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First eigenvalue estimate on Riemannian manifolds

Xu CHENG and Detang ZHOU?
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Abstract. We obtain three different estimates for the Laplacian on compact Rieman-
nian manifolds with negative Ricci curvature.

Key words: Riemannian manifold, eigenvalue, Laplacian, Ricci curvature.

1. Introduction

In recent years, much work has been done on studying the first eigen-
value of the equation

Af = —Af (1.1)

where f is a C™ function defined on a compact Riemannian manifold. In
general, it is known that the first eigenvalue A; cannot be bounded by
either the diameter or the volume alone. In Cheng showed that A\; has
an upper bound depending on the diameter d and the lower bound of the
Ricci curvature —L. Li [3] obtained a lower bound of the A; in the case of
homogeneous manifolds. He showed that Ay > %; +min{—L,0}, when M is
a compact homogeneous manifold with Ricci curvature bounded below by
—L. Recently Yang [4] proved the same result for any compact Riemannian
manifolds. The present authors also did some works in this field ([5,6]). The
purpose of our present paper is to show that the estimates quoted above is
not optimal when the Ricci curvature of M is not nonnegative and to obtain
the sharper estimates for A\; on compact Riemannian manifolds. Precisely,
we will prove

Theorem 1.1 Let M be a compact Riemannian manifold with Ricct cur-
vature bounded below by —L(L > 0). Then the first eigenvalue A1 of Lapla-
cian satisfies

1Supported partially by a project from Shandong University for youth and a project
from Shandong Province for youth.
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where d is the diameter of M.

Theorem 1.2 Let M be a compact Riemannian manifold with Ricci cur-
vature bounded below by —L(L > 0). Then the first eigenvalue \; of Lapla-
ctan satisfies

AL > —L2 — ~L (1.2)

w2 _lo VILd?
M > e 2CnVLd (1.3)

where d is the diameter of M, and C, = max{\/n — 1,/2}.

Our estimates cannot be concluded from the others. As a matter of
fact, the estimate in [Theorem 1.1 is better than that in Theorem 1.2 when
L is suitable large. The main results of this paper were obtained by the
present authors in 1990 and declared in [5]. The delay of submitting the
paper is due to that we believe the estimate in [Theorem 1.1 is A; > %; — %L
which is still open to us. The rest of this paper is organized as follows: in
§2 we will list some notations and formulae needed in this paper, in §3 we
will prove several essential lemmas and in §4 the proof of the main theorem

will be given.

2. Notations and formulae

Let M be an n-dimensional compact smooth Riemannian manifold. We
denote {e; } the orthonormal frame fields on M with coframe fields {w® }
(¢ =1,2,...,n). The Riemannian metric of M is ds? = Y-, Wt Tt is well

known that there are Riemannian connection form w;- such that

dw' + Zw; A =0 (2.1)

=1

. . 1 :
k kool
dw§—+—§ w}c/\wj:§§ Ropw® Aw
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where R; ,; are the Riemannian curvature tensors of M. Suppose f:M—>R
is a smooth function on M. Its covariant differentials f;, fi;, fijx are defined
successively by

Df =df =) fi' (2.2)

Df;=dfi— Y wif;j =) fiju’ (2.3)

Dfij=dfi;— Y wifu;— > whfie =" fipe®. (2.4)
It follows from , and that

fij = fii

fije — fies = Y_ R o
The Laplacian of M is defined by
Af =) fi
Now we suppose that u is a standard eigenfunction of A; i.e. u satisfies;

Au = —\u
maxu=1—96
minu = —k(1 — §)

where § > 0 is a given small constant and k is a number in (0,1]. We shall
consider the functions f, ¢ = arcsin f and V¢, where f is defined as
1—k)(1-6)
u— & 2(

f= 1tk
2

which satisfies

Af=-M(f+a)

maxf=—-minf=1-9

where a = }—_T_—Z(l—é) € [0,1). Define F: (-5 + 61,5 —81] = R by

F(¢o) = sup{|V¢(z)|* : z € M, f(z) = sin¢o}
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for any ¢ € [~ + 61,5 — 61], where §; = arcsin/6(2 — §). It is obvious
that F is continuous. What is more for any ¢y € [-3 +61, 5 — 61] there
exists xyg € M such that

$(x0) = ¢, |Vo(z0)|* = F(¢o). (2.5)

3. Estimate on function F(¢)
In this section we will prove several lemmas which will be used in §4.

Lemma 3.1 Let y(¢) > 0 is C?-function defined on 5 + 61,5 — &1
satisfying
™
2
and F(do) = y%(po) for some ¢g € [~5 + 61,5 — 61]. Then at ¢y

y2(¢) < A1 + Masin¢ + Lcos® ¢ — yy' cos sin ¢
/ /

— Aly—cosqﬁsingb — Alay— cos ¢ + "'y cos® ¢
(] Y

F(¢) <y*(¢) Voe + 61, g — & (3.1)

1 lySinfb— A1(sing + a)

2
S — 4y cos qb} : (3.2)

Corollary 3.1 Let 2(¢) > 0 be a C? function such that

Fi(60) = (60, for some do € |~ + 61,7 - A (3.3)

Then at the point ¢g we have

z(¢) < A\ + Arasing 4+ Lcos? ¢ — %z'(¢) Cos ¢ sin ¢

- /\1(821:((1; a) 2'(¢) cos ¢ + %z”(d)) cos? ¢.

Proof.  Since F(¢o) = y*(¢o) we can find o € M such that d(zo) = ¢
and |V(zo)|> = y?(¢o). We consider the C? function ¥ : M — R, U(x) =
[IVé(x)|2 — y?(é(z))] cos? ¢(z) which achieves its maximum at the point zg.
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Applying the maximum principal to the function ¥ at xy, we can see that
it must satisfy at xg

U(z)=0,V¥(z) =0,A¥(z) <0
It implies that at ¢g

> 2=y (¢)cos’ ¢ =0, (3.4)

2 Z fifij + cos $(2y%sin ¢ — 2yy’ cos ¢)¢p; =0 (3.5)
(] = 1,2,"',71),

23 (F5 + fifigi) + 2(cos” ¢ — sin® )y
+ 4yy’ cos psind — (y'2 + yy") cos” ¢] Z QS?

+ cosp(2zsin ¢ — 2’ cos p)Ad < 0. (3.6)
From sin ¢ = f we have
A = Af s1nqbIv 2 = sm¢—{—a+sm¢ 2(6). (3.8)

cos qS cos ¢ cos ¢ cos gb

From (3.5) we know

S fiififi = —cosg(y’sing —yy'cosd) > difi
= — Z ff(y2 sin ¢ — yy' cos ¢).

We can choose local orthonormal frames such that f; = |V f|, and f; = 0,
fori=2,---,n, and fi; =0, for ¢ # 1. Thus

= n n 2
2 2 1 B _ L - )
igz:zfij > ;fu 2 —n——l (;fu) = 1(Af fll) )

Then

Z )2+ 12 = [y(ysing — ¢/ cos ¢)]?

1,5=1

+ ;’L———l——l [~ A1(sing + a) + y(ysinp — ¢ cos (/5)]2 (3.9)
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and
Y fifii =3 filfiji+ > RYf)
= M) _fP+ ) Rufifi>—(M+L)Y f2.  (3.10)
Applying [3.7)}-(3.10) to (3.6) we have at ¢y
(y? sin ¢ — yy cos ¢)?
L [ Ai(sing +a) + y(ysing o/ cos )]
— (A1 4 L)y*cos® ¢
+ [(cos? ¢ — sin? ¢)y® + 4yy’ sin pcos ¢ — (yy" + y'?) cos?® ¢ly?
+ cos ¢(y? sin ¢ — yy' cos P) |—A; Sir;(i;; 24 (S::)I;Z 2
<0. (3.11)
Hence (3.2) can be concluded from by a direct computation. []
The proof of is straightforward.

Lemma 3.2 The boundary value problem

1
z = Lcos® ¢ — 2/ cospsind + —2—z” cos? ¢ (3.12)

()=+(5)-

has a unique solution which is z(¢) = Lg(¢), where g(¢p) = &Ezquf
cos’tdt as ¢ € [0,%] and = g(—9) as ¢ € [-5,0), and satisfies g'(¢)
for ¢ > 0 and ¢'(¢) > 0 for ¢ < 0.

S

t
0

IA

Lemma 3.3 Let M be a compact n-dimensional Riemannian manaifold
with the Ricci curvature bounded below by —L(L > 0). Then

F(¢) < A1+ Lg(¢) + Ma (3.14)
forallp € [T + 61,5 — b1].
Proof.  Assume for the sake of contradiction that there is a positive con-

stant A > 0 and ¢o € [—-F + 61, 5 — 61] such that
A = F(¢o) — A1 — Lg(¢o) — M1a
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_ ma,x{F(cb)—)\l—Lg(qb)—)\la:qu —g+6l,g—61”

Define z = A+ A\; + Lg(¢) + A1a then applying [Corollary 3.1, we have at
¢ = ¢o

1
A+ X+ Lg(d) +Ma <A + Lcos® ¢ + M\iasing — §z’cos¢sin¢

sing + a

1
> A1 2 cos ¢+ 52” cos’¢. (3.15)

Then we consider the following two cases: Case (i) ¢o € [0, 5 — 61]. From
and (3.15) we have

1 1, si
A < —)\a+ M\asing + éz'cosgbsincb — iklwz' cos ¢
z

= Aa(sing — 1)

Z ;(;S ¢ [Asin¢ + Lg(¢)sin @ + Aja(sin ¢ — 1)]
< Aa(sing — 1) + Z COS¢A1a(sin¢ -1)
— Ma(sing — 1) [1 i C;:d’] . (3.16)

Here we have used the fact that z'(¢) < 0 when ¢ € [0, 7]. In order to obtain

a contradiction we need only to show that 1 + %ﬁi > 0. In fact we know

Z'cos¢g

Lg'(¢) cos ¢
2z 1+3

(A+ A1+ Lg(¢) + Ma)
Lg'(¢) cos ¢

> 1+ 2Lg(9)

_ 29(¢) +g'(¢)cos ¢

29(s) '

Denote

cos? ¢
2

= —pcos® ¢+ 2(sing + 1)/
¢

G(¢) = [29(¢) + g'(¢) cos ¢]

[MIE]

t cos? t dt.
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Then we have G(0) = 2f2 tcos’tdt > 0 and G(%) =

2 2
G'(¢) = —gcos?’qS—I— %Cosqb— %cosqﬁ — 2¢ cos® ¢
_ 06,0

where G1(¢) = 143 — 3cos? ¢ — ¢? — 4¢pcos¢. Since G1(0)
Gl(%) = 0 and

2
T —3 <0,

Gi(¢) =2 |#(2sind — 1) + 3cos ¢ (sin¢— g)} .

Then G ((b) > 0 as ¢ > arcsin? and G{(¢) < 0 as ¢ € (0,%). Thus
Gi1(¢) < z —Oas¢>arcsm G1(9) < G1(0) < 0 as ¢ € [0, %]

G
and G1(¢) < Zr4—2 — 3cos®(arcsin £) — (%)% — Z cos(arcsin2) < 0 as ¢ €
(%, arcsin £); hence we have proved that G(¢) < 0 for all ¢ € [0, 5). Then
G'(¢) <0 and G(¢) > 0, thus A < 0 which is a contradiction.

Case (ii) ¢o € [~ + 61,0] . From (3.15) we have

1 2/ cos ¢

A< §Z,COS¢Sin¢ -\

(sing + a)

2/ cos ¢

= ——[(A+ X + Lg(¢) + ha) sing — My (sin ¢ + a)]

= LI@I00 (4 1 Lg(4))sin 6 + Malsing — 1)] <

which is also a contradiction. Thus the proof is completed. ]

Consider the two point boundary value problem

( 1
z:sinqﬁ—%—(l%—ﬁ{_—x) z'cos¢sin¢+§z”cos2¢
{ 2 (—g +61) =1 (3.17)
m
\ z (5 —(51) =1

It is easy to see that

Lemma 3.4 The problem (3.17) possesses a unique solution H(¢) and
satisfies (i) H(6) = —H(~6) (i) -1 < H(¢) <1 (iii) H'($) > 0



First eigenvalue estimate on Riemannian manifolds 461

Proof.  From the fundamental theory of ordinary differential equations
we only need to prove that the corresponding homogeneous boundary value
problem possesses no nontrivial solutions. If not, we suppose that z(¢) is a
nonzero solution of

1 A1 ) / ) 1, 2
z=—1—|1+——"—— ]2 cosopsineg + —z cos
2 ( Lg(¢) + M\ ¢sing ¢

z(— +61):z(g—51>:0 2

Setting h(¢) = exp [_ 04’ sint (] 4 Lg(z\)le)\l)dt] and multiplying the both

sides of (3.18) with 2h(4) e have

cos2 ¢
2h(¢) _ sing A1
cos? ¢Z(¢) Y (1 * Lg(p) + A

(3.18)

ol

) h()2/(6) + h(6)2"(0)

and

Then

280 = (@) (3.19)

Multiply both sides of with z(¢) and integrate

5 L
[20 2D 2yap = [T (o)) 2(0) o

—5+61 cos® ¢ —5+61

= Zh(¢)z

T_§ 7+61 ,
e [ he)E6)?de.

Then

5+ 2h(¢)
h 2 24 22" 22%de = 0.
[, O+ S5 ds
Since h(¢) > 0 then z(¢) = 0. This proves that possesses a unique
solution. We denote it by H(¢). It is easy to see that —H (¢) also satisfies

[3.17). So H(¢) = —H(—¢). To prove (iii) we assume that H(¢) is not

monotone increasing, i.e. there exist two points ¢1,¢2 € (=5 + 61,5 —
81) and ¢1 < @9 such that H(¢) attains its local maximum at ¢; and its
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local minimum at ¢, H(¢1) > H(¢2). Thus H'(¢1) = 0 H"(¢2) < 0 and
H'(¢2) =0, H"(¢2) > 0.

H($1) = sing + 22" (¢n) cos’ ¢ < sin (3.20)

1
H(¢2) =sing, + Ez”(fﬁz) cos” ¢ > sin ¢y (3.21)
then H(¢1) < H(¢2). This is a contradiction which shows that H'(¢) > 0.
(ii) follows from (iii) immediately. This completes the proof. []
Lemma 3.5 Let M be a compact Riemannian manifold of dimension n

and Ricci curvature bounded below by —L (L > 0). Then

M+ L+MaH(¢) e {0, g - 51]

F($) < (3.22)

M+ L) + MaH(d) e [—g L6, 0]

Proof.  Assume for the sake of contradiction that does not
hold. Then there exists

(a) aconstant A >0 and ¢ € [0, § — 61] such that
A = F(¢o) — A1 — L — AjaH (o)
= maX{F(qb) — A1 —L—XMaH(¢)|¢ € [07 g - ‘51] }

or
(b) a constant B >0 and ¢ € [-F 4 61,0] such that

B = F(¢o) — A1 — Lg(¢o) — AraH (o)
= max {F(6) - i -~ Lg(#) - haH(@)l¢ € |- +5,,0]}
In [Corollary 3.1 if 2(¢) satisfies F'(¢o) = 2(do) > A\ + Lg(do) — A1a and
2'(¢g) > 0 then let z = Ay + Lg(d) + M\aw(p), |w| < 1. Thus

A1(sin ¢ + a) S A1 sin ¢
z ~ Lg(¢) + M

From (Corollary 3.1 we have

2(¢d0) = F(¢o) < A1 + Aasing + Lcos? ¢
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1 A1 , )
-5 (1 + m) 2" (o) sin ¢g cos ¢y

+ %z”(qﬁo) cos? ¢y. (3.23)

Define z = A+ A\ + L+ A\1aH (¢) and notice that Z > A; + Lg(¢) — A1a and
Z = AaH'(¢) > 0. Thus at ¢ = ¢

F(qb) = Z(¢)=B+)\1+L+>\1GH((]§)
< A\ + Lcos? ¢+ Masing

1 A1 . L, o
—— {14+ — + = .
5 ( N Lg(cb))z sin ¢ cos ¢ 2z cos” ¢

Then A < —Lsin? ¢y < 0, which is a contradiction. If (b) occurs we define
z= B+ A\ + Lg(¢) + \aH(¢) then by Corollary 3.1 we have

B+ A+ Lg(¢) + MaH(¢) < A + Lcos® ¢ + Aasin

— —;—z'(qﬁ) cos ¢ sin ¢

A1 (si 1
_ l(Sln¢+a)z'cos¢+ —z”cos2¢
2z 2

Let z; = Lg(¢) and zo = A\jaH(¢). Then

B + M +21+29 <)\ +Lcos2¢+)\1asin¢
1

— i(zi + 24) cos ¢ sin ¢
1 Aq(si 1
_ LAlsing+a) (2} + 2b) cos p + = (2] + 25) cos® ¢
2 2z 2
From the definitions of g(¢) and H(¢) we have
A (si
B < Fz'l cos ¢ sin ¢ — 1(sing + a) 2} cos (b]
2 2z
1 Az : Ai(sing +a) ]
[5Lg(¢>)+)\1 cos ¢ sin ¢ >, 25 cOs @ | ,
and
1 A1 (si
523 cos ¢sin ¢ — I(SII;¢ +a) 2z} cos ¢
2

_ zjcos¢
22

{Bsin¢ + Lg(¢)sin ¢ + A\ja[H($)sin¢p — 1]}
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= ! ZZS¢ sing(B + Lg(¢)) +

cos ¢
2z

[H(¢)sin ¢ — 1JM\1a2] <0
in above inequality we have used ¢ € [~5+6;,0]. Since z = B+A;+Lg(¢)+

MaH(9) = M [£ +1+ £9(¢) +aH(¢)] and a(1+ £9(¢)) > aH(¢)sin g
then

(1 + )\%g(qﬁ)) (a+sing) > sing (1 + —LIQ(@ +aH (¢))

A
. B L
> sing (5 + 1+ 5-9(6) + aH ()
)\1 )\1
A(sing +a) sing + a
z 241+ £9(¢) + aH(9)
sin ¢ A1 ino
2> = sin ¢.
1+ 39(¢)  Lg(d) + M
Then
1 A1 . 1 Ai(sing + a
§WZIQCOS¢SIH¢—§ ( s )ZéCOS¢SO.
This implies that B < 0. The contradiction shows our Lemma. []

In what follows we will give an another type of estimate of F(¢).

Lemma 3.6 Let M be a compact Riemannian manifold of dimension n
and Ricci curvature bounded below by —L (L > 0). then

(Vb +avLcos¢)? ¢ € lO, g — 51]
F(6) < )
(\/H—i—a\/f.cosqb)2 ¢ € {—54—61,0}

where b=1+a and a = 3C,, where C, = max{v/n —1, V2 }.

Proof.  The idea to prove this Lemma is similar to while the
difference is to use instead of using [Corollary 3.1. We will prove
the claim for n > 3 because we can substitute 2 for n — 1 in formula (3.2)
when n = 2.

Assume for the sake of contradiction that there exist
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(a) a constant A >+/A; and ¢g € [T + 61,0] such that
A= max{ F(¢) —aVLcosg| ¢ € [—g —|—61,0]}

= \/F(¢o) — avLcos o

or

(b) a constant B > /bA; and ¢g € [0, 5 — 61] such that

B = maX{ F(¢) — avVLcosd| ¢ [—g—wl,o}}

=/ F(¢o) — oV L cos ¢

If (a) occurs we define y = A + a/L cos ¢ then by Lemma 3.1, at ¢ = ¢
we have (3.2). Since y' = —aV/'L sin¢ > 0 when ¢ € [-F + 61,0], then

1

n_

Ai(sing + a)
Y

1 , A1 sin ¢
= — Asing¢g —
n—1 A—c—a\/fcosqﬁ
)\1a 2
A+ avVLcos¢
A1 sin ¢ 2
A+ av/Lcos¢
g2

(A + av/Lcos ¢)?

A1
+ 4aV'L cos ¢ sin? A —
¢ ¢ ( A+ av/Lcos qS)

7 [ysinqﬁ— —y'cosgi)}2

+ 204\/Zcos¢sin¢ —

—1
-1

(A sin ¢ —

+ 4a®L cos® ¢sin® ¢ +

4/\1aa\/f cos ¢ sin ¢
A+ a/Lcos [0

B 2\1asin ¢ A A1
A+ on/Lcosé A+avLcosd ||’
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: A
Since A — m > 0 then
1 A1 (si 2
—— |ysing — 1(sing + a) — 1y cos ¢
n—1 Y
4
< — oL cos? ¢sin® ¢.
n—1
Thus
/
y? < A\ + Lcos? ¢ —yy' cosgpsing — Aly— cos ¢ sin ¢
Y
4
+ 3"y cos® ¢ — ——1a2L cos® ¢ sin? ¢.
y?2 < M + Lcos®¢ + AaV'L cos ¢sin’® ¢ + a*L cos? ¢(1 — cos? ¢)
AaV/L cos ¢ —o2Leost o
A+ avVLcos¢
4 4
— a’L cos® d + ——a?Lcost ¢,
n—1 n—1
and

A2 4+ 24aVL cos ¢ + a*Lcos? ¢

402 4
_<_)\1+<1— a1>Lcosz¢—(2— 1>a2Lcoszd>

n_

A1 2 2
+1A— aV Lcosd+ a“Lco .
( A+a\/Lcos¢) ¢ ¢

Since a = %max{\/n —1,v/2}, then A% < \; which is a contradiction.
If (b) occurs we define y = B + av'Lcos¢. Then at ¢ = ¢y we have (3.2).

Since

' 2
[y sin ¢ — sing ta) y cos‘b}
_ -ysin¢— A1(1+a) singb;—)\la(l—sin@ _y,COS¢]2

i . . 2
= |Bsin¢ — Ml +a)sing + 20V/L cos ¢ sin ¢ — Aa(1 — sing)
| B+ oV Lcos¢ B+ avLcos¢



First eigenvalue estimate on Riemannian manifolds 467

2

— |Bsing— A(l4a)sing
B+ avLcos¢
2201 _ ain A)2
+ 402 L cos® ¢psin® ¢ + Aa’(1 — sin¢)
(B + av/L cos ¢)2
+4a\/fcos¢sin2¢ B — Ai(l+a)
B+ avLcos¢
., A1a(1 —sin ¢)
— 4aV/L cos ¢ sin
¢ ¢B+a\/fcos¢
9 |Bsing - A1(1+a)sin¢ )\1a(1——sm¢),
B+avLcosé| B+ avLcosé
and since B — B—ﬁ% > 0, it follows that
. 2
- lysin¢—)‘1(sm¢+a)—y'coscbl
n —
_ ., A1a(1 — sin @)
< - 402 L cos? ¢psin? ¢ — 4aV'L cos ¢ s L
- n~1{ ¢ ¢ ¢ m¢B+a\/fcos¢
—2|Bsing AM(l1+4a)sing | Aa(l —sin@)
I B+ avLcos¢ B+ avLcos¢
< -1 a2Lsin22¢_2)\1a(1—sm¢)a\/fsm2q§
n—1 i B+a\/fcos¢
BMiasin ¢(1 — sin ¢)
-2
B+ avVLcos¢

Aasin ¢(1 — sin ¢)
B+ avLcos¢

1 [oﬂL sin? 2¢ — 20:v/L cos 1)
— 2X1asin ¢(1 — sin ¢)} .

Then by (3.2)

2 ; sin ¢(1 — sin gb)}

n_

y? < M+ Ma lsinqb—}—
/

+ Lcos? ¢ — yy' cos¢sin g — /\1y— cos ¢ sin ¢
Yy
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av L cos ¢ ino+
a sin
B+ av/Lcos¢ n—1

sin ¢(1 — sin ¢)

A1

4
+ y"ycos® ¢ — —Ia2L cos? ¢ sin? .
n

Since sin ¢ + ;%—1 sin ¢(1 — sin ¢) < 1, then

y? < (1+a))\1+Lcos2¢—yy'cos¢sin¢>
av/'L cos ¢ sin® ¢
! B—i—a\/fcosqb
av L cos ¢
B+ avLcos ¢

+ A

40%L cos® ¢sin? ¢

n—1

+ Aa + 4"y cos? ¢ —

and

B? + 2BaVL cos ¢ + a’L cos® ¢
4a

2
—7 cos? ¢) Lcos® ¢

<M(14a)+ (1 — 202 cos? ¢ —

+ a?Lcos® ¢ + Ba\/Zcoscb
aV L cos ¢
B+ av/Lcos ¢

This inequality implies that B2 < b1, which contradicts the definition of
B. The proof is complete. []

+)\1(1 +(1)

Proposition Let M be a compact Riemannian manifold with Ricci curva-
ture bounded below by —L(L > 0). Then the first eigenvalue A\; of Laplacian
satisfies

2
A > %chb—%(e%CnVLdz —1)7! (3.24)

where d is the diameter of M, C, = max{y/n — 1, V2 }andb=1+a.
Proof.  From we have

F(¢) > |V
Then
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We can find z1,7z5 € M such that ¢(z1) = —F + 61 and ¢(x2) = 5 — b1.
Let ~ be the shortest geodesic joining ; and w2, then the length of v is not
greater than d. Integrating the gradient estimate along v we have

q> /0 d¢ 276 do
J-Zis \/_+a\/ECOS¢ Jo VB + av/Lcos
>/0 d¢ N 76 do
T Jrs VM VLG 4+¢) Joo VAL +aVI(E - ¢)
9 1+1C =3 1+ 5Cny/ 55 - &
> —= + log
CVL | o1+ LG, L. 1+ 1Cny/ - 61

Let § — 0. Then 6; — 0 and

2 1 L 1 L =
1 —Cnp | — log |1 ] — = || <d
C VI [og <1+2C N 2) + og< +2C 3% 2)} <

Define t = )\% Then we have

—Cﬁ—t+(1+—) Cn i 41— edOVIZ <
16 " v/b Vb -

Solving the inequality we have

Cupm 1 1 4 Xp( Cn Ld2)
—=nT (] 4+ = - \/ i 2 2
4
Vi < ( \/5) 1 \/2_ : t 7 (14+1/vb)?
87 nT
Cpr 1 4 exp( CnV Ld?)
4 (1 T %) ) { Vb 1+1/\f }
< L2021
g7 n\/‘
< —4—bZ\/ 3CnVLd _ 1
- nC,
Then
L _ 16 1 1c.vi&?
— < . .
NS 7r2C2b (e2 -1) (3.25)

Thus [[3.24) follows immediately from [3.25). n
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4. The proof of Main Theorem

Proof of Theorem 1.1. From we have
F(¢) <A1+ Lg(¢) + Aa < 2M 4 Lg(9).

Then

V¢l <
V2M + Lg(¢) ~

We can find z1,z9 € M such that ¢(z1) = —% + 61 and ¢(z2) = § — 1.
Let vy be the shortest geodesic joining z; and z2, then the length of v is not
greater than d. Integrating the gradient estimate along v we have

> I_6 do _ 2/%—51 d¢ .
—146 /21 + Lg(®) 0 2\ + Lg(9)

By Jensen’s inequality we have
2(3 —61)

T_s )

20+ s " g(9)dg

Let § — 0. Then 6; — 0, and

d>

d > "

E
2

V2 + 2 [2 g(9)do

™
V2h + 3L
Thus 2)\; + %L > ”2, this completes our proof. []

Proof of Theorem 1.2 Similar to the proof of theorem 1.1 from
3.5

d > /O i
~ J-348 V1 + Lg(9) + MiaH(9)

61 d¢
" /0 VAL + L + A\aH(9)

_ /;-*-51 ( 1 N 1 ) i
0 VA + Lg(¢) — MaH(¢) /A1 + L+ A\aH()
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0 (M +Lg(®) — MaH($))(M + L+ \aH())]V*
%_61 2
2 do.
Z /0 [)\% + ML+ M Lg(¢) + L29(¢)}1/4 ¢

By Jensen’s inequality we have
2(5 — 61)
JX“+AL4—“”+L)E 9(¢) d¢

Let 6 — 0. Then 6; — 0, and

d>

™

38+ 0L+ 2L (E ()i

s

YN+ ML+ InL+ L2

7t 3
)\1>U¥+ L2_4_1L (4.1)

which completes our proof of [1.2). By we know

L 16 L~ /742
-~ b CnV Ld® 1
)\1 o 7'('207% (62 )

d >

Thus

N

. 2
and, since A\; > %3 — %L, we also have

PP S
1= 7 3. L
¢ 1+ N
Hence
3 L 16 3 1/2, Lo VL&
L2« 21 /2(e2CnVLd® _ 4
4 X\ — 7w2C? 4( +a) e )
6
< _2\/5(6%Cn\/Ld2 1)< e3CnVLd? _ 1, (4.2)
7
and consequently
2
1
A > o (4.3)

12 5 —_—.
dzl—{-e%C” Ld® _ 4
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follows from (4.3). The proof is complete. ]
Remark.  If the first eigenfunction v is symmetric, i.e. max{u}=— min{u},

then k =1 and a = 0. It is easy to see from the proof of the theorem that

2

s 1
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