |F'(q)] < C1(1+ |g|)™2 £ 2v2C1 (1 + |p|) 2.

Therefore if we take C o p = C1(1+2C%)3/2 +24/2C1, we find that (3.8) is
valid for I =1 and m = 0. When [ =0 and m = 0, |3.1a) and (3.2a) imply
that for any (p,s) € R x [0,1/B]

U(p,s) = p7 +/ _____U P,

= Flp) - (U (p,5))°ds.

6

Thus we obtain

N

U(o,5)| < o1+ o4 +
o

< (Go+ g5Clos) 1+ Io) 7+,

C} os(l+]pl)”

N)Ir—t

This implies that (3.8) is valid for [ = 0 and m = 0 if we take

= lal
Co,0,B = Co + 6BC1OB

Next we prove (3.8) for general [ 2 2 and m = 0. Let s (0 £ s < 1/B)
be fixed arbitrarily. Then for any point (p,s), there exist a smooth curve
q = gs(p) such that (p,s) € A;. Differentiating (A.1) with respect to p, we
find that for [ = 2

9 \™U) / 92\ m20)
=37 3 coo(5)™ (55)

m(j)eX

al—lq mi—1(3)
h (apl‘1> ’ (A-5)

where

X = {m(j )EZl Ymi(5) + ma(§) + -+ mi_1(4) = 4,
m1(5) + 2ma(G) + -+ (I — D)my_1(j) =1 — 1}.

On the other hand, differentiating 8q/8p = (0p/8q)~! with respect to p,
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we find that for k = 2
Z 5 = oolg) (5)
N(j)ey

Ok —1g\ Ne—109)
(=)

where

Y = {N(j) € ZE N1 (§) + N2 (§) ++ -+ N1 (§) =37 + 1,
—k+1).

N1(j) +2N2(5) +-- -+ (k = 1)Nk-1(5)

Moreover by (A.2), (A.3) and the same argument in the case [ = 1 and

m = 0, we obtain

ap A
Ll ¢
(9q = 1
gk < Co(1+1p))73% for k22

Using (A.7), we get

0q —
A <o,
op| — !
3kq = —-3—k
B—p’“ < C’k(1+|p|) for k=22.
Thus it follows from and that
105U (p, 5))
-1 -1
<Cip) (1+]o])” 779" FTI + [pf) R 2meld)
7=2 k=2
-1

(A7)

SCIBZ (1+1pl)” 3=i- Ya+1p)” Sy (= D)mi(5)—4 S, me(G).

j=1
Since
ma(j) +2m3(j) +- -+ (1 =2)m1(j) = 1 -5 — 1,
ma(j) + m3(j) +---+m_1(j) 2 0,
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we have
85U (p, 8)| < Cio.p(1 +|p]) 27971 1H1+
1
< Crop(l+|p)) 7270

Next we assume that (3.8) holds for any [ and 0 = m < k—1. Differentiating
the equation (3.1a), we have

af)an(p, s) = Z 082‘1831+ﬁ1 U(p, 3)8[0,‘2881+ﬂ2U(p, $)05° OtPsU (p, s),
where
ar+as+az3=10 and B+ B2+ 03=k—1.
Thus we have
0505V (p, )| £ Cup(1+|pl) 724403
< Cupp(L+pl) 727

This completes the proof of (3.8).
Finally we prove (3.9). If p 2 M and (p,s) € Ay, we find ¢ 2 M
because of the uniqueness of A,. It follows from (A.2) and (A.4) that

1

Uy(p,s) =F'(q)=0 for p=2M, 0Ss< B

Thus we have

1
U(p,s) =0 for p=2M, Oéség,

which implies (3.9).
2. Proof of Lemma in section 5

Here we prove in section 5. At first we consider the case a;(t) =
0. Let Wi (t) be a solution of

Wi (t) = ao(t)(Wi(t) — K)?, (A.9)

Wi (to) = w(to) (A.10)
and set

Wo(t) = t |aa(T)|dr.

to
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Since ag(t) 2 0, we find that

Wi (t) 2 w(te) > K = Wa(T) > Walt)

and that

(Wi(t) — Wa(t))' = ao(t)(Wi(t) — K)? — |az(t)|

< ao(t)(Wi(t) — Wa(t)? + az(t),

Wl(t()) — Wg(to) = 'w(o).
Thus the usual comparison theorem leads to

Wi(t) — Wa(t) < w(t). (A.11)
By solving (A.9) and (A.10), W(t) is represented by

w(to) - K

Wi(t) = K

1 — (w(ty) — K) ft'; ao(T)dr
Substituting this equality in (A.11), we have
w(to) — K
1 — (w(ty) — K) ftto ap(T)dr
w(to) — K
11— (w(t) — K) ft’; ag(T)dr

This implies for a1(t) = 0. On the other hand, if we let W3(t) be a
solution of

w(t) 2 K

— Wa(t)

W3(t) = ao(t)(Wa(t) + K)?,

Wi(to) = w(to),
then we find
(Ws(t) + Wa(t))' = ao(t)(Ws(t) + K)? + |az(t)]
2 ao(t)(Wa(t) + Wa(t))* + |az(?)],
Ws(to) + Wa(to) = w(to).
Since Wj3(t) is represented by

w(to) + K

Ws(t) = K+ 1 — (w(to) + K) ftt) ag(7)dr’
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we obtain
_ w(to) + K
w(t) £ —K + I (w(to) + K) ftto o) + Wa(t)
w(to) + K

11— (w(to) + K) ftto og(T)dT’
this implies for a1(t) = 0. For the general case, setting

W(t) = w(t) exp(— /t t al(T)dT)

0

and applying the results just proved to W(t), we would obtain the inequal-
ities which we wanted.
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