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Singular limits in the data space for the equations of
magneto-fluid dynamics
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Abstract. We discuss the singular limit of the incompressible magneto-fluid periodic
motion with respect to the Alfvén number. Viscous and inviscid magneto-fluids are
treated indistinctly. We determine the limiting system under the natural assumptions
on the initial data. Finally, we apply the theory of Beirdo da Veiga [7, 9] and prove
convergence in the data space.
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1. Introduction

In this paper we study the behavior of the solution (v, H) for the fol-
lowing equations of motion of an incompressible viscous magneto-fluid in
the n-dimensional torus, n > 2, as the Alfvén number tends to zero:

(O + (v, Vv + Vp+o?H xcurl H— A v=0

oH+ (v,V)H — (H,V)v —u/A H=0 :
< 1.1)
divve=0, divH=0

’U(O) = o, H(O) = HO

\

where v = v(t,z) is the fluid velocityy, H = H(t,z) the magnetic field,
p = p(t, z) the pressure and the parameters o, o and p are respectively the
reciprocal of the Alfvén number, of the kinematic Reynolds’ number and of
the magnetic Reynolds’ number.

We assume that o > 1, ¢ € [0,00), o € [0, o] for arbitrarily fixed
constants g, pp. Since the viscosity coefficients o and p can assume any
value in the above ranges, we study simultaneously the viscous and the non
viscous magneto-fluids.

We are interested in studying the limits of (v, H) as @ — oo and the
viscosity parameters o and p converge to & > 0, iz > 0.
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We identify the n-dimensional torus with the set Q = [0, 1[®. We denote
by mg the smallest integer larger than n/2. Let m be a fixed integer such
that m > mg + 1. We denote by | - |, the canonical norm in LP = LP(2)
and by | - ||; the canonical norm in the L2-Sobolev space H' = H'(Q2). So,
an element h € H'(Q) has a Fourier development

h(z) = 3 h(©)emie
3
where £ = (§1,...,&,) € N™ and the Fourier coefficients are given by

h(§) :/Qe‘%if'xh(x) dzx.

We denote by || the euclidean norm of £. We have

02 =3 (14 Ie2) 1hee) .
3

Finally, we denote by H'!(Q) the solenoidal subspace of H!(2), namely
HL(Q) == {h € H'(Q) : divh=0}.

In addition, for a Sobolev space H'(2) and a constant T > 0, we denote
by || - |l;,r and [-]l,T the canonical norms in L> (0, T, Hl) and L2 (O,T; Hl)
respectively.

From the point of view of physics it is interesting to study small per-
turbations of a uniform magnetic field H [16]. So we consider the initial
data with vg, ko € HI*(Q?) satisfying

Ho = H + o™ k. (1.2)

Since it is not a restriction, we consider from now on H = (0,...,0,1).
Rescaling the variable as k = a(H — H), we rewrite (1.1) in the form

(O + (v, V)v+k x curl k+ V(p + aH - k)
—a(H,VYk —ocAv=0
Ok + (v, V)k — (k,V)v — a(H,V)v — pA k=0 (1.3)
divv=0, divk=0
’U(O) = o, k‘(O) = k().

\

It is well known ([12] in the non viscous case, and in the viscous
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case) that for fixed «, o and p there exists a local in time (T' = T(«, o, 1))
unique solution of (1.3). The solution (v, k) belongs to the space of functions
satisfying the following:

{v,k e C([0,T); H™) (1.4)
ov, pk € L2(0,T; H™+1);
in addition,

Oy, Ok € C([0,T); H™*)nL*(0,T; H™ ) (15)
and

{8tv € C([0,T]; H™ ') ifo=0 (1.6)

ok e C([0,T); H™ ) ifu=0.

In particular,

Vpe C([o,T]; H™ ). (L.7)

One of the most important problems on the singular limits is to determine
the limit systems which sometimes have a completely different behavior
compared to that of the original system, as some parameters tend to some
specific values.

Results concerning singular limits in fluid mechanics can be found in
11, AS, 4,5, 7,8,9, 11, 13, 14, M, 20, 22]. In particular, Klainerman and
Majda studied the equation of compressible, non viscous, magneto-
fluid dynamics. However, in that case they cannot prove convergence to an
appropriate reduced system. The limiting system for the incompressible non
viscous case under the natural assumption on the initial data were, finally,
determined by Goto in his paper . Other contributions on singular limits
for magneto-fluid motion are due to Browning and Kreiss {3] and Schochet
20].

We now fix the constants set (m,(, og, o, 1, c2,¢c3), where m > mg + 1,
0<l<m-1,e¢y,c9c3 € RT. Assume in (1.3) that (vg, ko) depend on the
parameters «, o and p and that there exists v§°, k§° € HI*(Q2) such that

vo, ko — v3°, kS° in [H™(Q))? (1.8)
when (o, 0, ) — (400,75, ). We make the following hypotheses:

[vollmo+1 + [[kollme+1 < €1 (1.9)
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[vollm + [lkollm < c2 (1.10)

al|(H, Vol + al|(H, V)koll; < c3; (1.11)

in addition, if [ = m — 1, we suppose that there exists a constant c¢; > 0
such that

|| Vollm + ul[Viollm < ca. (1.12)
Let x denote the set

x = {(vo, ko, @, 0, 1) € H x HI* x [1,400) X [0,00] x [0, o] |
(1.8), (1.9), (1.10), [(1.11) (1.13)
(and also (1.12) if I = m — 1) hold}

and let (v,k) := S(vo, ko, ,0,u) the corresponding solution of problem
(1.3). The aim of this paper is to describe the behavior of the solution
(v, k) = S(vo, ko, ,0, ) as (a,0,pu) — (+00,5,71). We shall prove the
following

Theorem 1.1  If (vo, ko, o, 0, p) belongs to x and if (v,k) = S(vg, ko,
a, 0, p) is the corresponding solution, then there exists a positive constant
T > 0 such that

lim [Ilv — ¥ + |k — k||,
(Q,U,H)"’(mva’“)

(1.14)
+0[v = vlm41,r + Bk = Emy1,r| =0

where (v, k) is the unique solution of the following system

(0™ + (v, V)™ + k® x curl k® + Vg™ — A v™® =0
Otk™ 4+ (v, V)k™® — (K=, V)v™® — oA k*° =0

4 (1.15)

divev*® =0, divk*® =0

L v°(0) = v§°, k*(0) = k§°.

Here Vg™ s uniquely determined by the weak limit:

V(p+aH - k)—Vg>® in L®(0,T;H). (1.16)

In the sequel, ¢ denotes any constant that depends on the quantities
n, m, 09 and po. The bounds ¢;, i = 1,2,3,4 play an important role: we
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denote by C; constants that depend on c;, 1 < j < <. Moreover, distinct
constants will be denoted by the same symbol provided that they depend
on the same constants ¢;.

We recall that in the magneto-fluid dynamics systems (1.3) and (1.15)
the solutions (v(t), k(t)) and (v*°(t), k> (t)) describe continuous trajectories
in the data space H™(€2). So, the “natural” result is to prove convergence in
the norm of C([0,T]; H™). In order to obtain our results, we first refine the
results of by using the techniques developed in [13, 14] for compressible
fluid and following ideas in [8]. Then we apply the more refined techniques
of Beirao da Veiga [9] (see also [7]) to complete our proof.

The plan of the paper is the following. In Section 2 we show uniform
estimates for the solution of (1.3) and in Section 3 we study the singular
limit in H™~* for the solution (v, k) of (1.3) to the solution of (1.15). The
results here in the case of non viscous fluids improves in some aspects those
of , simply by a careful use of the standard techniques. In Section 4
we present the approximating solution technique of Beirao da Veiga [9] and
in Section 5 we obtain some preliminary estimates for the approximating
sequences so as to conclude in the final Section the Proof of Theorem 1.1
For the reader’s convenience we state in an appendix some useful results.

2. Uniform estimates

In this Section we show uniform estimates in o of the solution of (1.3)
for any o € [0, 0], pu € [0, o). Denote by | D" f|2 = >8] =r |DP£|2. Set

DP (fg) := DP(fg) — fDPy.

We have the following

Lemma 2.1  Under the hypothesis (1.9), there is a positive constant T
that depends only on cy, such that the problem (1.3) has a unique solution in
[0,T]. Moreover, there exists a positive constant Cy such that the following
estimate holds

1910 41,2 + Ik lg 1.2 + o [VOlmg 1.0+ BVE]mg 410 < Cr (2.1)

Proof.  We start by applying the operator D? to the equations (1.3)12.
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We adopt the notation f? := D”f when it is necessary.

(0,08 + (v, V)vP 4+ DP (v, V)v) + k x curl &°
+ DB (k x curl k) + V(p® + oH - kP)
) —a(H, V)P — o vP =0 (2.2)
kP + (v, V)kP + DB (v, V)k) — (k, V)vP
—DP ((k,V)v) — a(H,V)v? — uA kP =0,

\

Multiplying (2.2); by DPv and (2.2); by Dk and integrating over 2, we
obtain

(1 1

—iat/\vﬁF dzr + 2 /(U,V)\vﬁlz dx

+/k x curl kPvP d$+/Dﬂ((v,V)v)vﬂ dx

+/]~3ﬂ (k x curl k) v° d;c+/V(pﬂ+aFI-k5)v’8 dx

—a/(I:I,V)kﬂvﬁ dx + 0/ VoA |2 dz =0 (2.3)

.

1
iat/\kfﬂ? dz + %/(U,V)WP d:c—/(k,V)vﬁkﬂ do

+/Dﬁ((v,V)k) kP dx — /Dﬂ((k,V)v)kﬁ dz

—a/(f_{,V)vﬁkﬁ d:I:—I—u/{Vkﬁ\Q dx = 0.

\

Summing the equations (2.3); and (2.3)2 over all & with 0 < |a| < m, using
the identity

/[fxcurlgh~(f,V)hg] d:z::/(h,V)fgda: (2.4)

and (1.3)3, we obtain



Singular limits in magneto-fluid dynamics 363

d
= (10l + WE[2,) + o9l + ul VA7,

:/ i (08, VKK d:c—/ % DP (v, V)v) P da

181=0 18]=0

—/ Z DP (k x curl k) v® dz
18|=0

—/ i DP (v, V)k) k® dx
181=0

+/ > DP((k,V)v) K’ dz (2.5)
18]=0
< c||vllm|VElso || llm

1
2

+ ¢ (|Dvloo[|VOllm-1 + [Vlool[DV[lm—1) [[0]lm
+ ¢ (| Dk|oo [[curl kflm—1 + [curl kfco|| DE|lm—1) [[0]lm
+ ¢ (|Dv]oo|[VE[m—1 + [VE|oo | DV[[m—1) [|K[m
+ ¢ (IDklos [VOllm—1 + |V|oo | DEl[m—1) [|K]lm

< e (|[DE]lmo + [1Dvlmo) ([I0l1% + 1%1%)

where we have estimated the L?-norms of the single terms by applying
the following devices (see for details): estimate the D? terms by using
Lemmas A.4 and A.6, then apply the Sobolev inequality

| foo < ell - llmo- (2.6)

In particular, when m = mg + 1 we have

1d
2dt
< ekl [0mosr + ellvlbmoss (10201 + 512041

3/2
< e (ol + 1ElRgsr) -

(1012041 + 16120 11) + oIV 0 + Bl VR 24

In order to estimate the constant T', we consider the Cauchy problem for
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ordinary equation
{y/ —c y3/2
Y(0) = llvollgt1 + l1Koll7g41 < Ch.

Solving this problem we find two positive constants, T and C; depending
only on ¢; such that for all «, u, o we have

[P 1 + (@) g1 < C, (2.8)

for all t € [0, T]. Finally integrating on [0, 7] we complete the Proof of (2.1).
L]

In the sequel everywhere the constant T is the one given by the Lemmal
2.1, hence it depends only on c;.

(2.7)

Lemma 2.2  Assume that the hypotheses of Lemma 2.1 hold and that
vo, ko belong to H™(Q2), m > mg + 1. Then, for the unique solution (v, k)
of (1.3) we have

v, ke C([0,T]; H™)nCY([0,T); H™?). (2.9)

In particular,

o € C([0,T]; H™ 1) ifa =0
{OZk € C’SO,T} : Hm_1; i;u = 0. (2.10)
We also have
ol + Ikl + o[Vl r + HVAR, 7
< ¢ (llvollZ, + Ikoll2,) (2.11)
s0, in particular, with the additional hypothesis (1.10), we have
[oli2, + k12,7 + o[Vol2, 7+ u[VK2, 1 < G, (2.12)

where Cy depends only on c; and ca.

Proof.  Using the estimate (2.1) in we obtain, for all m > mg + 1,
1d
5 (P +11EIZ) + ol Voll2, + | VE|2,

< Cu(llvllm + 15017) (2.13)
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from which (2.9) follows immediately. Additionally, on integrating over
[0,T] we obtain (2.11).
Finally, by using (1.10) in (2.13) we have

lol12, + I1k112, < €1 (lleollZ, + lkoll2,) (2.14)
so that implies
1d
S (ol + 1R11%,) + ol 9ol + VK],
< Cy(JlvollZ, + lIkollz,), (2.15)
which gives by integration over [0, 7. L]

Note that the above Lemmas show that d,v, d;k are regular on [0, T
but do not furnish uniform estimates with respect to the parameters. In
this direction, one has the following result.

Lemma 2.3  Assume the hypotheses (1.9) and (1.10). Let0 <l <m —1

be an integer. In the case | = m —1 we assume in addition cVvg and uVk
belong to H™(S2). Then we have

|8vllfr + 10ekllr + o[V (O)i + [V (8:k)]ir
< G (Ilvo||? + [lkollf + ol VoollZey + el VkollE  (2.16)
+ o?||(H, V)vo|lf + | (H, V)woll})
where the constant Cy depends only on c¢; and cy.
Proof. We start by applying to equations (1.3); 2 the operator J; and

subsequently the operator D?, 0 < |B| <1 <m—1. In the following, when
it is necessary, we denote f; := 0;f. We obtain

(8,08 + (v, V)vf + DP (v, V)vy) + DP ((vg, Vo)

+k x curl k2 + DP (k x curl k) + DP (k; x curl k)

{ +V(ptﬂ+aﬁ-kf) —a(ﬁ,V)kf——aA vf} =0 (2.17)
8ikS + (v, V)kP + DB ((v, V)ke) + D ((vg, V)k) — (k, V)vf

| —DP((k,V)u;) — DP ((ke, V)v) — &(H, V)] — us K = 0.

Multiply by DPv the equation (2.17); and by DPk the equation (2.17)y
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respectively and integrate over 2. We obtain
(1 1
0 / P do+ /(U,V)|vf|2 da
+ [k x curl kfvf dx + [ DP ((U,V)vt)vtﬁ dx
+ [ DP (v, V)v) v’ da + [ DB (k x curl ki) vf da
+ [ D (ky x curl k)of dz+ [V (pP +oH kY dx

! —af(H V)] de+o [|VVP2 dz =0 (2.18)

%at/fkfﬁ dx + %/(U,V)Ikﬂ2 dx — /(k,V)vtBktﬂ dx
+ [ DB ((v, V)ks) K} dz + [ DP ((vr, V)k) kP dx

— [ D ((ke, V)0) k dz — [ DP ((k, V)v) kP da

\ —af(ﬁ,V)vtﬁktﬂda:+,uf1ka|2da::O.
By adding the equations (2.18); and (2.18), for 0 < |3| < I, we have

1d ’
5% (Hthlz + HktHlQ) +/ Z (k x curl ktﬂvtﬁ) dx
18]=0

l
= [ 30 kD)Kot o Tl + R
18]=0

l l
+/ Z Dﬁ((vt,V)v)vf da:—i—/ Z DP (ks x curl k) vtﬁ dx

[B]=0 |8|=0

! !
+/ > DP (v, V)k) kY dx—/ S DP ((ke, V)o) kY da

|18]=0 |8]=0

l l
+/ Z DP (v, V)vy) v? da:+/ Z DP (k x curl k) dz

18|=0 181=0
l l
+/ Y DP (v, V)ke) k) da —/ > DP ((k,V)uy) kf dz =0
18=0 181=0

So, using the Sobolev inequality and the Lemmas A.3 and A.4, we
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obtain the estimate

1d

o= (el + 1k12) + 01900l + | Vel

< cl{kellllFllm vl
+cllvellF[vllm + clloellellkelullEllm + cllvelloll&ellel|llm
+cllkelllvllm + ellvelill Vollm-1 ] Vorli-1
+ cllkelll Vollm-1 [ VEe]li-1
+ cllvellilI VElm—1llcur] kelli—1 + cllkeli [ VEllm-1]Vvelli-1

< llkllm el + clillmr (focl? + [ )3)
which on using the estimate (2.12) can be estimated by
< Gy (H'UtHlQ + ||k‘t||l2> : (2.19)
In particular, by the previous estimate, we have
d
= (odllf + ke l17) < Gl + k2]
So, if we suppose v¢(0), k;(0) belong on H!(Q), we obtain

loell? + kel < Ca (e (O + ke (0)117) - (2.20)

Using (2.20) in [2.19) and integrating over [0, 7] we have

”Ut”i?,T + ”kt||l2,T + U[Vvt]lZ,T + M[th]%,:r
< G (|Ioe(O)[17 + 1R )11 (221)

It remains to obtain an appropriate estimate for |v;(0)[|Z + ||k.(0)||?.
From (1.3)2 we obtain an estimate for k;(0):

[k (0) ]l < e (ll(vo, V)kollr + [[ (Ko, V)volls + | A ko)
+al|(H, V)voll;
< c([[kollmllvollr + llvollm kol
+ 1l Vkolli41) + ell(H, V)voll: <
< c(ljvolli + lkolle + pl Vkolli+1) + all(H, V)volli-  (2.22)

Let P, be the orthogonal projection from H!(Q) on H!(Q). In order
to estimate v;(0) we apply P, to the equation (1.3); since P, is a bounded
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operator, we obtain

v (0) s
< ¢ (|[(vo, V)wolls + llko x curl kol + o||A volli + al|(H, V)kol|;)
[vollmllvoll: + [[kollmkolls + | Vo |li41 + al| (H, V)kol|;)

<c
< ¢(llvollz + Ilkoll: + ol Vvollirr + el (H, V)koll2) - (2.23)

o~

Adding the estimate (2.22) and we have
o (O)I7 + llke(0)II7
< e (llvoll? + llkoll? + ol Vwol1?,4

+ 1l VhollF4 + 02| (71, Voo [F+a? | (B, Vko ). (2.24)

So, by using (2.24) in (2.21), the proof is complete. U]
From we immediately obtain the following

Corollary 2.4  Assume that the hypotheses of Lemma 2.3 hold and sup-
pose that there exists a constant cg > 0 such that (1.11) holds. In addition,

if l = m —1, we suppose that there erists a constant ¢y > 0 such that (1.12)
holds. Then we have ’

|0wllir + 10eklEr + o[V (Br0)Er + 1[V (8:k)]Er < Cs, (2.25)

where the constant C3 depends only on c1, ¢, c3 (and also on cy4, if | =
m—1).

3. Limiting equations

The purpose of this Section is to determine the limiting system for the
incompressible magneto-fluid motion under the previous natural assump-
tions (1.9), (1.10), (1.11) (and, if l = m — 1, [1.12)) on the initial data and

to prove a first result on weak convergence for the solutions.

Lemma 3.1  Let (vo, ko, @, o, p) belong to x and let (v, k) = S(vg, ko,
a, o, u). Then there exists v™°, k> on C([0,T] x Q) such that, when (a
o, u) — (o0, 7, ii), the following convergence assertions hold:

’

(v, k) — (v, k) weak* in L>=(0,T; H™) (3.1)
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and

(v, k) — (°,k®) in C([0,T]; H™*) (3.2)
for all e > 0,

(Bpv, Bik) — (8w, k™) weak* in L>®(0,T; H') (3.3)
and finally

(A v, N k) — (0 v, u\ k™)
weakly in L?(0,T; H™™1). (3.4)

Proof.  We first notice, by using and the compactness of the im-
mersion H™(Q) — L?(), that (v, k) is uniformly bounded in C([0,T7]; L?)
with respect to a, o and p. The sequence is also equi-continuous in C([0,T7;
L?), since

1), k(t) = (v(s), k(s))llo < 8evllorlt — s| < Cat — s|.

By the Theorem of Ascoli Arzeld and passing to a subsequence, there exist
v, k> € C([0,T] x ) such that

(v, k) — (v™°,k>) in C([0,T]; L?).

On the other hand, by using and on passing to a subsequence,
we obtain (3.1) and, by a classical result in functional analysis,

[0l + 5]l < C. (3.5)

To obtain (3.2) it is now sufficient to apply the inequality (A.1) of Lemma
Alwithr=mandr' =m —e.

Next we study the sequence (0;v, 8;k). By [Corollary 2.4, we see that
there exists a vectors field (wq, w9) such that

(Opv, Otk) — (w1, wy) weak* in L2(0,T; H').

Since (w1, w2) = (0;v>°, 8;k>) in the sense of distributions, we obtain (3.3).
We note that (6 v, uA k) is bounded on L?(0,T; H™!), so that we
immediately obtain the result (3.4). ]

Lemma 3.2  Under the hypotheses of Lemma 3.1, there exist v™°,k™ in
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C([0,T] x Q) such that the following convergence assertions hold:
(v, V)v — (v>°, V)™
(v, V)k — (v*°,V)k™
(k,V)v — (k*,V)v*>,

Lk x curl k — k°° x curl k%

in C([0,T]; H™17¢) (3.6)

for all e > 0 and

(v, V)v — (v>°,V)v
(v, V)k — (v>°, V)k>®
(k, V)v — (k> V)v>™,

|k x curl k — k™ x curl k.

V)v>
V)
weak* in L>®(0,T; H™™ 1) (3.7)

Proof.  Suppose, when f,g € H™(Q2), that

(f> g) - (foo’goo) in C([()?T] 3Hm_€)’ (3'8)
(f,g) — (f>,9%°) weak® in L>°(0,T; H™).

Writing the identity
(£, V)g = (£, V)™ = ((f — =), V)g + (f°,V)(g — g%,

since

o ((f—f>),V)g—0inC([0,T]; H™ 1),

o (f*,V)(g—g>®)—0inC([0,T]; H™17¢)
and

(f,V)(g —g>°) — 0 weak in L0, T; H™ 1)
we obtain

(f,V)g — (f*,V)g™ in C([0,T]; H™'7%)
and

(f,V)g — (f,V)g™ weak* in L>°(0,T; H™1).
(]

The last preliminary step is to study the behavior of the three terms
o(H,V)v, a(H,V)k and V (p + aH - k). We have the following result
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Lemma 3.3  Assume the hypotheses of the Corollary 2.4. Then, there
exist three functions u™, M* and q™ such that the following convergence

hold:

\Y%
, V)M weak* in L (O,T; H)‘> (3.10)
V(p-l—af_l-k) — Vg,

where

\ ! ifl<m—2
Clm=—2 fl=m—1and o, u #0.

Moreover, in the case l =m — 1 and o, pu # 0 we also obtain

a(H,V)v — (H,V)u™
a(H,V)k — (H,V)M> in L2(0,T; H™ ) (3.11)
Vp+aH - k) — quo.

Proof.  Observe that oA v,uA k € C([0,T]; H™2) n L%(0,T; H™1).
Then, by the equation (1.3);, we can estimate the quantity V(p+aH - k) —
a(H,V)k in H1(Q), where

; min{l, m -2} ifoc #0
R if 5 = 0.

Since these two terms are orthogonal in H% (Q) for any fixed t < T, we find
that there exists a constant C3 such that

ol (H,V)k| 7w + IV(p +aH - K)|f, 7 < Ca.
With the same argument, we have from (1.3), that, if

_ min{l, m —2} if u#0
ly =
l if =20,

there exists a constant C3 such that

al|(H, V)|, < Cs.
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So, if I = min{l1,l5}, we obtain the estimate
al(H, VIolpr + all(H, V)klzr + V(e + aH - E)|;7 < Cs. (3.12)

Moreover, with the same argument it follows that if l = m —1 and o, p # 0,
there exists a constant C4 (also depending on ¢4) such that

« [(gav)”]m;l,T + a|(H, v)k]m—l,T

+ [V(p+aH - k)] < Cy. (3.13)

m—1,T —

Therefore there exist functions ws, wy, ws such that
oz([:[, V)v — w3
a(H,V)k — wy weak* in L[> (O,T; H[) (3.14)
V(p—f—afﬂk) — Ws

and

a(I_I, V)’U — w3

a(H,V)k — wy in L2 (0,T; H™1). (3.15)

V(p+af_1-k) — Ws

The next step is to characterize the functions w3, wy, ws. Let be 0 < r < [;
since

Dgl,...,mn_1 (’U(t, ZE) - 'U(t, T1y,...,Tn-1, 0))

_ /0 (B,V)D], . otz 201, ) dE

,,,,,

for all z,, € [0, 1), we have, using (3.12),
”D;l,...,xn_l (’U(t’ 33) - U(tv T1y---yTn—1, O)) H(z) < C”(H’ ‘7)’0”12
Hence, when 7 + s <1+ 1 <[, s > 1, we obtain

al|D; Dy (v(t,z) —v(t,z1,...,Zn-1,0)) Hg

T1yeeespn—1
< calDy, .. D5THH, VY| < col (H, V)ol? < Cs.

yesn—1

Hence

allv(t,z) —v(t,z1,...,Zn-1,0)|; < C3
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and there exists a function u® such that
a(v(t,z) —v(t,z,...2y_1,0)) — u™ weak* in L>(0,T; H).

Then we obtain w3 = (H, V)u™ in the sense of distributions and u™ belongs
to L>(0,T; H'). The calculation is the same for the term a(H, V)k.

Let p = [o(p(t,z) + H - k) dz; consider the function (p + aH - k — p):
since 2 is a bounded domain with |Q| = 1, it follows from Poincaré inequal-
ity that there exists a constant ¢ > 0 such that

I(p+aH k) =ply < | V(p+aH - k)l < Cs.
Then there exists a function ¢ such that
((p+aH - k) —p) — ¢> weak* in L>(0,T; Hl_)

and ws = V¢ in the sense of distributions. The proof is thus complete.

]

To conclude this Section, we prove the following result on singular limits

Theorem 3.4  Let (vg, ko, @, o, ) belong to x and let (v, k) = S(vg, ko,
a, o, p). If (1.8) holds, then

lim (v, k, O, 8k, V (p+ aH - k) ,a(H, V)v,a(H, V)k)

(a?a’u)‘-)(w’o_.,ﬁ

= (v, k™, 0v™>, 8:k%°, Vg™, 0,0) (3.16)

where (v°, k) is the unique solution of the problem (1.15) and the conver-
gence of the seven terms on the left hand side is established according to the
previous Lemmas B.1, B.2 and 3.3.

Proof.  Since

div (a(H, V)v) = o
div (a(H, V)k) = of

H,V)divv =0
H,V)divk = 0,

by using respectively (3.10); and (3.10)3, we obtain
div [(H, V)u*™] = div [(H,V)M*] = 0.

Moreover, using (3.12) we obtain (H,V)v™® = (H,V)k® = 0. Therefore it
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follows that v>°, k°°, ¢, u™>, M*° satisfy the following equations:
(0™ + (v°°, V)v™® + k> x curl k& + Vg™
—(H,V)M>® — A v*® =0
O1k™ + (v, V)k® — (b V)v>® — (H,V)u® — @A k> =0
divo* =0, divk>® =0 (3.17)
(H,V)v>*° =0, (H,V)k>®=0
div [(H,V)v>®] =0, div [(H,V)k>®] =0
v (0) = v5°, Kk*(0) = kg°.

\

A problem of this type, for any fixed weak limit u>, M> and ¢* in H'(Q),
admits a unique solution in H'() [13].

Applying the operator (H, V) to the equations (3.17)1 2, we obtain the
following relations

{v((ﬂ,V)qw) —(H, V)"M>* =0 (3.18)

(H, V)2 u™ = 0.
Applying the operator (H,V) to the equations (3.18); we find
A ((H,V)g>) =0,

which means that (H,V)g™ is a harmonic function in the sense of distri-
butions: since it is bounded, from the periodicity, it is a constant.

Therefore we conclude that the functions u™>, M*° and ¢* satisfy the
conditions

(H,V)2u>® = (H,V)’M> = (H,V)*¢> =0,

so that (H,V)u®, (H,V)M®> and (H,V)q™ are all constants and, by the
periodicity of u*>°, M and ¢, these constants must be zero. []

In particular, taking € = 1, we obtain for free the following result which
will be useful in the sequel.

Corollary 3.5 Under the assumptions of Theorem 3.4 one has

lim (v, k) — (0™, k)2, 1.1
(aaaall‘)—*(oo’a’u’)
tov—v®P k- koo]?n,T =0. (3.19)
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4. Approximate solutions
For any given 6§ €]0, 1], we define a linear operator
R® : H*(Q) — H*2(Q)

s1 < 82, si € (0,+00), in the following way:

(RPu) () = 3 a(g)e*e=. (4.1)

1&1>1/6

This is a continuous operator since, if we denote with | |, s, the norm of
the operators from H*®'(Q2) to H*2 (Q2), we have

2 §9—S81
W"’&nshw S (5) . (4.2)

Notice that R® commutes with the div operator and with the (ﬁ , V) oper-
ator, namely R°V- = VRS- and Ré(H,V)- = (H,V)R®.. Finally it is easy
to prove that

ﬂRé - 1]31,52 S 67270, (4'3)
Now we define
vg := Ry
18 Tobp (4.4)
0 = R%o

and

00,6 6,,00
vo = R%
{ 0 0 (4.5)

ko = ROkE®
and consider the following problems:
(0,00 + (v8, Vvl 4 k% x curl k% + V(p® + aH - k)
—a(H,V)k® — oA v® =0
LOKS + (0, VK — (K0, V)P —a(H, V)P —pA KO =0 (4.6)
dive® =0, divké=0
v (0) =vf, Kk°(0) =kK§

\
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and

(8,v°°% + (120, V)v™b + k>0 x curl £

+ Vg®?® — A v =0

) 0, k8 + (,Uoo,ls, V)koo,a _ (k,oo,6’ v)voo,é Ny (47)
div v = 0, div k®?® =0

l,Uoo,5(0) — U80,57 koo,&(o) — k’go’é.

From (4.4), by using the properties of the operator R°, (v§,k$) satisfies
estimates like (1.9), (1.10), (1.11) and {1.12) with the same constants: on
the other hand, when (v, ko, @, o, 1) € X, then also (v§, k§, o, o, 1) € x. So
we deduce that the problem (4.6) has a unique solution on [0,7] and the
following estimates hold:

{uv%,T + k0112, 1 + o[ V)2, 1 + VK, 1 < C ws)

2 2
||Uf||%,T + 1K1 7 + U[V’Uf]o,:r + N[ka]o,:r < Cs.

On the other hand, by using the property and the estimate we
obtain

2
03 llma1 + [1k§ lms1 < 562 (4.9)

moreover

00,0 7.00,6 2
I(v6:K8) = (46°° k&) s < 51 (W, ko) = (6%, K°)
and the hypothesis (1.8) give us, for any fixed § > 0,
v, k§ — v, kP in H (). (4.11)

So we recover the result of the first part of the paper replacing m with
m + 1 and ¢y with %02. Since T depends only on c;, it is independent on
the parameters m, a, o, u and 6. In particular it is sufficient to replace m

with m+1 in [Corollary 3.5 so we obtain the following result for the solution
(v%, k®) of the problem (4.6):

Proposition 4.1  Let (vg, ko, @, 0, 1) belong to x and define for any fized
§ > 0 (v°, k%) and (v°°0,k>®) respectively the solution of the problem (4.6)
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and (4.7). Then we obtain

lim —[|(0%, k%) = (0%, k)| 1
(0, —(00,3.7) ’

+a [v‘s — v°°"5] ?

2

+ i [k = k] = 0. (4.12)

m+1,T m+1,T

To conclude with the preliminary properties for the approximating so-
lutions, we notice the following estimates

r 3 3 m
w6 — wollze < S0 —volliu+ 5 3 (1+16°)" 165 (©)FF
< f1>1/2 (4.13)
§ 2 _ 3,00 2 3 2\™ |00 (|2
1% — Kallz < SIIEE = kolln + 5 3 (1+161%)" |k 9)] -
\ 1€1>1/6

5. Uniform estimates for the approximating solutions

In this Section we show suitable estimates sufficient to conclude, in the
next Section, the Proof of the [Theorem 1.1I.
First, if we define (v, k) = (v° —v, k® — k), we prove the following result:

Lemma 5.1 Let 0 <1 < m. For any (vo, ko, a,0,u) € x and § > 0 we
have the estimate

1d —112 112 —112 .12
57 (1917 +1IEI?) + (olIVo]? + | VEI7)
< G (19117 + 1EI7) + Cably [0 st ([8loo 8lm + [Bloo [Kllm)
+ 15 st (1BloollEllm + lool|5llm) | (5.1)
We omit the Proof of this Lemma because it is very similar to the

discussion in the Section 2.

Theorem 5.2  Let be €9 such that 0 < g < mg — 5. Then for all
(vo, ko, ¢, 0, 1) € x and & > 0 we have

18]o0, + |Kloo,r < Ca6(mmoHe0), (5.2)

Proof. Let bel <m — 1. Then becomes

d B _ B _
= (1917 + 1%117) < C2 (I12l17 + 17117)
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so that we obtain, for all ¢ € [0, 7],
517 + IR < Ca (10§ = woll + 4§ — holl?) e
and integrating over [0, 7],

1912 + [I&

tr < o (v — woll} + I1KS — koll?) (5.3)

Now we apply the inequality , use carefully with [ = mg and
[ = mg — 1 and obtain

o2, + [k|%

< C (ol ol —=)

— mo—l 0

+ (IRl R[22
< G (10§~ w0l (54)
€0 1—¢g
1k = Ko=) (110 — voll2,, + I1KS = koll2,,)

On the other hand applying the inequality first with s; = mg — 1 and
s = m, then with s; = mg and sy = m, we obtain respectively

lvg = vollmo—r + 15§ = KollZue—1
< 82t (g2, + (ko) (5.5)
and
e — vollZy + 15§ = kollZ, < 8% (Jluol2, + [Ikoll2,) . (5.6)
So, to obtain [5.2) it is now sufficient to substitute and (5.6) into

(5.4). L

Corollary 5.3  For any (vo, ko, a,0, 1) € x and § > 0 the following esti-
mate holds:

(19loo,0+Floo ) ([[0%lms1, 7+ 1K g 7) < Cosm=mo420=D) (5.7)

Proof.  Using the inequality and the estimate (4.8); we have

C.
[0 [ msrr + 15 g < 2. (5.8)
I}
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The proof is thus complete if we now multiply side by side the estimate

and [5.8). []

Theorem 5.4  For any (vg, ko, a,0,p1) € x and § > 0 the following esti-
mate holds:

_ T _ 712
lolZz + WRlZr + o [Voloz + 1 VA1
< Gy (Jl0§ = voll2, + IIk§ — ko2, + 6> (5.9)

Proof.  If we consider the estimate with [ = m, we have
d /. _ ) _
— (12112, + 1Ell%, ) + (o IVoll% + 1l VEZ,
dt
< Gy ([lol2, + IIFI1%,)

~ - ~ - 1/2
+ Cs (110 lms1 + £ lbms1) (19loo + [Rloo) (117117, + 15117,

and it is sufficient to use the Corollary 5.3 to obtain

d, _ _ i _
Z(I1ol% + 11Kl + (@IVal5, + #l VER)

< Co(llollm + 1EI17,)
+ o™t (|[of |7, + |[RI,) 2. (5.10)

Observe now that, if y = y (t) is the solution of the ordinary Cauchy problem

{y, = Co /5 (i + 5)

y (0) = [lv§ —voll, + IIk§ — kol
we have, for all ¢t € [0, T,
[5() 17 + Rl < y(t)-

Since from (5.11) we have

(5.11)

1/2
o) = [ (10§ = woll, + 1§ — kall2) ™" 570 e,

for all t € [0,T], from we obtain

% (“@”%L n H;;”gn) + (ouwufn + uIIV’_fH?n)
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< Cy |[[vh = voll3, + [[k§ — koll2, + 6] (5.12)

and it is sufficient to integrate over [0,7] to conclude. ]

6. Singular limits in the data space

It is sufficient in order to conclude make up the several estimates ob-
tained up to now and conclude the Proof of [Theorem 1.1 which allows us to
show the existence and uniqueness of a singular limit in the data space for
the equations of the magneto-fluid dynamics (1.3), as the Alfvén number
goes to zero.

Proof of [[heorem 1.1 By using the estimates [5.9) and (4.13) we obtain
)

_ - _ 712
9127 + k|2 +0 [Vv]fn,T +p [V, ¢
< Co|llvg® = woll2, + |1k — ko2,
+ 3 @™ (16O + R ©)F) + 8%],
€[>1/6

so in particular
_ - I o2
[5]7,7 + kll2, 7 + & [V'U]fn,T + i [Vk}m,T (6.1)
< Ca (Jo = ol + |u— Al + 10§ = vol, + k& — koll2, + h(5)),

where we have set

~

A(E)= 3 (LA™ (B2 EF + kR @) + 6%

€1>1/6
which depends on é (and also on v§°, k§° and m) and verifies the condition

im A(§) = 0.
RO =0
If € > 0, we consider a § = 8(¢) such that Cyh(6) < £/2. By using
there exists we obtain U = U(¢), a neighborhood of (v{°, k§°, 00, &, i) such
that, when (v, ko, @, o, ) € U N ¥, the following estimate holds:
2

[0° = vl + 1K ko r+ 0 [V —v)]

+a[vE k)] < (6.2)

m, T
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On the other hand, using the [Proposition 4.1], when (v, kg, @, 0, 1) € VN,
we obtain

6 6 5 s
[|[v° — v an,T + [|k% — k5 ||72n,T

+o [V -] ta[vE ko) <6 (63)

m, m,

where V = V(¢) is a suitable neighborhood for (vg°, k§°, 00,5, ii). Let the
initial data X = (vo, ko, o, 0, 1) and X = (o, ko, &, , ) in x such that X,
X e UNV. We denote by X¢ = (v8, kS, a,0, ) and X4 = (vo,ko,d G, t);
let (v, k) = S(X), (9,k) = S(X), (v,k°) = S(Xé), (2%, k%) = S(X%). We
have, by using and (6.3),

. = 12
||U_U”72n,T + “k_k||3nT+U[v_v]m+l,T

+ [k k] < ce. (6.4)

m—+1,T

So we have obtained for all € > 0 there exists W = U NV, a neighborhood
of (v§°, kg°, 00, G, 1) such that the estimate holds when X, X e XN W,

Since C([0,T]; H™) and L?(0,T; H™) are complete, by using the fact
that a fundamental system of neighborhood for (v§°, k§°, 00, &, 1) is count-
able, we conclude that any sequence is a Cauchy sequence. The proof is
thus complete. L]

Remark. The last step in the previous proof can be done without using
Cauchy sequences by using a direct estimates. In fact, since

— 2 _ 2
oo 12, =k P2 g+ [0 =012, g =k
< o= 0¥z + [[0° = 002+ 0™ =62,
-Hm—kw2T+uﬁ—kww2T+w@ﬁ—kww

+5[[’U g1y + 07 =00

+ i [[k — Ky + (K - R+ R — R T]

mrr 00 o™ T]

to conclude it is sufficient to prove the following result.

Lemma 6.1  With the assumption of the Theorem 1.1 one has

2
™ 00,6 00
hm{w Por+o -]
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2
e Ry [ M S (6.5

Proof.  Notice that
g™ — o2, + 1k — k)12,
2\™ ~ 00 2 7 00 2
= ¥ (1+1e)" (©r + o)),
1€1>1/6

therefore we have
: 8 6
Jim 037 = ol + K570 — K2 = 0. (6.6)

To conclude with the Proof of (6.5) we follows a procedure similar to that
used to obtain the estimates of Section 5. So, we consider the difference
side by side between equations of the system (4.7) and (1.15): if we set

00,0 .00

Z =7

w = ko8 — oo

v

o0

p=q"°~q>,
we obtain
(D2 + (v°°, V)2 + k> x curl w + V(¢®%¢®) — A 2z
= —(2,V)v>°® —w x curl k>?
ow + (v, V)w — (k*°,V)z — A w

= —(2, V)k>? — (w, V)v>o! (6.7)

divz=0, divw=0

2(0) = v° — v, w(0) = kS0 — ko

\

Applying the operator D? to the equations (6.7)1,2, multiplying the first by
DPz and the second by DPw and integrating over (2, summing over all 3
with |3] <[, I < m we obtain

5 3 el + )+ (519217 + 29wl
< Co (1ol + 1K) (=l + c])? (6.9

+Ca8p, (107l + 6%

m+1) (12loo + [wloo) (12lm + l[wllm)
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that is the analogous of [5.1)]. By using with | < m — 1 we prove the
analogous of [5.2), that is

2| oo + |W]oo, < Coé™ Mot

from which we easily obtain (compare to (5.7)) that

(I2loo.r + [wloo2) (107 st + 15|11 )

< Cpgmmoteo—l (6.9)

If we consider the estimate (6.8) with [ = m it is sufficient to use the

estimate to obtain

[2llm., 1 + [[w]lm,z

,6 o0 00,5 o0 €
< O (1067 = 0§l + kg = kg2l + 6%, (6.10)

that is the analogous to (5.12).
Finally, we use and in order to estimate the right hand side

of [6.8). So it is sufficient to integrate the equation obtained over [0,T] to
show that

2
[0f w27 + (K = k)12, 7 + 5 [0 — o]
m+1,T
+ @ [k,oo,5 . koo:|2
m+1,T

< Co (g™ = o§°l2, + kg™ = k22, + 6%)

which, together to [6.6), yields (6.5). This concludes the proof. []
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Appendix

A. Appendix

Here we present some inequalities used in the previous Sections. For
the proofs the reader can refer to [6, 7, 13], Appendix.

Lemma A.1  For any r, ' with 0 < r' < r, if f belongs to H"(Q) N
H r’(Q), then there exists a constant C, depending only on r, such that the
following inequality holds

1fller < CollFlls™ TN A T (A1)

Lemma A.2  Let mg the smallest integer larger thenn /2,0 < € < mo—g-.
Then there exists a constant C > 0 depending only on n and € such that the
following inequality holds: for all f € H™ (Q),

[floo < Cllf o111 f g (A.2)

Lemma A3 Letr >n/2,1>0and 0 < s <r —1. Then there erists a
constant C > 0 depending only on r, | and s such that

1fglle < ClFllr=sllglli+s- (A.3)

For the proof we refer to [6], Appendix A.

Lemma A4 Lets>n/2+1and1 <r <s andlet 3 € N" be a multi-
index with |B] < r. Then there exists a constant C > 0 depending only on
r and s such that

|2% (£9)| < CIDAlls-1llglr—1. (A4)

Corollary A.5 Lets >n/2+1and1 <r < s andlet 3 € N" be a
multi-index with |3| < r. Then there exists a constant C > 0 depending
only on r and s such that

|07 (£)] < CIfleliglls—1 + CELIFleclglls (A5)

where 63 is the Kronecker’s symbol.
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Lemma A.6  There ezists a constant C > 0 depending only on r such
that, for any multi-index B € N™ with |8| < r we have

ID? (£9) Il < C(IDfloollgllr—1 + [gloo I D llr-1) - (A.6)

The proof uses the following well known Gagliardo-Nirenberg inequal-
ity: if 0< 5 < s,

1Diglyei < |g|is?/*|| Dgl|?/",. (A.7)

See [10, 19]. A complete proof can be found in or [13].
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