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Global stability in a logistic equation with
piecewise constant arguments1

Joseph W.-H. So and J. S. Yu2
(Received June 29, 1994; Revised November 22, 1994)

Abstract. In this paper we consider the logistic equation with piecewise constant ar-
guments

\frac{dN(t)}{dt}=r(t)N(t)(1-\sum_{j=0}^{m}a_{j}N([t-j])) t \geq 0

where [\cdot] denotes the greatest integer function, r : [0, \infty)arrow(0, \infty) is continuous and
a_{j}\in[0, \infty) , j=0,1 , \cdot\cdot. , m with a_{m}>0 . We establish some sufficient conditions for an
arbitrary solution N(t) satisfying the initial conditions of the form

N(0)=N_{0}>0 and N(-j)=N_{-j}\geq 0 , j=1,2 , \cdots , m

to converge to the positive equilibrium N^{*}=1/ \sum_{j=0}^{m}a_{j} as tarrow\infty .

Key words: Logistic equation, global stability, piecewise constant argument.

1. Introduction

The delay differential equation

x’(t)=rx(t)(1- \frac{x(t-\tau)}{K}) . t\geq 0 , (1.1)

called the Hutchinson’s equation, was used by Hutchinson in [9] to model
the growth of a herbivore. Here x(t) is the population of a single species at
time t , r is the intrinsic per capita growth rate of the population, K>0 is
the carrying capacity of the habitat and \tau>0 is the time lag. By means of
a change of variable, we can make \tau into 1 and (1.1) becomes

x’(t)=rx(t)(1- \frac{x(t-1)}{K}) , t\geq 0 . (1.2)
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Equation (1.2) has been extensively discussed in the literature, e.g. see [5,
7, 9, 11, 17]. When the growth rate r in (1.2) depends on time t , we have

x’(t)=r(t)x(t)(1- \frac{x(t-1)}{K}) . t\geq 0 . (1.3)

This equation has also been studied by many authors. One refers to [3, 11,
15, 16, 18] and the references cited therein.

In [2, 14] , the equation with piecewise constant arguments

N’(t)=rN(t)(1- \frac{N([t])}{K}) , t\geq 0 (1.4)

was considered as a semi-discretization of (1.2). Our aim in this paper is
to consider the semi-discretization of (1.3), namely, we consider the more
general equation with piecewise constant arguments

N’(t)=r(t)N(t)(1- \sum_{j=0}^{m}a_{j}N([t-j])) t\geq 0 . (1.5)

Here [p]=the greatest integer \leq p , r : [0, \infty) – (0, \infty) is continuous,
a_{j}\geq 0,j=0,1 , \cdot ., m-1 and a_{m}>0 . The linearized oscillation of (1.5)
has been investigated in [8],

For the special case when r(t)\equiv r (a constant), (1.5) has been inves-
tigated by several authors, see for example [5, 6, 7]. In particular, they
established some results on the oscillation and asymptotic behavior of all
positive solutions of (1.5). In [6], Gopalsamy, Kulenovic and Ladas showed
that if

r>0 , a_{0} , a_{1} , , a_{m}\geq 0 with \sum_{j=0}^{m}a_{j}>0 and r+m\neq 1 (1.8)

and

e^{r(m+1)}<2 , (1.7)

then every positive solution of the equation

\frac{dN(t)}{dt}=rN(t)(1-\sum_{j=0}^{m}a_{j}N([t-j])) , t\geq 0 (1.8)

tends to the positive equilibrium N^{*}=1/ \sum_{j=0}^{m}a_{j} as tarrow\infty .
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(1.11)

Gopalsamy in [5] conjectured that, instead of (1.7), if

r(m+1)e^{r(m+1)}<1 (1.9)

holds, then the above conclusion remains true.
By a solution of (1.5), we mean a function N which is defined on the

set

\{-m, -m+1, \cdot, -1, 0\}\cup(0, \infty)

and possesses the following properties:
(i) N is continuous on [0, \infty) ;

dN(t)(ii) The derivative \overline{dt} exists at each point t\in[0, \infty) with the
possible exception of the points t\in\{0,1,2, \cdot \cdot\} where left-sided
derivatives exist;

(iii) (1.1) is satisfied on each interval [n, n+1) with n=0,1,2 ,
Using a method similar to Lemma 2.1 in [6], one can easily show that

(1.5) together with initial conditions of the form

N(0)=N_{0}>0 and N(-j)=N_{-j}\geq 0 , j=1,2 , \cdot , m (1.10)

has a unique solution N(t) which is positive for all t\geq 0 .
On any interval of the form [n, n+1) for n=0,1,2 , \cdots , we can integrate

(1.5) and obtain for n\leq t<n+1 and n=0,1,2 , \cdot

N(t)=N(n) exp \{(1-\sum_{j=0}^{m}a_{j}N(n-j))\int_{n}^{t}r(s)ds\}

(1.12)

Letting t – n+1 in (1. 11), we find

N(n+1)=N(n) exp \{r_{n}(1-\sum_{j=0}^{m}a_{j}N(n-j))\}

where r_{n}= \int_{n}^{n+1}r(s)ds . The possible complex behavior of the solutions of
(1.12) can be demonstrated by looking at the following simple special case
of (1.12). Consider

N(n+1)=N(n)\exp\{r(1-N(n))\} (1.13)

i.e., m=0 and a_{0}=1 . (1.13) has been studied in its own right as a discrete
population model of a single species with non-0verlapping generations. It
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was shown in May [12] and May and Oster [13] that for certain values of
the parameter r , solutions of (1.13) is “chaotic” Our purpose in this paper
is to establish some sufficient conditions for the solution of the initial value
problem (IVP) (1.5) and (1.10) to be attracted to the positive equilibrium
N^{*} This then shows that complex (chaotic) behavior or even persistent (i.e.
undamped or periodic) oscillations are impossible under these assumptions.

In [10], Kocic and Ladas considered another special case of (1.12),
namely,

N(n+1)=N(n)\exp\{r(1-N(n-m))\} (1.14)

where r>0 and m is a positive integer. They proved that if

r(m+1)\leq 1 , (1.15)

then every solution of (1.14) with (1.10) tends to 1 as narrow\infty .
For recent literature on differential equations with piecewise constant

arguments and their applications, we refer to Aftabizadeh and Winner [1],
Cooke and Winner [4], Gopalsamy [5] and Gyori and Ladas [7, 8] and the
references cited therein.

In [15], we studied the global stability of the zero solution of the differ-
ential equation with constant delay

y’(t)=-r(t)(1+y(t))y(t-1) .

and a global stability result in Wright [17] was generalized to this non-
autonomous case. In this paper we apply the idea developed in [15] to
equation (1.5) with piecewise constant arguments. The rest of the paper
is organized as follows: In Section 2, we consider a sufficient condition
for the boundedness of solutions of (1.5). In Section 3, we establish a
result for the global stability of the equilibrium N^{*} of (1.5). Our result
shows that Gopalsamy’s conjecture is true under much weaker conditions.
In addition to that, it also shows that conditions (1.7) and (1.15) can be
greatly improved.

2. Boundedness results

In this section, we consider conditions under which solutions of (1.5)
will be bounded.

Lemma 2.1 Let N(t) be the solution of IVP(1.5) and (1.10). If N(t) is
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eventually greater (resp. less) than N^{*} , then the limit

\lim N(t) (2.1)
tarrow\infty

exists and is positive. Furthermore if
\int_{0}^{\infty}r(s)ds=\infty , (2.2)

then \lim_{tarrow\infty}N(t)=N^{*} .

Proof. From (1.11), we know that N(t) is positive for t\geq 0 . Assume that
N(t) is eventually greater than N^{*} . The case when N(t) is eventually less
than N^{*} is similar and its proof is omitted. By (1.5), we have eventually

\frac{dN(t)}{dt}\leq r(t)N(t)(1-\sum_{j=0}^{m}a_{j}N^{*})=0

which implies that N(t) is eventually decreasing, and so the limit in (2.1)
exists. Set

\alpha=\lim_{tarrow\infty}N(t) .

We will show that (2.2) implies \alpha=N^{*} Indeed, suppose \alpha>N^{*} Then
there exists t_{0}\geq m , such that

N(t-m)\geq\alpha , for t\geq t_{0} ,

since N(t) eventually decreases to \alpha . Using this and (1.5), we have

\frac{dN(t)}{dt}\leq r(t)N(t)(1-\alpha\sum_{j=0}^{m}a_{j})

=-( \frac{\alpha}{N^{*}}-1)r(t)N(t) , for t\geq t_{0} .

Integrating from t_{0} to t , we have

\ln\frac{N(t)}{N(t_{0})}\leq-(\frac{\alpha}{N^{*}}-1)\int_{t_{0}}^{t}r(s)ds

which in turn implies, due to (2.2),

\lim_{tarrow\infty} ln ( \frac{N(t)}{N(t_{0})})=-\infty .
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Hence \lim_{tarrow\infty}N(t)=0 , contradicting \alpha>0 . The proof is complete. \square

Lemma 2.2 Assume that a solution N(t) of IVP(1.5) and (1.10) is
oscillatory about N^{*} If for some constant M>0 , we have

\int_{n-m}^{n+1}r(s)ds\leq M , for all n=m, m+1 , \cdot , (2.3)

then N(t) is bounded above and is bounded below away from 0.

Proof. First we prove that N(t) is bounded above. Suppose lim \sup_{tarrow\infty}

N(t)=\infty . Since N(t) is both unbounded and oscillatory, there exists a
t^{*}>m such that

N(t^{*})=0\leq t\leq t^{*}maxN(t)>N^{*}

Since N(t)>0 for t\geq 0 , it follows by (1.5) that

\frac{dN(t)}{dt}\leq N(t)r(t) , for t\geq m . (2.4)

From now on, let D^{-}x(t) denote the left-sided derivative of x(t) . Then
D^{-}N(t^{*})\geq 0 . Furthermore, if t^{*}\not\in\{0,1,2, \ldots\} then

D^{-}N(t^{*})=r(t^{*})N(t^{*})(1- \sum_{j=0}^{m}a_{j}N([t^{*}-j]))\geq 0

and so \sum_{j=0}^{m}a_{j}N([t^{*}-j])\leq 1 . Thus there exists \xi\in[[t^{*}-m], t^{*}) such that
N(\xi)=N^{*} and N(t)>N^{*} for t\in(\xi, t^{*}] . Integrating (2.4) from \xi to t^{*} , we
have

\frac{N(t^{*})}{N^{*}}\leq exp ( \int_{\xi}^{t^{*}}r(s)ds)\leq\exp(\int_{[t^{*}-m]}^{t^{*}}r(s)ds)

\leq\exp(\int_{[t^{*}]-m}^{[t^{*}]+1}r(s)ds)\leq e^{M} .

If t^{*}\in\{0,1,2, \ldots\} then

0 \leq D^{-}N(t^{*})=r(t^{*})N(t^{*})(1-\sum_{j=0}^{m}a_{j}N(t^{*}-j-1))

and so \sum_{j=0}^{m}a_{j}N(t^{*}-j-1)\leq 1 . This implies that there exists \xi\in[t^{*}-
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m-1 , t^{*}) such that N(\xi)=N^{*} and N(t)>N^{*} for t\in(\xi, t^{*}] . By (2.4), we
have

\frac{N(t^{*})}{N^{*}}\leq\exp(\int_{\xi}^{t^{*}}r(s)ds)\leq\exp(\int_{t^{*}-m-1}^{t^{*}}r(s)ds)\leq e^{M}

Consequently, lim \sup_{tarrow\infty}N(t)\leq N^{*}e^{M} . This contradiction shows that
N(t) is bounded above. From the discussion above, we also see that

N(t)\leq N^{*}e^{M} for t\geq m . (2.5)

Substituting this into (1.5), we have

\frac{dN(t)}{dt}\geq r(t)N(t)(1-\sum_{j=0}^{m}a_{j}N^{*}e^{M})

=r(t)N(t)(1-e^{M}) for t>2m . (2.6)

Next, we will show that N(t) is bounded below away from 0. Suppose
that lim \inf_{t}

-
\infty N(t)=0 . Since N(t) is oscillatory about N^{*} , there exists

t_{*}>3m such that N(t_{*})= \min_{0\leq t\leq t_{*}}N(t)<N^{*} . Clearly, D^{-}N(t_{*})\leq 0 .
Furthermore, if t_{*}\not\in\{0,1,2, \ldots\} then

D^{-}N(t_{*})=r(t_{*})N(t_{*})(1- \sum_{j=0}^{m}a_{j}N([t_{*}-j]))\leq 0

which shows that there exists \eta\in[[t_{*}-m], t_{*}) such that N(\eta)=N^{*} and
N(t)<N^{*} for t\in(\eta, t_{*}] . Integrate (2.6) from \eta to t_{*} , we have

\frac{N(t_{*})}{N^{*}}\geq exp ((1-e^{M}) \int_{\eta}^{t_{*}}r(s)ds)

\geq\exp((1-e^{M})\int_{[t_{*}-m]}^{t_{*}}r(s)ds)

\geq\exp((1-e^{M})\int_{[t_{*}]-m}^{[t_{*}]+1}r(s)ds)\geq e^{(1-e^{M})M}

If t_{*}\in\{0,1,2, \ldots\} then

D^{-}N(t_{*})=r(t_{*})N(t_{*})(1- \sum_{j=0}^{m}a_{j}N(t_{*}-j-1))
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which implies that there exists \eta\in[t_{*}-m-1, t_{*}) such that N(\eta)=N^{*}

and N(t)<N^{*} for t\in(\eta, t_{*}] . By (2.6), we get

\frac{N(t_{*})}{N^{*}}\geq exp ((1-e^{M}) \int_{\eta}^{t_{*}}r(s)ds)

\geq\exp((1-e^{M})\int_{t_{*}-m-1}^{t_{*}}r(s)ds)\geq e^{(1-e^{M})M}t

Consequently, lim \inf_{tarrow\infty}N(t)\geq N^{*}\exp(-M(e^{M}-1))>0 , which is a
contradiction. Hence the proof is complete. \square

Combining Lemma 2.1 with Lemma 2.2, we immediately have

Theorem 2.3 If (2.3) holds, then the solution N(t) of IVP(1.5) and
(1.10) is bounded above and is bounded below from 0.

3. Global stability results

In this section, we provide sufficient conditions for the global stability
of the positive equilibrium N^{*} of (1.5). The main result is:

Theorem 3.1 Assume that

\int_{n-m}^{n+1}r(s)ds\leq\frac{3}{2} , for n=m, m+1 , \cdot (3.1)

and

\int_{0}^{\infty}r(s)ds=\infty . (3.2)

Then the solution N(t) of IVP(1.5) and (1.10) satisfies
\lim_{tarrow\infty}N(t)=N^{*} (3.3)

If we apply Theorem 3.1 to (1.8), we have immediately

Corollary 3.2 Assume that

r>0 , a_{0} , \cdot ., a_{m-1}\geq 0 and a_{m}>0 (3.4)

and

r(m+1) \leq\frac{3}{2} . (3.5)
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Then the solution of IVP(1.8) and (1.10) tends to N^{*} as tarrow\infty .

Clearly, (3.5) is weaker than (1.9). This shows that Gopalsamy’s con-
jecture mentioned in Section 1 is true under less stringent conditions. At
the same time, we also find that (3.5) is an essential improvement of (1.7).

When we apply Theorem 3.1 to (1.10), we have that (1.11) can be
improved by (3.5).

Proof of Theorem 3.1 In view of Lemma 2.1, it suffices to prove that (3.3)
holds for a solution N(t) which is oscillatory about N^{*} By Lemma 2.2,
N(t) is bounded above and bounded below away from 0. Set

u= \lim sup N(t) , v= \lim\inf N(t)tarrow\infty . (3.6)
tarrow\infty

Then 0<v\leq N^{*}\leq u<\infty . It suffices to prove that u=v=N^{*} . For any
\epsilon\in(0, v) , choose an integer T=T(\epsilon)>0 such that

v_{1}\equiv v-\epsilon<N(t-m)<u+\epsilon\equiv u_{1} , for t\geq T (3.7)

Using (1.5), we have

\frac{dN(t)}{dt}\leq r(t)N(t)(1-\frac{v_{1}}{N^{*}}) . for t\geq T (3.8)

and

\frac{dN(t)}{dt}\geq-r(t)N(t)(\frac{u_{1}}{N^{*}}-1) , for t\geq T (3.8)

Let \{T_{n}\} be an increasing sequence such that T_{n}\geq T+2m , D^{-}N(T_{n})\geq 0 ,
N(T_{n})>N^{*} . \lim_{tarrow\infty}N(T_{n})=u , and \lim_{narrow\infty}T_{n}=\infty . If T_{n}\not\in\{0,1,2, \ldots\}

then by (1.5), we have

\sum_{j=0}^{m}a_{j}N([T_{n}-j])\leq 1

which implies that there exists \xi_{n}\in[[T_{n}-m], T_{n}) such that N(\xi_{n})=N^{*}

and N(t)>N^{*} for t\in(\xi_{n}, T_{n}] . If T_{n}\in\{0,1,2, \ldots\} then by (1.5)

\sum_{j=0}^{m}a_{j}N(T_{n}-j-1)\leq 1

and so there exists \xi_{n}\in[T_{n}-m –1, T_{n} ) such that N(\xi_{n})=N^{*} and
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N(t)>N^{*} for t\in(\xi_{n}, T_{n}] . Thus, by (3.1) we have

\int_{\xi_{n}}^{T_{n}}r(s)ds\leq\frac{3}{2} .

For T\leq t\leq\xi_{n} , by integrating (3.8) from t to \xi_{n} , we get

ln ( \frac{N(\xi_{n})}{N(t)})\leq(1-\frac{v_{1}}{N^{*}})\int_{t}^{\xi_{n}}r(s)ds

or

N(t) \geq N^{*}\exp(-(1-\frac{v_{1}}{N^{*}})\int_{t}^{\xi_{n}}r(s)ds) , for T\leq t\leq\xi_{n} . (3.10)

For each j=0,1 , \cdot , m , we define the sets

E_{1j}=\{t\in[\xi_{n}, T_{n}] : [t-j]\geq\xi_{n}\} ,
E_{2j}=\{t\in[\xi_{n}, T_{n}] : [t-j]\leq\xi_{n}\} .

Then E_{1j}\cup E_{2j}=[\xi_{n}, T_{n}] , j=0,1 , \cdot , m . Note that t\in[\xi_{n}, T_{n}] implies
[t-m]\leq\xi_{n} . For t\in E_{1j} , we have

N([t-j]) \geq N^{*}\geq N^{*}\exp(-(1-\frac{v_{1}}{N^{*}})\int_{[t-m]}^{\xi_{n}}r(s)ds)

and for t\in E_{2j} , by (3.10)

N([t-j]) \geq N^{*}\exp(-(1-\frac{v_{1}}{N^{*}})\int_{[t-j]}^{\xi_{n}}r(s)ds)

\geq N^{*}\exp(-(1-\frac{v_{1}}{N^{*}})\int_{[t-m]}^{\xi_{n}}r(s)ds) ,

since [t-j]\geq[t-m]\geq[\xi_{n}-m]\geq[[T_{n}-m]-m]\geq[[T+m]-m]=T
Hence

N([t-j]) \geq N^{*}\exp(-(1-\frac{v_{1}}{N^{*}})\int_{[t-m]}^{\xi_{n}}r(s)ds) ,

for j=0,1 , \cdot , m .

Substituting this into (1.5), we have

\frac{dN(t)}{dt}\leq r(t)N(t)(1- exp (-(1- \frac{v_{1}}{N^{*}})\int_{[t-j]}^{\xi_{n}}r(s)ds)) ,
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for t\in[\xi_{n}, T_{n}] .

Denote 1- \frac{v_{1}}{N^{*}} by v^{*} Then 0<v^{*}<1 . Thus, for t\in[\xi_{n}, T_{n}] we have

\frac{d\ln N(t)}{dt}\leq\min\{r(t)v^{*} , r(t)(1- exp (-v^{*} \int_{[t-m]}^{\xi_{n}}r(s)ds))\} (3.11)

We will prove that

\ln(\frac{N(T_{n})}{N^{*}})\leq v^{*}-\frac{1}{6}v^{*2} (3.12)

There are two possibilities:

Case 1: \int_{\xi_{n}}^{T_{n}}r(s)ds\leq-\frac{\ln(\frac{v_{1}}{N^{*}})}{v}*=-\frac{\ln(1-v^{*})}{v}*\cdot

Then by (3.11),

ln ( \frac{N(T_{n})}{N^{*}})

\leq\int_{\xi_{n}}^{T_{n}}r(t)(1- exp (-v^{*} \int_{[t-m]}^{\xi_{n}}r(s)ds))dt

= \int_{\xi_{n}}^{T_{n}}r(t)(1- exp ( -v^{*}( \int_{[t-m]}^{t}r(s)ds-\int_{\xi_{n}}^{t}r(s)ds)))dt

\leq\int_{\xi_{n}}^{T_{n}}r(t)(1- exp ( -v^{*}( \frac{3}{2}-\int_{\xi_{n}}^{t}r(s)ds)))dt

= \int_{\xi_{n}}^{T_{n}}r(t)dt-e^{-\frac{3}{2}v^{*}}\int_{\xi_{n}}^{T_{n}}r(t) exp (v^{*} \int_{\xi_{n}}^{t}r(s)ds)dt

= \int_{\xi_{n}}^{T_{n}}r(t)dt-\frac{1}{v}e^{-\frac{3}{2}v^{*}}*(\exp(v^{*}\int_{\xi_{n}}^{T_{n}}r(s)ds)-1)

= \int_{\xi_{n}}^{T_{n}}r(t)dt

- \frac{1}{v}e*-v^{*}(\frac{3}{2}-\int_{\xi_{n}}^{T_{n}}r(s)ds) (1 -exp (-v^{*} \int_{\xi_{n}}^{T_{n}}r(s)ds)) .

0 \leq\leq\frac{3}{2}.Thusfor\int_{\xi_{n}}^{T_{n}}r_{\backslash }(t)dt\leq\frac{1n(1-v^{*})e^{-v^{*}(\frac{3}{2}}}{v^{*}}\leq Note_{X}thatthefunctionx\mapsto x-\frac{1}{-v^{*}}-x)\frac{(3}{2}1

,
wehave-e^{-v^{*}x})

is increasing for

ln ( \frac{N(T_{n})}{N^{*}})
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\leq-\frac{\ln(1-v^{*})}{v}-*\frac{1}{v}\exp*(-v^{*}(\frac{3}{2}+\frac{\ln(1-v^{*})}{v})*)(1-e^{\ln(1-v^{*})})

=- \frac{\ln(1-v^{*})}{v}-* exp (-v^{*}( \frac{3}{2}+\frac{\ln(1-v^{*})}{v})*)

\leq-\frac{\ln(1-v^{*})}{v}-*[1-v^{*}(\frac{3}{2}+\frac{\ln(1-v^{*})}{v})*]

\leq-1+\frac{3}{2}v^{*}-\frac{(1-v^{*})\ln(1-v^{*})}{v}*

= \frac{3}{2}v^{*}-\frac{1}{v}*\int_{0}^{v^{*}}(\int_{0}^{y}\frac{dx}{1-x})dy

< \frac{3}{2}v^{*}-\frac{1}{v}*\int_{0}^{v^{*}}\int_{0}^{y}(1+x)dxdy=v^{*}-\frac{1}{6}v^{*2} (3.13)

For \int_{\xi_{n}}^{T_{n}}r(s)ds\leq\frac{3}{2}<-\frac{\ln(1-v^{*})}{v^{*}} , we have

ln ( \frac{N(T_{n})}{N^{*}})

\leq\int_{\xi_{n}}^{T_{n}}r(t)dt-\frac{1}{v}*(e^{-\frac{3}{2}v^{*}}\exp(v^{*}\int_{\xi_{n}}^{T_{n}}r(s)ds)-e^{-\frac{3}{2}v^{*}})

\leq\frac{3}{2}-\frac{1}{v}*(1-e^{-\frac{3}{2}v^{*}})\leq v^{*}-\frac{1}{6}v^{*2}

according to (3.12) in [17].

Case 2: - \frac{\ln(1-v^{*})}{v}*<\int_{\xi_{n}}^{T_{n}}r(s)ds\leq\frac{3}{2} .

Choose h_{n}\in(\xi_{n}, T_{n}) such that

\int_{h_{n}}^{T_{n}}r(s)ds=-\frac{\ln(1-v^{*})}{v}*\cdot

Then by (3.11) and (3.1),

ln ( \frac{N(T_{n})}{N^{*}})

\leq\int_{\xi_{n}}^{h_{n}}r(t)v^{*}dt+\int_{h_{n}}^{T_{n}}r(t)(1- exp (-v^{*} \int_{[t-m]}^{\xi_{n}}r(s)ds))dt

=v^{*} \int_{\xi_{n}}^{h_{n}}r(t)dt+\int_{h_{n}}^{T_{n}}r(t)dt
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- \int_{h_{n}}^{T_{n}}r(t) exp (-v^{*} \int_{[t-m]}^{t}r(s)ds+v^{*}\int_{\xi_{n}}^{t}r(s)ds)dt

\leq v^{*}\int_{\xi_{n}}^{h_{n}}r(t)dt+\int_{h_{n}}^{T_{n}}r(t)dt

-e^{-\frac{3}{2}v^{*}} \int_{h_{n}}^{T_{n}}r(t) exp (v^{*} \int_{\xi_{n}}^{t}r(s)ds)dt

=v^{*} \int_{\xi_{n}}^{h_{n}}r(t)dt+\int_{h_{n}}^{T_{n}}r(t)dt

- \frac{1}{v}e^{-\frac{3}{2}v^{*}}*(\exp(v^{*}\int_{\xi_{n}}^{T_{n}}r(s)ds) - exp (v^{*} \int_{\xi_{n}}^{h_{n}}r(s)ds))

=v^{*} \int_{\xi_{n}}^{h_{n}}r(t)dt+\int_{h_{n}}^{T_{n}}r(t)dt

- \frac{1}{v}* exp (-v^{*}( \frac{3}{2}-\int_{\xi_{n}}^{T_{n}}r(s)ds))(1- exp (-v^{*} \int_{h_{n}}^{T_{n}}r(s)ds))

=v^{*} \int_{\xi_{n}}^{h_{n}}r(t)dt+\int_{h_{n}}^{T_{n}}r(t)dt- exp (-v^{*}( \frac{3}{2}-\int_{\xi_{n}}^{T_{n}}r(s)ds))

=v^{*} \int_{\xi_{n}}^{T_{n}}r(t)dt+(1-v^{*})\int_{h_{n}}^{T_{n}}r(t)dt

-exp (-v^{*}( \frac{3}{2}-\int_{\xi_{n}}^{T_{n}}r(s)ds))

=- \frac{(1-v^{*})\ln(1-v^{*})}{v}+v^{*}*\int_{\xi_{n}}^{T_{n}}r(t)dt

-exp (-v^{*}( \frac{3}{2}-\int_{\xi_{n}}^{T_{n}}r(s)ds,))

\leq-\frac{(1-v^{*})\ln(1-v^{*})}{v}+\frac{3}{2}v^{*}-1*
’

since the function x\mapsto v^{*}x- exp (-v^{*}( \frac{3}{2}-x)) is increasing for 0 \leq x\leq\frac{3}{2} .
Thus, according to (3. 13),

ln ( \frac{N(T_{n})}{N^{*}})\leq v^{*}-\frac{1}{6}v^{*2}

This completes the proof of (3.12). Letting narrow’ \infty and \epsilonarrow 0 in (3.12), we
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have

\ln(\frac{u}{N^{*}})\leq(1-\frac{v}{N^{*}})-\frac{1}{6}(1-\frac{v}{N^{*}})^{2} (3.14)

Next, let \{S_{n}\} be an increasing sequence such that S_{n}\geq T+m ,
D^{-}N(S_{n})\leq 0 , N(S_{n})<N^{*} . \lim_{narrow\infty}N(S_{n})=v , and \lim_{n-\infty}S_{n}=\infty .
If S_{n}\not\in\{0,1,2, \ldots\} then by (1.5), we have

\sum_{j=0}^{m}a_{j}N([S_{n}-j])\geq 1

which implies that there exists \eta_{n}\in[[S_{n}-m], S_{n}) such that N(\eta_{n})=N^{*}

and N(t)<N^{*} for t\in(\eta_{n}, S_{n}] . If S_{n}\in\{0,1,2, \ldots\} then by (1.5)

\sum_{j=0}^{m}a_{j}N(S_{n}-j-1)\geq 1

and so also there exists \eta_{n}\in[S_{n}-m-1, S_{n}) such that N(\eta_{n})=N^{*} and
N(t)<N^{*} for t\in(\eta_{n}, S_{n}] . Thus, in light of (3.1), we get

\int_{\eta_{n}}^{S_{n}}r(s)ds\leq\frac{3}{2} .

For T\leq t\leq\eta_{n} , by integrating (3.9) from t to \eta_{n} , we get

ln ( \frac{N(\eta_{n})}{N(t)})\geq-(\frac{u}{N^{*}}-1)\int_{t}^{\eta_{n}}r(s)ds

or

N(t) \leq N^{*}\exp((\frac{u}{N^{*}}-1)\int_{t}^{\eta_{n}}r(s)ds) . for T\leq t\leq\eta_{n} . (3. 15)

Now let

F_{1j}=\{t\in[\eta_{n}, S_{n}] : [t-j]\geq\eta_{n}\} ,
F_{2j}=\{t\in[\eta_{n}, S_{n}] : [t-j]\leq\eta_{n}\} .

Then F_{1j}\cup F_{2j}=[\eta_{n}, S_{n}] , j=0,1 , ( ., m . Noting the fact that t\in[\eta_{n}, S_{n}]

implies [t-m]\leq\eta_{n} , we have for t\in F_{1j} ,

N([t-j]) \leq N^{*}\leq N^{*}\exp((\frac{u}{N^{*}}-1)\int_{[t-m]}^{\eta_{n}}r(s)ds)
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and for t\in F_{2j} , by (3.15)

N([t-j]) \leq N^{*}\exp((\frac{u}{N^{*}}-1)\int_{[t-j]}^{\eta_{n}}r(s)ds)

\leq N^{*}\exp((\frac{u}{N^{*}}-1)\int_{[t-m]}^{\eta_{n}}r(s)ds)

Hence

N([t-j]) \leq N^{*}\exp((\frac{u}{N^{*}}-1)\int_{[t-m]}^{\eta_{n}}r(s)ds) .

for j=0,1 , \cdot , m .

Substituting this into (1.5), we have for t\in[\eta_{n}, S_{n}] ,

\frac{dN(t)}{dt}\geq-r(t)N(t)(\exp((\frac{u}{N^{*}}-1)\int_{[t-m]}^{\eta_{n}}r(s)ds)-1\backslash )

Set u^{*}= \frac{u}{N^{*}}-1 . We obtain for t\in[\eta_{n}, S_{n}]

\frac{d\ln N(t)}{dt}

\geq\max\{-r(t)u^{*}, -r(t)( (3.16)exp (u^{*} \int_{[t-m]}^{\eta_{n}}r(s)ds)-1)\} .

We now prove that

-ln ( \frac{N(S_{n})}{N^{*}})\leq u^{*}+\frac{1}{6}u^{*2} (3.17)

There are three cases to consider:

Case 1: \int_{\eta_{n}}^{S_{n}}r(t)dt\leq 1 .

Then by (3.16),

-ln ( \frac{N(S_{n})}{N^{*}})\leq u^{*}\int_{\eta_{n}}^{S_{n}}r(t)dt\leq u^{*}<u^{*}+\frac{1}{6}u^{*2}

Case 2: 1< \int_{\eta_{n}}^{S_{n}}r(t)dt\leq\frac{3}{2}-\frac{\ln(1+u^{*})}{u}*\cdot
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Clearly u^{*}>2 in this case. As in case 1, we have

-ln ( \frac{N(S_{n})}{N^{*}})\leq u^{*}\int_{\eta_{n}}^{S_{n}}r(t)dt

\leq\frac{3}{2}u^{*}-\ln(1+u^{*})\leq u^{*}+\frac{1}{6}u^{*2}

(c.f. [15]) .

Case 3: \frac{3}{2}-\frac{\ln(1+u^{*})}{u}*<\int_{\eta_{n}}^{S_{n}}r(t)dt\leq\frac{3}{2} .

Choose g_{n}\in(\eta_{n}, S_{n}) such that

\int_{\eta_{n}}^{g_{n}}r(t)dt=\frac{3}{2}-\frac{\ln(1+u^{*})}{u}*\cdot

Then by (3. 16),

-ln ( \frac{N(S_{n})}{N^{*}})

\leq u^{*}\int_{\eta_{n}}^{g_{n}}r(t)dt+\int_{g_{n}}^{S_{n}}r(t)(\exp(u^{*}\int_{[t-m]}^{\eta_{n}}r(s)ds)-1)dt

\leq u^{*}\int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+ \int_{g_{n}}^{S_{n}}r(t) exp (u^{*}( \int_{[t-m]}^{t}r(s)ds-\int_{\eta_{n}}^{t}r(s)ds))dt

\leq u^{*}\int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+e^{\frac{3}{2}u^{*}} \int_{g_{n}}^{S_{n}}r(t) exp (-u^{*} \int_{\eta_{n}}^{t}r(s)ds)dt

=u^{*} \int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+ \frac{1}{u}e^{\frac{3}{2}u^{*}}*(\exp(-u^{*}\int_{\eta_{n}}^{g_{n}}r(s)ds) - exp (-u^{*} \int_{\eta_{n}}^{S_{n}}r(s)ds))

=u^{*} \int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+ \frac{1}{u}*(\exp( u^{*}( \frac{3}{2}-\int_{\eta_{n}}^{g_{n}}r(s)ds))
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-exp (u^{*}( \frac{3}{2}-\int_{\eta_{n}}^{S_{n}}r(s)ds)))

=u^{*} \int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+ \frac{1}{u}*(1+u^{*}- exp (u^{*}( \frac{3}{2}-\int_{\eta_{n}}^{S_{n}}r(s)ds)))

\leq u^{*}\int_{\eta_{n}}^{g_{n}}r(t)dt-\int_{g_{n}}^{S_{n}}r(t)dt

+ \frac{1}{u}*(1+u^{*}-1-u^{*}(\frac{3}{2}-\int_{\eta_{n}}^{S_{n}}r(s)ds))

=u^{*} \int_{\eta_{n}}^{g_{n}}r(t)dt-\frac{1}{2}+\int_{\eta_{n}}^{g_{n}}r(s)ds=(u^{*}+1)\int_{\eta_{n}}^{g_{n}}r(s)ds-\frac{1}{2}

=1+ \frac{3}{2}u^{*}-\frac{(1+u^{*})\ln(1+u^{*})}{u}*=\frac{3}{2}u^{*}-\frac{1}{u}*\int_{0}^{u^{*}}(\int_{0}^{x}\frac{dy}{1+y})dx

\leq\frac{3}{2}u^{*}-\frac{1}{u}*\int_{0}^{u^{*}}\int_{0}^{x}(1-y)dydx=u^{*}+\frac{1}{6}u^{*2}

This proves that (3.17) holds. Let narrow\infty and \epsilonarrow 0 in (3.17), we have

-ln ( \frac{v}{N^{*}})\leq(\frac{u}{N^{*}}-1)+\frac{1}{6}(\frac{u}{N^{*}}-1)^{2} (3.18)

Set x= \frac{u}{N^{*}}-1 , y=1- \frac{v}{N^{*}} . Then x\geq 0,1>y\geq 0 . By (3. 14) and (3. 18),

- \ln(1-y)\leq x+\frac{1}{6}x^{2} , \ln(1+x)\leq y-\frac{1}{6}y^{2} . (3.19)

In view of Lemma 2.1 in [15], (3.19) has only the solution x=y=0. This
shows that u=v=N^{*} and the proof is complete.
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