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Solutions of the fifth Painlev\’e equation I1

Humihiko WATANABE
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Abstract. Here we determine all the transcendental classical solutions of the fifth
Painlev\’e equation.

Key words: Painlev\’e equations, classical solutions, the condition (J).

Introduction

In our previous paper [21] (see also [18], [19]), we emphasized the im-
portance of the determination of all the classical solutions of the Painlev\’e
equations in connection with the proof of their irreducibihty in the sense
of Painlev\’e (cf. [17]). In this paper I and the next paper II [23], follow-
ing our previous papers [21], [22] on the solutions of the second, third and
fourth Painlev\’e equations, we determine all the classical solutions of the fifth
Painlev\’e equation. The determination of the classical solutions consists of
that of the algebraic solutions and that of the transcendental classical solu-
tions. In the paper II we discuss the former; in this paper I we discuss the
latter. In these papers we follow the terminology of [21].

The fifth Painlev\’e equation P_{V}(\alpha, \beta, \gamma, \delta) is given by

\frac{d^{2}Q}{dt^{2}}=(\frac{1}{2Q}+\frac{1}{Q-1})(\frac{dQ}{dt})^{2}-\frac{1}{t}\frac{dQ}{dt}

+ \frac{(Q-1)^{2}}{t^{2}}(\alpha Q+\frac{\beta}{Q})+\frac{\gamma}{t}Q+\delta\frac{Q(Q+1)}{Q-1} ,

where \alpha , \beta , \gamma , \delta denote complex numbers. It is known ([3], [12]) that the
equation P_{V}(\alpha, \beta, \gamma, 0) is reduced to the third Painlev\’e equation, so that
we may assume \delta=-\frac{1}{2} without loss of generality (see [6], [13]). The equa-
tion P_{V}( \alpha, \beta, \gamma, -\frac{1}{2}) is equivalent to a system \tilde{S}(v) of ordinary differential
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equations for unknowns P and Q :

\tilde{S}(v)\{

t \frac{dQ}{dt}=2Q(Q-1)^{2}P+(3v_{1}+v_{2})Q^{2}

-(t+4v_{1})Q+v_{1}-v_{2} ,

t \frac{dP}{dt}=(-3Q^{2}+4Q-1)P^{2}-2(3v_{1}+v_{2})QP

+(t+4v_{1})P-(v_{3}-v_{1})(v_{4}-v_{1}) ,

where v=(v_{1}, v_{2}, v_{3}, v_{4}) denotes a vector on a complex hyperplane V in
C^{4} defined by v_{1}+v_{2}+v_{3}+v_{4}=0 (see [13]). In fact, if we eliminate
the unknown P from the system \tilde{S}(v) , we get the equation P_{V}( \alpha, \beta, \gamma, -\frac{1}{2})

under the relations 2\alpha=(v_{3}-v_{4})^{2} , -2\beta=(v_{2}-v_{1})^{2} . \gamma=2v_{1}+2v_{2}-1 .
Moreover, Okamoto [14] (cf. [4]) points out that, by a replacement

\{

q=Q(Q-1)^{-1} ,

p=-(Q-1)^{2}P+(v_{3}-v_{1})(Q-1) ,
(3)

the following system S(v) of ordinary differential equations for the un-
knowns p and q is obtained:

S(v)\{

t \frac{dq}{dt}=2q^{2}p-2qp+tq^{2}-tq

+(v_{1}-v_{2}-v_{3}+v_{4})q+v_{2}-v_{1} ,

t\frac{dp}{dt}=-2qp+p^{2}-22tpq+tp

-(v_{1}-v_{2}-v_{3}+v_{4})p+(v_{3}-v_{1})t .

Since the replacement (1) defines a birational transformation of the set of
solutions of the system \tilde{S}(v) onto that of the system S(v) , the systems \tilde{S}(v)

and S(v) are birationally equivalent each other. Consequently, we study in
these papers the system S(v) instead of the equation P_{V}( \alpha, \beta, \gamma, -\frac{1}{2}) or the
system \tilde{S}(v) .

Let us explain the content of this paper I. In \S 1 we state our principal
results, Theorems 1.2 and 1.3, after some preliminaries. In Theorem 1.2
we give a necessary and sufficient condition of the existence of transcen-
dental classical solutions of S(v) . In particular Theorem 1.2 implies the
irreducibility of the fifth Painlev\’e equation. Since we can construct a group
H_{*} of birational transformations of solutions of S(v)(v\in V) homomor-
phic to a subgroup H of the group of all complex affine transformations of
the hyperplane V (for the detail see \S 1), we can reduce the investigation
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of solutions of S(v) for v\in V to that of S(v) for v\in\Gamma . where \Gamma denotes
a fundamental region of V for the group H introduced in \S 1. Therefore,
we explicitly determine in Theorem 1.3 all the transcendental classical s0-

lutions of S(v) for every v\in\Gamma for which S(v) has such solutions. These
transcendental classical solutions are defined by four Riccati equations that
are birationally equivalent each other and that come from the confluent
hypergeometric equation. Some authors ([5], [9], [11], [13]) obtain Riccati
solutions of the equation P_{V}( \alpha, \beta, \gamma, -\frac{1}{2}) or the system \tilde{S}(v) , which are
birationally equivalent to our solutions through the transformation (1).

The remaining sections (\S \S 2-4) in this paper are devoted to the proof of
Theorem 1.3. In \S 2 we investigate Umemura’s condition (J) for the system
S(v) (cf. [18], [21], [22]). In Proposition 2.1 we give a necessary condition of
the existence of non-trivial X(v)-invariant principal ideals of the polynomial
ring K[p, q] in two variables p and q over an ordinary differential overfield
K of the field C(t) of rational functions, where X(v) denotes a derivation
on K[p, q] corresponding to S(v) (for the definition of X(v) see \S 2). As will
be seen in \S 4, Proposition 2.1 is crucial for the proof of Theorem 1.3. It
follows from Proposition 2.1 that there exists a certain dense open subset
of \Gamma such that for every vector v in the subset there exists no non-trivial
X(v)-invariant principal ideal of K[p, q] (Corollary 2.6).

Let us briefly mention the proof of Proposition 2.1. The process of the
proof is similar to that in the third Painlev\’e equation (cf. [22]). If there
exists a polynomial F in K[p, q] and not in K such that the principal ideal
(F) of K[p, q] is X(v)-invariant, then we have a relation

X(v)F=GF (4)

for some G\in K[p, q] (cf. [21], \S 1). To prove the proposition we analyse
the relation (2) in detail. We endow the polynomial ring K[p, q] with two
gradings (Step 1 of the proof). If we decompose the relation (2) homoge-
neously with respect to those gradings, we have two systems of equations for
homogeneous polynomials in F equivalent to the relation (2) ( (6)_{d} and (8)_{d}

in \S 2). Observing the figure of the Newton polygon of F precisely (see Step
5), we solve certain equations among the systems and express the coefficient
of a certain monomial in F in two ways (Steps 3, 4, 6-9), from which we
obtain the expected necessary condition. Here, Lemmas 2.2-2.5 in Step 2
are very effective in solving those equations.

In \S 3, using results in \S 2, we determine all the non-trivial X(v)-invariant
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principal ideals of K[p, q] for every v\in\Gamma such that these ideals exist (Lem-
mas 3.1-3.4). This leads to the determination of all the transcendental
classical solutions of S(v) for every v\in\Gamma for which S(v) has such solutions
(cf. the second paragraph in \S 4).

In \S 4 we conclude the proof of Theorem 1.3 by combining results in
\S \S 2-3.

Now we summarize our principal result in the paper II , which is essen-
tially reduced to the following

Theorem 0.4 There exist the following algebraic solutions (p, q) of the
system S(v) for v=(v_{1}, v_{2}, v_{3}, v_{4})\in\Gamma :

(i) (p, q)=(0,0) if v_{1}=v_{2}=v_{3} ;
(ii) (p, q)=(0,1) if v_{1}=v_{3}=v_{4)}

.

(iii) (p, q)=(-t, 0) if v_{1}=v_{2}=v_{4}+1 ;
(iv) (p, q)=(-t, 1) if v_{2}-1=v_{4}=v_{3} ;
(v) (p, q)=(- \frac{1}{2}t, \frac{1}{2}) if v_{1}+v_{2}-v_{3}-v_{4}-1=0 and-v_{1}+v_{2}-v_{3}+v_{4}=0 .

These are all the algebraic solutions of the system S(v) for v\in\Gamma

As will be fully discussed in the paper II , we can determine all the
algebraic solutions of S(v) for v\in V from the theorem by the operation of
the group H_{*} . In particular, we see that every algebraic solution of S(v) is
rational.

Here we notice the following three observations concerning algebraic
solutions in Theorem 0.1 and those of the equation P_{V}(\alpha, \beta, \gamma, \delta) .

First, we obtain a (generalized) rational solution Q=\infty of the equa-

transformationtionP_{V}(0, \beta,\gamma, _{(1}^{-}\frac{1}{2,)},.)

from the solution (p, q)=(0,1) in Theorem 0.1 by the

Second, Lukashevich [9] found a solution Q=0 of P_{V}( \alpha, 0, \gamma, -\frac{1}{2}) ,
which is obtained by the transformation (1) from an arbitrary solution (p, 0)

of S(v) such that the function p satisfies a Riccati equation (2) in \S 1 with
the relations 2\alpha=(v_{3}-v_{4})^{2} , v_{2}=v_{1} , \gamma=2v_{1}+2v_{2}-1 . Since the function
p is not necessarily algebraic, according to our definition of an algebraic
solution of the system S(v) (see [21], \S 1), we cannot regard a constant
function Q=0 as an algebraic solution of the equation P_{V}( \alpha, 0, \gamma, -\frac{1}{2}) when
2\alpha\neq(\gamma+1)^{2} . On the other hand, since the solution Q=0 of P_{V}( \alpha, 0, \gamma, -\frac{1}{2})

with 2\alpha=(\gamma+1)^{2} comes from the rational solution (p, q)=(0,0) in
Theorem 0.1, the solution Q=0 can be considered as a rational solution of
P_{V}( \alpha, 0, \gamma, -\frac{1}{2}) .
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Third, according to Lukashevich [9] and Gromak [3], the equation
P_{V}(\alpha, \beta, \gamma, 0) has algebraic and non-rational solutions. Since the equa-
tion P_{V}(\alpha, \beta, \gamma, 0) , as was mentioned above, is birationally equivalent to the
third Painlev\’e equation, these solutions come from algebraic solutions of the
third Painlev\’e equation. Hence the determination of algebraic solutions of
the equation P_{V}(\alpha, \beta, \gamma, 0) is reduced to that of the third Painlev\’e equation.
We have discussed the latter subject in our paper [22] (cf. [6]).

I would like to thank Professor H. Umemura for many valuable advices
and for many helpful comments on ealier manuscripts. I am also indebted
to Professor K. Okamoto for showing me his note [14]. I would like to thank
Professors N. Tanaka and K. Yamaguchi for introducing me to the Painlev\’e
equations and a work [19] of Umemura. Finally I would like to thank Dr.
C. Vuono for his linguistic advice.

1. Statement of principal results

Let us recall the system S(v) of ordinary differential equations bira-
tionally equivalent to the fifth Painlev\’e equation (cf. Introduction):

S(v)\{

t\frac{dq}{dt}=2qp-22qp+tq^{2}-tq

+(v_{1}-v_{2}-v_{3}+v_{4})q+v_{2}-v_{1} ,

t\frac{dp}{dt}=-2qp+p^{2}-22tpq+tp

-(v_{1}-v_{2}-v_{3}+v_{4})p+(v_{3}-v_{1})t ,

where v=(v_{1}, v_{2}, v_{3}, v_{4}) denotes an arbitrary vector on a complex hyper-
plane V in C^{4} defined by v_{1}+v_{2}+v_{3}+v_{4}=0 . To state our principal re-
sults, we review birational transformations of solutions of the system S(v)
associated with a group of complex affine transformations of the hyper-
plane V (cf. [13]). We define four affine transformations s_{1} , s_{2} , s_{3} , t_{-} of
V by s_{1}(v)=(v_{2}, v_{1}, v_{3}, v_{4}) , s_{2}(v)=(v_{3}, v_{2}, v_{1}, v_{4}) , s_{3}(v)=(v_{1}, v_{2}, v_{4}, v_{3}) ,
t_{-}( v)=v+\frac{1}{4}(-1, -1, -1,3) for v=(v_{1}, v_{2}, v_{3}, v_{4})\in V We have s_{1}^{2}=s_{2}^{2}=

s_{3}^{2}=1 , s_{1}s_{3}=s_{3}s_{1} , t_{-}s_{1}=s_{1}t_{-} , t_{-}s_{2}=s_{2}t_{-} , where 1 denotes the identity
transformation of V If we set s_{0}=t_{-}^{-1}s_{3}s_{1}s_{2}s_{1}s_{3}t_{-} and z_{0}=s_{1}s_{2}s_{3}t_{-} ,
we see s_{0}(v)=(v_{1}, v_{4}+1, v_{3}, v_{2}-1) and z_{0}( v)=(v_{2}-\frac{1}{4}, v_{4}+ \frac{3}{4} , v_{1}- \frac{1}{4} ,
v_{3}- \frac{1}{4}) . We also have s_{0}^{2}=z_{0}^{4}=1 , t_{-}^{-1}s_{3}t_{-}=s_{1}s_{2}s_{1}s_{0}s_{1}s_{2}s_{1} . Let G be
the subgroup generated by s_{1} , s_{2} , s_{3} , t_{-} in the group of all complex affine
transformations of V We can also choose s_{1} , s_{2} , s_{3} , z_{0} as generators of the
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group G. Let H be the subgroup of G generated by s_{0} , s_{1} , s_{2} , S_{3} , which is
isomorphic to the affine Weyl group of the root system of type A3 (cf. [1],
Chap. VI). It is easy to see that H is a normal subgroup of G. Therefore
we have a group isomorphism G\cong H\aleph<z_{0}> . Let \Gamma be the subset of V
that consists of all the vectors v=(v_{1}, v_{2}, v_{3}, v_{4}) subject to the following
conditions:

(i) \Re(v_{2}-v_{1})\geq 0 ;
(ii) \Re(v_{1}-v_{3})\geq 0 ;
(iii) \Re(v_{3}-v_{4})\geq 0 ;
(iv) \Re(v_{4}-v_{2}+1)\geq 0 ;
(v) \propto s(v_{2}-v_{1})\geq 0 if \Re(v_{2}-v_{1})=0 ;
(vi) \propto s(v_{1}-v_{3})\geq 0 if \Re(v_{1}-v_{3})=0 ;
(vii)\propto s(v_{3}-v_{4})\geq 0 if \Re(v_{3}-v_{4})=0 ;
(viii)\propto s(v_{4}-v_{2})\geq 0 if \Re(v_{4}-v_{2}+1)=0 .

Here \Re(v)and\propto s(v) denote the real and imaginary parts respectively of a
complex number v .

Lemma 1.1 The subset \Gamma is a fundamental region of V for the group H.

Proof We set V’=V\cap R^{4} and \Gamma’=\Gamma\cap R^{4} . The subset \Gamma’ is a
fundamental region of the real vector space V’ for the group H , because the
set \Gamma’ is the closure of an alcove of the affine Weyl group H (cf. [1], Chap.
VI) . Therefore, to prove the lemma, it is sufficient to prove the following

Sublemma We set \tilde{\Gamma}=\{v\in V|\Re(v_{2}-v_{1})\geq 0 , \Re(v_{1}-v_{3})\geq 0 , \Re(v_{3}-

v_{4})\geq 0 , and \Re(v_{4}-v_{2}+1)\geq 0\} . For every v\in\tilde{\Gamma} there exists a g\in H
such that g(v)\in\Gamma

The proof is divided into several cases:
(i) Assume that \Re(v_{2}-v_{1})=0 and \Re(v_{1}-v_{3})\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq

0 . In this case the sublemma follows immediately from an equality

\{v\in\tilde{\Gamma}|\Re(v_{2}-v_{1})=0 ,
\Re(v_{1}-v_{3})\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq 0\}

=\{v\in\Gamma|\Re(v_{2}-v_{1})=0 ,
\Re(v_{1}-v_{3})\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq 0\}

=\cup s_{1}(\{v\in\Gamma|\Re(v_{2}-v_{1})=0 ,

\Re(v_{1}-v_{3})\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq 0\}) .
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(ii) Assume that \Re(v_{2}-v_{1})=\Re(v_{3}-v_{4})=0 and \Re(v_{1}-v_{3})\Re(v_{4}-

v_{2}+1)\neq 0 . Let K be the subgroup of H generated by s_{1} and s_{3} . In this
case the sublemma follows immediately from an equality

\{v\in\tilde{\Gamma}|\Re(v_{2}-v_{1})=\Re(v_{3}-v_{4})=0 ,
\Re(v_{1}-v_{3})\Re(v_{4}-v_{2}+1)\neq 0\}

=\cup g(\{v\in\Gamma|\Re(v_{2}-v_{1})=\Re(v_{3}-v_{4})=0 ,
g\in K

\Re(v_{1}-v_{3})\Re(v_{4}-v_{2}+1)\neq 0\}) .

(iii) Assume that \Re(v_{2}-v_{1})=\Re(v_{1}-v_{3})=0 and \Re(v_{3}-v_{4})\Re(v_{4}-

v_{2}+1)\neq 0 . Let U be the subgroup of H generated by s_{1} and s_{2} . In this
case the sublemma follows immediately from an equality

\{v\in\tilde{\Gamma}|\Re(v_{2}-v_{1})=\Re(v_{1}-v_{3})=0 ,
\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq 0\}

=\cup g(\{v\in\Gamma|\Re(v_{2}-v_{1})=\Re(v_{1}-v_{3})=0 ,
g\in U

\Re(v_{3}-v_{4})\Re(v_{4}-v_{2}+1)\neq 0\}) .

(iv) Assume that \Re(v_{2}-v_{1})=\Re(v_{1}-v_{3})=\Re(v_{3}-v_{4})=0 , or
equivalently, \Re(v_{1})=\Re(v_{2})=\Re(v_{3})=\Re(v_{4})=0 . Let W be the subgroup
of H generated by s_{1} , s_{2} , s_{3} . In this case the sublemma follows immediately
from an equality

\{v\in\tilde{\Gamma}|\Re(v_{1})=\Re(v_{2})=\Re(v_{3})=\Re(v_{4})=0\}

=\cup g\in Wg(\{v\in\Gamma|\Re(v_{1})=\Re(v_{2})=\Re(v_{3})=\Re(v_{4})=0\}) .

(v) We can treat the remaining cases in the same way as above. We
omit the detail. \square

Now, let C_{0} be the subset of V that consists of all the vectors v=
(v_{1}, v_{2}, v_{3}, v_{4}) subject to the following conditions:

(i) \Re(v_{1}-v_{3})\geq 0 ;
(ii) \Re(-2v_{1}+v_{2}+v_{3})\geq 0 ;
(iii) \Re(-v_{1}+2v_{3}-v_{4})\geq 0 ;
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(iv) \Re(-v_{1}-v_{2}+v_{3}+v_{4}+1)\geq 0 ;
(v) \propto s(v_{1}-v_{3})\geq 0 if \Re(v_{1}-v_{3})=0 ;
(vi) \propto s(-2v_{1}+v_{2}+v_{3})\geq 0 if \Re(-2v_{1}+v_{2}+v_{3})=0 ;
(vii)\propto s(-v_{1}+2v_{3}-v_{4})\geq 0 if \Re(-v_{1}+2v_{3}-v_{4})=0 ;
(viii)\propto s(-v_{1}-v_{2}+v_{3}+v_{4})\geq 0 if \Re(-v_{1}-v_{2}+v_{3}+v_{4}+1)=0 .

Since \Gamma=C_{0}\cup z_{0}C_{0}\cup z_{0}^{2}C_{0}\cup z_{0}^{3}C_{0} , it is easy to see that the subset C_{0} is a
fundamental region of V for the group G.

We define four subsets W, S_{1} , S_{2} , D of V by

W=\{v\in V|v_{1}-v_{2}\in Z\}\cup\{v\in V|v_{1}-v_{3}\in Z\}

\cup\{v\in V|v_{1}-v_{4}\in Z\}\cup\{v\in V|v_{2}-v_{3}\in Z\}

\cup\{v\in V|v_{2}-v_{4}\in Z\}\cup\{v\in V|v_{3}-v_{4}\in Z\} ,
S_{1}= { v\in V|v_{1}-v_{2}\in Z and v_{3}-v_{4}\in Z }

\cup {v\in V|v_{1}-v_{3}\in Z and v_{2}-v_{4}\in Z }
\cup { v\in V|v_{1}-v_{4}\in Z and v_{2}-v_{3}\in Z },

S_{2}= { v\in V|v_{1}-v_{2}\in Z and v_{1}-v_{3}\in Z }
\cup {v\in V|v_{1}-v_{2}\in Z and v_{2}-v_{4}\in Z }
\cup {v\in V|v_{1}-v_{3}\in Z and v_{3}-v_{4}\in Z }
\cup {v\in V|v_{2}-v_{4}\in Z and v_{3}-v_{4}\in Z },

D= { v\in V|v_{1}-v_{2}\in Z and v_{3}-v_{4}\in Z and v_{2}-v_{4}\in Z }
\cup {v\in V|v_{1}-v_{3}\in Z and v_{2}-v_{4}\in Z and v_{1}-v_{2}\in Z }
\cup {v\in V|v_{1}-v_{4}\in Z and v_{2}-v_{3}\in Z and v_{2}-v_{4}\in Z }.

They are G-invariant subsets of V A subset C_{0}\cap W=C_{0}\cap\{v\in V|v_{1}=

v_{3}\} is a fundamental region of W for G. A subset C_{0}\cap S_{1}=C_{0}\cap\{v\in V|

v_{1}=v_{3} and v_{2}=v_{4}+1 } is a fundamental region of S_{1} for G. A subset
C_{0}\cap { v\in V|v_{1}=v_{2} and v_{1}=v_{3} } (\subset C_{0}\cap S_{2}) is a fundamental region of
S_{2} for G. Moreover, the set D is an orbit of the origin 0 of V by the group
G:D=G0.

For v\in V , let \Sigma(v) be the set of solutions (p, q) of S(v) . We set
\Sigma=\bigcup_{V}\Sigma(v) (disjoint union). We define four birational transformations
(s_{1})_{*} , (s_{2})_{*} , (s_{3})_{*} , (t_{-})_{*} of the set \Sigma as follows (cf. [13]): For (p, q)\in\Sigma(v) ,

(i) we define (s_{1})_{*} by

(s_{1})_{*}(p, q)=(p+ \frac{v_{1}-v_{2}}{q} , q) if v_{1}-v_{2}\neq 0 ,
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and

(s_{1})_{*}(p, q)=(p, q) if v_{1}-v_{2}=0 ;

(ii) we define (s_{2})_{*} by

(s_{2})_{*}(p, q)=(p , q+ \frac{v_{1}-v_{3}}{p}) if v_{1}-v_{3}\neq 0 ,

and

(s_{2})_{*}(p, q)=(p, q) if v_{1}-v_{3}=0 ;

(iii) we define (s_{3})_{*} by

(s_{3})_{*}(p, q)=(p+ \frac{v_{4}-v_{3}}{q-1} , q) if v_{4}-v_{3}\neq 0 ,

and

(s_{3})_{*}(p, q)=(p, q) if v_{4}-v_{3}=0 ;

(iv) we define (t_{-})_{*} by

(t_{-})_{*}(p, q)

=(- \frac{t(pq+tq-v_{2}+v_{4}+1)\{p^{2}q+tpq+(v_{1}-v_{2}-v_{3}+v_{4}+1)p+(v_{1}-v_{3})t\}}{(p+t)\{p^{2}q+tpq+(v_{1}-v_{2})p+(v_{1}-v_{4}-1)t\}},
\underline{(p+t)(pq+tq+v_{1}-v_{2})}t(pq+tq-v_{2}+v_{4}+1))

if (v_{2}-v_{4}-1) (v_{1}-v_{4}-1) (v_{3}-v_{4}-1)\neq 0 ,

(t_{-})_{*}(p, q)

=(- \frac{t(pq+tq-v_{2}+v_{3})}{p+t}, \frac{(p+t)(pq+tq+v_{1}-v_{2})}{t(pq+tq-v_{2}+v_{3})})

if (v_{2}-v_{4}-1) (v_{1}-v_{4}-1)\neq 0 and v_{3}-v_{4}-1=0 ,

(t_{-})_{*}(p, q)

=(- \frac{t\{p^{2}q+tpq+(2v_{1}-v_{2}-v_{3})p+(v_{1}-v_{3})t\}}{(p+t)p}, t^{-1}(p+t))

if (v_{2}-v_{4}-1) (v_{3}-v_{4}-1)\neq 0 and v_{1}-v_{4}-1=0 ,

(t_{-})_{*}(p, q)=(- \frac{tq(pq+v_{1}-v_{3})}{pq+v_{1}-v_{2}},\frac{pq+tq+v_{1}-v_{2}}{tq})
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if (v_{1}-v_{4}-1) (v_{3}-v_{4}-1)\neq 0 and v_{2}-v_{4}-1=0 ,

(t_{-})_{*}(p, q)=(- \frac{t(pq+tq+4v_{1}-1)}{p+t} , t^{-1}(p+t))

if v_{2}-v_{4}-1\neq 0 and v_{1}-v_{4}-1=v_{3}-v_{4}-1=0 ,

(t_{-})_{*}(p, q)=(-tq, \frac{pq+tq+1-4v_{2}}{tq})

if v_{1}-v_{4}-1\neq 0 and v_{2}-v_{4}-1=v_{3}-v_{4}-1=0 ,

(t_{-})_{*}(p, q)=(- \frac{t(pq+4v_{1}-1)}{p} , t^{-1}(p+t))

if v_{3}-v_{4}-1\neq 0 and v_{1}-v_{4}-1=v_{2}-v_{4}-1=0 , and

(t_{-})_{*}(p, q)=(-tq , t^{-1}(p+t))

if v_{1}-v_{4}-1=v_{2}-v_{4}-1=v_{3}-v_{4}-1=0( i.e. v=(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{3}{4})) .
The preceding definitions of (s_{1})_{*} , (s_{2})_{*} , (s_{3})_{*} , (t_{-})_{*} are well-defined by

the following facts: for each (p, q)\in\Sigma(v) ,
(i) q\neq 0 if v_{1}-v_{2}\neq 0 ;
(ii) p\neq 0 if v_{1}-v_{3}\neq 0 ;
(iii) q-1\neq 0 if v_{4}-v_{3}\neq 0 ;
(iv) pq+v_{1}-v_{2}\neq 0 if (v_{2}-v_{3})(v_{1}-v_{2})\neq 0 ;
(v) p+t\neq 0 if v_{2}-v_{4}-1\neq 0 ;
(vi) pq+tq-v_{2}+v_{4}+1\neq 0 if (v_{2}-v_{4}-1) (v_{1}-v_{4}-1)\neq 0 ;
(vii) p^{2}q+tpq+(v_{1}-v_{2})p+(v_{1}-v_{4}-1)t\neq 0 if (v_{2}-v_{4}-1) (v_{1}-

v_{4}-1) (v_{3}-v_{4}-1)\neq 0 .
In fact, the assertions (i), (ii), (iii), (v) are obvious. Let us show the assertion
(iv). If pq+v_{1}-v_{2}=0 , we have 0=t(d/dt)(pq+v_{1}-v_{2})=(v_{3}-v_{2})tq ,
so that we have v_{3}-v_{2}=0 or q=0. The latter implies v_{1}-v_{2}=0 by
(i), and hence the assertion (iv) is proved. The other assertions are proved
similarly.

Let G_{*} be the subgroup generated by (s_{1})_{*} , (s_{2})_{*} , (s_{3})_{*} and (t_{-})_{*} in the
group of all bijections of the set \Sigma . The group G_{*} consists of birational
transformations of \Sigma . There exists a surjective group morphism f of G_{*}

onto G such that f((s_{1})_{*})=s_{1} , f((s_{2})_{*})=s_{2} , f((s_{3})_{*})=s_{3} , f((t_{-})_{*})=t_{-} .
We set H_{*}=f^{-1}(H) . Let \pi be the natural projection of \Sigma onto V (i.e.,
\pi : \Sigma\ni(p, q) – v\in V if (p, q)\in\Sigma(v)) . Then the following diagram is
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commutative for every \gamma\in G_{*}:

\Sigma
arrow\gamma

\Sigma

\pi\downarrow \downarrow\pi

V
\vec{f(\gamma)}

V.

Remark 1.1 In [13], Okamoto constructed the birational transformations
of \Sigma corresponding to s_{1} , s_{2} , s_{3} , t_{-} for the system \tilde{S}(v) in Introduction. We
can obtain our birational transformations (s_{1})_{*} , (s_{2})_{*} , (s_{3})_{*} , (t_{-})_{*} from them
through (1) in Introduction.

In [21], \S 1, we defined a classical solution, an algebraic solution, etc. of
the system S(v) . Let us state our principal results in this paper.

Theorem 1.2 (i) For every vector v in W and not in S_{1}\cup S_{2} , there
exists a one-parameter family of classical solutions of the system S(v) . For
each solution (p, q) in the family, the transcendence degree of C(t,p, q) over
C(t) equals one.

(ii) For every vector v in S_{1}\cup S_{2} and not in D, there exist two one-
parameter families of classical solutions of the system S(v) . For each solu-
tion (p, q) in the families, the transcendence degree of C(t,p, q) over C(t)
equals one.

(iii) For every vector v\in D , there exist three one-parameter families
of classical solutions of the system S(v) . For each solution (p, q) in the
families, the transcendence degree of C(t, p, q) over C(t) equals one.

(iv) For every vector v\in V , let (p, q) be a transcendental solution of
the system S(v) different from those in (i), (ii) and (iii). Then neither the
function p nor the function q is classical, and the transcendence degree of
C(t,p, q) over C(t) equals two.

Remark 1.2 The statement (iv) implies the irreducibility of the fifth Pain-
lev\’e equation (cf. [17]).

To prove Theorem 1.2, we may assume by the operation of the group
H_{*} on \Sigma that the vector v parametrizing the system S(v) belongs to the
fundamental region \Gamma of the group H. Consequently, it is sufficient to prove
the following theorem, in which we explicitly determine all the transcen-
dental classical solutions of S(v) for every v\in\Gamma for which S(v) has such
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solutions.

Theorem 1.3 (i) For every v_{1}=(v_{1}, v_{2}, v_{3}, v_{4})\in V such that v_{1}=v_{3} ,
there exists a one-parameter family of classical solutions of S(v_{1}) , which
consists of the solutions of the form (0, q) , where q is a transcendental s0-

lution of a Riccati equation

t \frac{dq}{dt}=tq^{2}-tq+(v_{4}-v_{2})q+v_{2}-v_{1} . (1)

(ii) For every v_{2}=(v_{1}, v_{2}, v_{3}, v_{4})\in V such that v_{1}=v_{2} , there exists
a one-parameter family of classical solutions of S(v_{2}) , which consists of the
solutions of the form (p, 0) , where p is a transcendental solution of a Riccati
equation

t \frac{dp}{dt}=p^{2}+tp+(v_{3}-v_{4})p+(v_{3}-v_{1})t . (2)

(iii) For every v_{3}=(v_{1}, v_{2}, v_{3}, v_{4})\in V such that v_{3}=v_{4} , there exists
a one-parameter family of classical solutions of S(v_{3}) , which consists of the
solutions of the form (p, 1) , where p is a transcendental solution of a Riccati
equation

t \frac{dp}{dt}=-p^{2}-tp+(v_{2}-v_{1})p+(v_{3}-v_{1})t . (3)

(iv) For every v_{4}=(v_{1}, v_{2}, v_{3}, v_{4})\in V such that v_{2}=v_{4}+1 , there
exists a one-parameter family of classical solutions of S(v_{4}) , which consists
of the solutions of the form (-t, q) , where q is a transcendental solution of
a Riccati equation

t \frac{dq}{dt}=-tq^{2}+tq+(v_{1}-v_{3}-1)q+v_{2}-v_{1} . (4)

(v) For every v\in\Gamma . let (p, q) be a transcendental solution of the
system S(v) different from those in (i)-(iv) . Then neither the function p
nor the function q is classical, and the transcendence degree of C(t,p, q)
over C(t) equals two.

The statements (i)-(iv) are obvious. The proof of the statement (v)
will be done in \S 4.

Using the birational transformations in the group H_{*} , we can explicitly
write every classical solution in Theorem 1.2 by a classical solution in TheO-
rem 1.3. In fact, let (p, q) be a classical solution of S(v) for a v\in W Since
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\Gamma\cap W is a fundamental region of an H-invariant subset W of V , there exist
an element g\in H and a unique vector v_{0}\in\Gamma\cap W such that v=g(v_{0}) .
Therefore, there exists a classical solution (p0, qo) of S(v_{0}) in Theorem 1.3
such that (p, q)=\gamma(p_{0}, q_{0}) for any \gamma\in f^{-1}(g) .

Moreover we notice the following fact.

Lemma 1.4 The four Riccati equations (1)-(4) are birationally equivalent
each other through the birational transformation (z_{0})_{*} .

Proof Let the notation be as in Theorem 1.3. The proof is divided into
the following four parts.

(i) Let (-t, q) be a classical solution of S(v_{4}) defined by (4). Then
a solution (z_{0})_{*}(-t, q)=(-tq, 0) belongs to \Sigma(z_{0}(v_{4})) , where the vector
z_{0}( v_{4})=(v_{2}-\frac{1}{4}, v_{4}+\frac{3}{4}, v_{1}-\frac{1}{4}, v_{3}-\frac{1}{4}) is in \Gamma\cap\{v\in V|v_{1}=v_{2}\} . If we
set P=-tq, we see that P satisfies a Riccati equation

t \frac{dP}{dt}=P^{2}+tP+(v_{1}-v_{3})P+(v_{1}-v_{2})t ,

which is equal to (2) with v_{2}=z_{0}(v_{4}) .
(ii) Let (p, 1) be a classical solution of S(v_{3}) defined by (3). Then a

solution (z_{0})_{*}(p, 1)=(-t, t^{-1}(p+t)) belongs to \Sigma(z_{0}(v_{3})) , where the vector
z_{0}( v_{3})=(v_{2}-\frac{1}{4}, v_{4}+\frac{3}{4}, v_{1}-\frac{1}{4}, v_{3}-\frac{1}{4}) is in \Gamma\cap\{v\in V|v_{2}=v_{4}+1\} . If
we set Q=t^{-1}(p+t) , we see that Q satisfies a Riccati equation

t \frac{dQ}{dt}=-tQ^{2}+tQ+(v_{2}-v_{1}-1)Q+v_{4}-v_{2}+1 ,

which is equal to (4) with v_{4}=z_{0}(v_{3}) .
(iii) Let (0, q) be a classical solution of S(v_{1}) defined by (1). Then

a solution (z_{0})_{*}(0, q)=(-tq, 1) belongs to \Sigma(z_{0}(v_{1})) , where the vector
z_{0}( v_{1})=(v_{2}-\frac{1}{4}, v_{4}+\frac{3}{4}, v_{1}-\frac{1}{4}, v_{3}-\frac{1}{4}) is in \Gamma\cap\{v\in V|v_{3}=v_{4}\} . If we
set P=-tq, we see that P satisfies a Riccati equation

t \frac{dP}{dt}=-P^{2}-tP+(v_{4}-v_{2}+1)P+(v_{1}-v_{2})t ,

which is equal to (3) with v_{3}=z_{0}(v_{1}) .
(iv) Let (p, 0) be a classical solution of S(v_{2}) defined by (2). Then a

solution (z_{0})_{*}(p, 0)=(0, t^{-1}(p+t)) belongs to \Sigma(z_{0}(v_{2})) , where the vector
z_{0}( v_{2})=(v_{2}-\frac{1}{4}, v_{4}+\frac{3}{4}, v_{1}-\frac{1}{4}, v_{3}-\frac{1}{4}) is in \Gamma\cap\{v\in V|v_{1}=v_{3}\} . If we
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set Q=t^{-1}(p+t) , we see that Q satisfies a Riccati equation

t \frac{dQ}{dt}=tQ^{2}-tQ+(v_{3}-v_{4}-1)Q+v_{4}-v_{2}+1 ,

which is equal to (1) with v_{1}=z_{0}(v_{2}) . \square

Let us introduce a new unknown u by

q=- \frac{d}{dt} (log u). (5)

If we eliminate the unknown q from (1) and (5), we have the confluent
hypergeometric equation for u

t \frac{d^{2}u}{dt^{2}}+(t+v_{2}-v_{4})\frac{du}{dt}+(v_{2}-v_{1})u=0 . (6)

Therefore, we see by Lemma 1.4 that all the solutions of the Riccati equa-
tions (1)-(4) , and therefore all the classical solutions of S(v) for each v\in W ,
are rationally generated from functions of confluent type defined by (6).

2. Necessary condition of the existence of invariant ideals

Let K be an ordinary differential overfield of the field C(t) of rational
functions over C , and let K[p, q] be the polynomial ring over K in two
variables p and q . We consider the following derivation X(v) on K[p, q] (cf.
[21], \S 1):

X( v)=t\frac{\partial}{\partial t}+\{2qp-22qp+tq^{2}-tq

+(v_{1}-v_{2}-v_{3}+v_{4})q+v_{2}-v_{1} \}\frac{\partial}{\partial q}

+\{-2^{2}qp+p^{2}-2tpq+tp

-(v_{1}-v_{2}-v_{3}+v_{4})p+(v_{3}-v_{1})t \}\frac{\partial}{\partial p} .

In [19], \S 3 (see also [21], \S 1), Umemura introduced the condition (J). The
next proposition is a crucial result for the proof of Theorem 1.3.

Proposition 2.1 If there exists a vector v=(v_{1}, v_{2}, v_{3}, v_{4})\in V for which
X(v) does not satisfy the condition (J), then there exist non-negative inte-
gers a , b , i , j such that

a+b+i+j\geq 1 (1)
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and

i(v_{1}-v_{2})+j(v_{4}-v_{3})+a(v_{3}-v_{1})+b(v_{2}-v_{4}-1)=0 . (2)

Proof. We shall proceed in nine steps.

Step 1 By hypothesis there exists a differential overfield K of C(t)
such that there exists an X(v)-invariant principal ideal I properly between
the zer0-ideal and K[p, q] (cf. [21], \S 1). Let F\in K[p, q] be a generator of
I . Then we have I=(F) , F\not\in K and

X(v)F=GF (3)

for some G\in K[p, q] .
To investigate the equation (3), we introduce the following two gradings

to the polynomial ring K[p, q] .
In the first grading we define the weight of a monomial \gamma p^{i}q^{j}(0\neq\gamma\in

K) to be i . By definition the weights of p and q are 1 and 0 respectively.
Let R_{d} be the K-vector space contained in K[p, q] generated over K by
all the monomials of weight d . We have R_{d}=K[q] p^{d} for every integer
d\geq 0 . Then we see that K[p, q] becomes a graded ring: K[p, q]=\oplus_{d\geq 0}R_{d} ,
R_{d} R_{d’}\subseteq R_{d+d’} . We set

X_{1}=2pq(q-1) \frac{\partial}{\partial q}+(1-2q)p^{2}\frac{\partial}{\partial p} ,

X_{0}=t \frac{\partial}{\partial t}+\{tq^{2}-tq+(v_{1}-v_{2}-v_{3}+v_{4})q+v_{2}-v_{1}\}\frac{\partial}{\partial q}

+(-2tq+t-v_{1}+v_{2}+v_{3}-v_{4})p \frac{\partial}{\partial p} ,

X_{-1}=(v_{3}-v_{1})t \frac{\partial}{\partial p} .

Then we see that X(v)=X_{1}+X_{0}+X_{-1} and that each X_{i}(i=-1,0,1) is
a derivation that maps R_{d} to R_{d+i} .

In the second grading we define the weight of a monomial \gamma p^{i}q^{j}(0\neq

\gamma\in K) to be j . By definition the weights of p and q are 0 and 1 respectively.
Let R_{d}’ be the K-vector space contained in K[p, q] generated over K by all
the monomials of weight d . We have R_{d}’=K[p]\cdot q^{d} for every integer d\geq 0 .
Then we see that K[p, q] becomes another graded ring: K[p, q]=\oplus_{d\geq 0}R_{d}’ ,
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R_{d}’R_{d}’, \subseteq R_{d+d}’, . We set

X_{1}’=(2p+t)q^{2} \frac{\partial}{\partial q}-2qp(p+t)\frac{\partial}{\partial p} ,

X_{0}’=t \frac{\partial}{\partial t}+(-2p-t+v_{1}-v_{2}-v_{3}+v_{4})q\frac{\partial}{\partial q}

+ \{p^{2}+tp-(v_{1}-v_{2}-v_{3}+v_{4})p+(v_{3}-v_{1})t\}\frac{\partial}{\partial p} ,

X_{-1}’=(v_{2}-v_{1}) \frac{\partial}{\partial q} .

Then we see that X(v)=X_{1}’+X_{0}’+X_{-1}’ and that each X_{i}’(i=-1,0,1) is
a derivation that maps R_{d}’ to R_{d+i}’ .

Let us determine the form of the polynomial G in (3). We first notice
F\not\in K Since the highest part X_{1} of X(v) is of weight one with respect
to the first grading, the polynomial G belongs to a direct sum R_{0}\oplus R_{1} .
Namely we have G=g_{1}p+g_{0} for some g_{1} , g_{0}\in R_{0} . In addition, since the
highest part X_{1}’ of X(v) is also of weight one with respect to the second
grading, the polynomial G belongs to a direct sum R_{0}’\oplus R_{1}’ . Therefore we
have g_{1}=\kappa q+\lambda and go=\mu q+\nu for some \kappa , \lambda , \mu , \nu\in K . Namely we have

G=\kappa pq+\lambda p+\mu q+\nu (4)

for some \kappa , \lambda , \mu , \nu\in K .
If we decompose the polynomial F with respect to the first grading of

K[p, q] , there exist a non-negative integer m and a unique collection of m+1
homogeneous polynomials F_{d}\in R_{d}(0\leq d\leq m) such that F=F_{0}+\cdots+F_{m} ,
F_{m}\neq 0 and, if m=0, F_{0}\not\in K . Hence the equation (3) is written as

(X_{1}+X_{0}+X_{-1})(F_{m}+ \cdot 1+F_{0})

=\{(\kappa q+\lambda)p+\mu q+\nu\}(F_{m}+ \cdot +F_{0}) . (5)

If we compare the homogeneous parts of both sides of (5), we have a system
of m+3 equations equivalent to (3):

X_{1}F_{d}=(\kappa q+\lambda)pF_{d}+(\mu q+\nu)F_{d+1}-X_{0}F_{d+1}-X_{-1}F_{d+2} (6)_{d}

for each integer d such that -2\leq d\leq m . Here we consider F_{-2}=F_{-1}=

F_{m+1}=F_{m+2}=0 .
If we decompose the polynomial F with respect to the second grading of

K[p, q] , there exist a non-negative integer n and a unique collection of n+1
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homogeneous polynomials F_{d}’\in R_{d}’(0\leq d\leq n) such that F=F_{0}’+\cdots+F_{n}’ ,
F_{n}’\neq 0 and, if n=0, F_{0}’\not\in K1 Hence the equation (3) is written as

(X_{1}’+X_{0}’+X_{-1}’)(F_{0}’+ +F_{n}’)

=\{(\kappa p+\mu)q+\lambda p+\nu\}(F_{0}’+ +F_{n}’) . (7)

If we compare the homogeneous parts of both sides of (7), we have a system
of n+3 equations equivalent to (3):

X_{d}’F_{d}’=(\kappa p+\mu)qF_{d}’+(\lambda p+\nu)F_{d+1}’-X_{0}’F_{d+1}’-X_{-1}’F_{d+2}’ (8)_{d}

for each integer d such that -2\leq d\leq n . Here we consider F_{-2}’=F_{-1}’=

F_{n+1}’=F_{n+2}’=0 .

Remark 2.1 By the same argument as in Subsection 2.5 in [21], we see that
the gradings above come from the Newton polygon of the derivation X(v) ,
which is represented by the following picture:

i

Here an integral point (i, j)\neq(0,0) in R^{2} represents the derivation in
X(v) of the form up^{i+1}q^{j}(\partial/\partial p)+vp^{i}q^{j+1}(\partial/\partial q)(u, v\in K) ; the point
(0, 0) represents that of the form t(\partial/\partial t)+up(\partial/\partial p)+vq(\partial/\partial q)(u, v\in K) .

Step 2 To investigate the equations (6)_{d} and (8)_{d} , we need four auxil-
iary lemmas, Lemmas 2.2-2.5.

Lemma 2.2 Let d be a non-negative integer and k be a positive integer.
Let A be a polynomial in R_{d} , and let \kappa’ and \lambda’ be elements of K. If \lambda’-

d+2l-2\neq 0 for every integer l such that 1\leq l\leq k and if A satisfies a

congruence

X_{1}A\equiv(\kappa’q+\lambda’)pA mod q^{k} . (9)
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then A\equiv 0 mod q^{k} .

Lemma 2.3 Let d , k , A , \kappa’ . \lambda’ be as above. If d+\kappa’+\lambda’-2l+2\neq 0 for
every integer l such that 1\leq l\leq k and if A satisfies a congruence

X_{1}A\equiv(\kappa’q+\lambda’)pA mod (q-1)^{k} , (10)

then A\equiv 0 mod (q-1)^{k} .

Proof of Lemma 2.2 We denote by K[T] the polynomial ring in one vari-
able T over K . Let \varphi_{0} be the K-algebra morphism of K[p, q] onto K[T]
defined by \varphi_{0}(p)=T and \varphi_{0}(q)=0 . The kernel Ker\varphi_{0} is the principal
ideal generated by q . Then the following diagram (11) is commutative:

K[p, q] arrow\varphi 0 K[T]

X_{1}\downarrow \downarrow T^{2}\frac{d}{dT} (11)

K[p, q]
\vec{\varphi 0}

K[T] .

Hence the kernel Ker\varphi_{0}=(q) is X_{1} -invariant. In fact we have a formula

X_{1}(q)=2p(q-1)q . (12)

Now we show A\equiv 0 mod q^{l} by induction on l(1\leq l\leq k) . We set A=Bpd
with some B\in R_{0} . If we apply \varphi_{0} to both sides of (9), we have

\varphi_{0}(X_{1}A)=\varphi_{0}(\kappa’q+\lambda’)\varphi_{0}(pA) .

This is equivalent to

T^{2} \frac{d}{dT}\varphi_{0}(A)=\varphi_{0}(\kappa’q+\lambda’)\varphi 0(pA)

by the commutative diagram (11). Since \varphi 0(A)=\varphi 0(B)T^{d} , it follows that

(\lambda’-d)\varphi_{0}(B)=0 .

Since \lambda’-d\neq 0 by hypothesis, we have \varphi_{0}(B)=0 and hence A\equiv 0 mod q .
This proves the case l=1 . Assume that A\equiv 0 mod q^{l-1} for l\geq 2 . We
show A\equiv 0 mod q^{l} . We set

A=Cqpl-1d (13)

with some C\in R_{0} . If we substitute (13) into (9) and divide both sides of
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the resulting congruence by q^{l-1} , then we get

X_{1}(Cp)d\equiv\{(\kappa’-2l+2)q+\lambda’+2l-2\}Cpd+1 mod q^{k-l+1} . (14)

If we apply \varphi_{0} to (14), we have an equality

(\lambda’-d+2l-2)\varphi 0(C)=0 .

Since \lambda’-d+2l-2\neq 0 by hypothesis, we have \varphi 0(C)=0 and hence
A\equiv 0 mod q^{l} . Thus Lemma 2.2 is proved. \square

Proof of Lemma 2.3 Let \varphi_{1} be the K-algebra morphism of K[p, q] onto
K[T] defined by \varphi_{1}(p)=T and \varphi_{1}(q)=1 . The kernel Ker\varphi_{1} is the principal
ideal generated by q-1 . Then the following diagram (15) is commutative:

K[p, q] arrow\varphi_{1} K[T]

X_{1}\downarrow \downarrow-T^{2}\frac{d}{dT} (15)

K[p, q]
\vec{\varphi_{1}}

K[T] .

Hence the kernel Ker\varphi_{1}=(q-1) is X_{1} -invariant. In fact we have a formula

X_{1}(q-1)=2pq(q-1) . (16)

We can show A\equiv 0 mod (q-1)^{l} by induction on l(1\leq l\leq k) in the same
procedure as in the proof of Lemma 2.2 if we use \varphi_{1} and (15) for \varphi_{0} and
(11) respectively. The detail is left to the reader. \square

Remark 2.2 The commutative diagrams (11) and (15) are obtained in the
following procedure (cf. [21]). Let us determine the homogeneous if-algebra
morphism \theta such that the following diagram is commutative:

K[p, q] arrow\theta K[T]

X_{1}\downarrow \downarrow T^{2}\frac{d}{dT}

K[p, q]
\vec{\theta}

K[T] .

Here we consider the polynomial ring K[T] as a graded ring in the usual
way. If we set \theta(p)=aT and \theta(q)=b with a , b\in K , we get a system of
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algebraic equations:

\{

(1-2b)a^{2}=a ,

ab(b-l)=0.

Then we have the solutions (a, b)=(1,0) , (-1, 1), (0, b) . The first two of
them define the expected morphisms \varphi_{0} and \varphi_{1} respectively, and the re-
mainder has no importance.

Lemma 2.4 Let d be a non-negative integer and k be a positive integer.
Let A be a polynomial in R_{d}’ , and let \kappa’ and \mu’ be elements of K If t^{-1}\mu’-

d+2l-2\neq 0 for every integer l such that 1\leq l\leq k and if A satisfies a
congruence

X_{1}’A\equiv(\kappa’p+\mu’)qA mod p^{k} . (17)

them A\equiv 0 mod p^{k} .

Lemma 2.5 Let d, k , A , \kappa’ . \mu’ be as above. If d-\kappa’+t^{-1}\mu’-2l+2\neq 0

for every integer l such that 1\leq l\leq k and if A satisfies a congruence

X_{1}’A\equiv(\kappa’p+\mu’)qA mod (p+t)^{k} , (18)

them A\equiv 0 mod (p+t)^{k} .

Proof of Lemma 2.4 Let \psi_{0} be the K-algebra morphism of K[p, q] onto
K[T] defined by \psi_{0}(p)=0 and \psi_{0}(q)=T The kernel Ker\psi_{0} is the principal
ideal generated by p. Then the following diagram (19) is commutative:

K[p, q]
arrow\psi_{0}

K[T]

X_{1}’\downarrow \downarrow tT^{2}\frac{d}{dT} (19)

K[p, q]
\vec{\psi_{0}}

K[T] .

Hence the kernel Ker\psi_{0}=(p) is X_{1}’ -invariant. In fact we have a formula

X_{1}’(p)=-2qp(p+t) . (20)

We can show A\equiv 0 mod p^{l} by induction on l(1\leq l\leq k) in the same
procedure as in the proof of Lemma 2.2. The detail is left to the reader.

\square

Proof of Lemma 2.5 Let \psi_{1} be the K-algebra morphism of K[p, q] onto
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K[T] defined by \psi_{1}(p)=-t and \psi_{1}(q)=T The kernel Ker\psi_{1} is the
principal ideal generated by p+t. Then the following diagram (21) is
commutative:

K[p, q]
arrow\psi_{1} K[T]

X_{1}’\downarrow \downarrow-tT^{2}\frac{d}{dT} (21)

K[p, q]
\vec{\psi_{1}}

K[T] .

Hence the kernel Ker\psi_{1}=(p+t) is X_{1}’ -invariant. In fact we have a formula

X_{1}’(p+t)=-2qp(p+t) . (22)

We can show A\equiv 0 mod (p+t)^{l} by induction on l(1\leq l\leq k) in the same
procedure as in the proof of Lemma 2.2. The detail is left to the reader.

\square

Remark 2.3 The diagram (19) and (21) are obtained in the same manner
as in Remark 2.2.

Step 3 Let us come back to the proof of Proposition 2.1. The polyn0-
mial F_{m} satisfies the equation (6)_{m} :

X_{1}F_{m}=(\kappa q+\lambda)pF_{m} . (6)_{m}

We claim that \frac{1}{2}(m-\lambda) is a non-negative integer. Otherwise, we would have
\lambda-m+2l-2\neq 0 for every integer l\geq 1 . By Lemma 2.2 we would have
F_{m}\equiv 0 mod q^{k} for every integer k\geq 1 . Hence we would have F_{m}=0 , and
this is a contradiction. Similarly we see by Lemma 2.3 that \frac{1}{2}(m+\kappa+\lambda)

is a non-negative integer. If we set i= \frac{1}{2}(m-\lambda) and j= \frac{1}{2}(m+\kappa+\lambda) , we
have

\kappa=2i+2j-2m (23)

and

\lambda=m-2i . (24)

If i\geq 1 , we have F_{m}\equiv 0 mod q^{i} by Lemma 2.2 because \lambda-m+2l-2\neq 0 for
every integer l such that 1\leq l\leq i . If j\geq 1 , we have F_{m}\equiv 0 mod (q-1)^{j}

by Lemma 2.3 because m+\kappa+\lambda-2l+2\neq 0 for every integer l such that
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1\leq l\leq j . Hence, there exists a non-zero element c\in R_{0}=K[q] such that

F_{m}=cq^{i}(q-1)^{j}p^{m} , (25)

where we allow i=0 or j=0. If we substitute (25) into (6)_{m} , we have
an equation for c:X_{1}c=0 . Since c is a polynomial in q over K , we have
c\in K immediately.

Step 4 The polynomial F_{n}’ satisfies the equation (8)_{n} :

X_{1}’F_{n}’=(\kappa p+\mu)qF_{n}’ . (8)_{n}

We claim that \frac{1}{2}(n-t^{-1}\mu) is a non-negative integer. Otherwise, we would
have t^{-1}\mu-n+2l-2\neq 0 for every integer l\geq 1 . By Lemma 2.4 we
would have F_{n}’\equiv 0 mod p^{k} for every integer k\geq 1 . Hence we would have
F_{n}’=0 , and this is a contradiction. Similarly we see by Lemma 2.5 that
\frac{1}{2}(n-\kappa+t^{-1}\mu) is a non-negative integer. If we set \frac{1}{2}(n-t^{-1}\mu)=a and
\frac{1}{2}(n-\kappa+t^{-1}\mu)=b , we have

\kappa=2n-2a-2b (26)

and

\mu=(n-2a)t . (27)

If a\geq 1 , we have F_{n}’\equiv 0 mod p^{a} by Lemma 2.4 because t^{-1}\mu-n+2l-2\neq 0

for every integer l such that 1\leq l\leq a . If b\geq 1 , we have F_{n}’\equiv 0 mod (p+t)^{b}

by Lemma 2.5 because n-\kappa+t^{-1}\mu-2l+2\neq 0 for every integer l such
that 1\leq l\leq b . Hence, there exists a non-zero element c’\in R_{0}’=K[p] such
that

F_{n}’=c’p^{a}(p+t)^{b}q^{n} , (28)

where we allow a=0 or b=0 . If we substitute (28) into (8)_{n} , we have an
equation for c’:X_{1}’c’=0 . Since c’ is a polynomial in p over K, we have
c’\in K immediately.

Step 5 By the same argument as in [21], Subsection 2.5, we find the
following figure of the Newton polygon of the invariant polynomial F :
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v

u

Here an integral point (u, v) in R^{2} represents a monomial \gamma p^{u}q^{v}(\gamma\in K) .
In the figure the Cartesian coordinates of the vertices O , A , B , C , D ,
E are (0,0) , (O,n-a) , (a, n) , (m, n) , (m, i) , (m-i, 0) respectively. The
coefficient of each monomial out of the hexagon OABCDE is equal to
zero. The side BC represents the polynomial F_{n}’ ; the side CD represents
the polynomial F_{m} . We also see that the sides AB and DE represent
polynomials t^{b}(pq+v_{1}-v_{3})^{a}q^{n-a} and (-1)^{j}(pq+v_{1}-v_{2})^{i}p^{m-i} respectively.
Since the monomials at the vertex C , i.e., cp^{m}q^{i+j} in F_{m} and c’p^{a+b}q^{n} in
F_{n}’ , are equal, we have the equalities

m=a+b, (29)

i+j=n, (30)

c=c’(\neq 0) . (31)

In particular we see from (29) and (30) that (23) and (26) are compati-
ble. A polynomial c^{-1}F is X(v)-invariant and generates the ideal I=(F)
introduced in Step 1. Accordingly, we may assume c=1 . Hence we have

F_{m}=q^{i}(q-1)^{j}p^{m} , (32)

F_{n}’=p(ap+t)^{b}q^{n} . (33)

by (25), (28) and (31). If m=0, we have F=F_{0}=q^{i}(q-1)^{j} . Since
F\not\in K and a=b=0 by (29), we have i+j\geq 1 . If n=0, we have
F=F_{0}’=p^{a}(p+t)^{b} . Since F\not\in K and i=j=0 by (30), we have a+b\geq 1 .
Therefore we have (1) as required.
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Step 6 The polynomial F_{m-1} satisfies the equation (6)_{m-1}

X_{1}F_{m-1}=(\kappa q+\lambda)pF_{m-1}+(\mu q+\nu)F_{m}-X_{0}F_{m} . (6)_{m-1}

If we substitute (32) into (6)_{m-1} , we get

X_{1}F_{m-1}=(\kappa q+\lambda)pF_{m-1}

+\{\mu+\nu+(m-j)t

+(m-i-j)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{i+1}(q-1)^{j}p^{m}

+\{-\nu+(m-i)t

+(i+j-m)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{i}(q-1)^{j+1}p^{m}

+i(v_{1}-v_{2})q^{i-1}(q-1)^{j}p^{m}+j(v_{3}-v_{4})q^{i}(q-1)^{j-1}p^{m} , (34)

where \kappa , \lambda , \mu are given by (23), (24), (27). We assume m\geq 1 in this step,
and treat the case m=0 in Step 8. Since X_{1} is a derivation, we have

X_{1}(q(q-1)F_{m-1})

=2(2q-1)pq(q-1)F_{m-1}+q(q-1)X_{1}F_{m-1} . (35)

By eliminating X_{1}F_{m-1} from (34) and (35), we have

X_{1}(q(q-1)F_{m-1})=\{(\kappa+4)q+\lambda-2\}pq(q-1)F_{m-1}

+\{\mu+\nu+(m-j)t

+(m-i-j)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{i+2}(q-1)^{j+1}p^{m}

+\{-\nu+(m-i)t

+(i+j-m)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{i+1}(q-1)^{j+2}p^{m}

+i(v_{1}-v_{2})q^{i}(q-1)^{j+1}p^{m}+j(v_{3}-v_{4})q^{i+1}(q-1)^{j}p^{m} . (36)

Here we have X_{1}(q(q-1)F_{m-1})\equiv\{(\kappa+4)q+\lambda-2\}pq(q-1)F_{m-1} mod q^{i} . If
i\geq 1 , we have q(q-1)F_{m-1}\equiv 0 mod q^{i} by Lemma 2.2 because (\lambda-2)-(m-

1)+2l-2=-2i+2l-3\neq 0 for every integer l such that 1\leq l\leq i . Similarly
we have X_{1}(q(q-1)F_{m-1})\equiv\{(\kappa+4)q+\lambda-2\}pq(q-1)F_{m-1} mod (q-1)^{j} .
If j\geq 1 , we have q(q-1)F_{m-1}\equiv 0 mod (q-1)^{j} by Lemma 2.3 because
(m-1)+(\kappa+4)+(\lambda-2)-2l+2=2j-2l+3\neq 0 for every integer l
such that 1\leq l\leq j . Therefore, we have q(q-1)F_{m-1}\equiv 0 mod q^{i}(q-1)^{j} .
Then there exists an element B\in R_{0} such that

q(q-1)F_{m-1}=Bq(iq-1)^{j}p^{m-1} (37)

If we substitute (37) into (36) and divide the resulting equation by
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q^{i}(q-1)^{j}p^{m-1} , then we obtain an equation for B :

L(B)=\{\mu+\nu+(m-j)t

+(m-i-j)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{2}(q-1)p

+\{-\nu+(m-i)t

+(i+j-m)(v_{1}-v_{2}-v_{3}+v_{4})\}q(q-1)^{2}p

+i(v_{1}-v_{2})(q-1)p+j(v_{3}-v_{4})qp , (38)

where we put L(B)=X_{1}B-(2q-1)pB . L defines a K-linear mapping of
R_{0} into R_{1} . Let V_{0} be the K-linear subspace of R_{0} generated by q , q-1
and q(q-1) , and let V_{1} be the K-linear subspace of R_{1} generated by qp,
(q-1)p and q^{2}(q-1)p+q(q-1)^{2}p . If we consider the following formulae

L(q)=-qp, (39)

L(q-1)=(q-1)p, (40)

L(q(q-1))=q^{2}(q-1)p+q(q-1)^{2}p , (41)

then we see that the restriction of L to V_{0} induces a K-linear isomorphism
of V_{0} onto V_{1} . Furthermore, if A is a polynomial in R_{0} of degree d\geq 3

(in q), then L(A) is a polynomial in R_{1} of degree d+1 in q . Therefore, it
follows that the polynomial B is of degree at most two in q . If we set

B=xq+y(q-1)+zq(q-1) (42)

with x , y , z\in K and substitute it into (38), then we obtain

x=j(v_{4}-v_{3}) , (43)

y=i(v_{1}-v_{2}) , (44)

z=\mu+\nu+(m-j)t+(m-i-j)(v_{1}-v_{2}-v_{3}+v_{4})

=-\nu+(m-i)t+(i+j-m)(v_{1}-v_{2}-v_{3}+v_{4}) . (45)

From (45) we have

\nu=(a-i)t+(i+j-m)(v_{1}-v_{2}-v_{3}+v_{4}) . (46)
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By substituting (46) into (45), we have

z=(m-a)t=bt . (47)

If we substitute (43), (44), (47) into (42), we have

B=j(v_{4}-v_{3})q+i(v_{1}-v_{2})(q-1)+btq(q-1) . (48)

From (37) and (48), we obtain

F_{m-1}=j(v_{4}-v_{3})q^{i}(q-1)^{j-1}p^{m-1}

+i(v_{1}-v_{2})q^{i-1}(q-1)^{j}p^{m-1}

+btq^{i}(q-1)^{j}p^{m-1} . (49)

Step 7 The polynomial F_{n-1}’ satisfies the equation (8)_{n-1} :

X_{1}’F_{n-1}’=(\kappa p+\mu)qF_{n-1}’+(\lambda p+\nu)F_{n}’-X_{0}’F_{n}’ , (8)_{n-1}

If we substitute (33) into (8)_{n-1} , we get

X_{1}’F_{n-1}’=(\kappa p+\mu)qF_{n-1}’

+\{\lambda-t^{-1}\nu+n-b

+(n-a-b)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p^{a+1}(p+t)^{b}q^{n}

+\{t^{-1}\nu+n-a

+(a+b-n)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p^{a}(p+t)^{b+1}q^{n}

+a(v_{1}-v_{3})tp^{a-1}(p+t)^{b}q^{n}+b(v_{2}-v_{4}-1)tp^{a}(p+t)^{b-1}q^{n} , (50)

where \kappa , \mu , \lambda are given by (26), (27), (24). We assume n\geq 1 in this step,
and treat the case n=0 in Step 8. Since X_{1}’ is a derivation, we have

X_{1}’(p(p+t)F_{n-1}’)

=-2(2p+t)qp(p+t)F_{n-1}’+p(p+t)X_{1}’F_{n-1}’ . (50)

By eliminating X_{1}’F_{n-1}’ from (50) and (51), we have

X_{1}’(p(p+t)F_{n-1}’)=\{(\kappa-4)p+\mu-2t\}qp(p+t)F_{n-1}’

+\{\lambda-t^{-1}\nu+n-b

+(n-a-b)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p^{a+2}(p+t)^{b+1}q^{n}

+\{t^{-1}\nu+n-a+(a+b-n)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p^{a+1}(p+t)^{b+2}q^{n}

+a(v_{1}-v_{3})tp^{a}(p+t)^{b+1}q^{n}+b(v_{2}-v_{4}-1)tp^{a+1}(p+t)^{b}q^{n} . (52)
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Here we have X_{1}’(p(p+t)F_{n-1}’)\equiv\{(\kappa-4)p+\mu-2t\}qp(p+t)F_{n-1}’ modp^{a} .
If a\geq 1 , we have p(p+t)F_{n-1}’\equiv 0 mod p^{a} by Lemma 2.4 because t^{-1}(\mu-

2t)-(n-1)+2l-2=-2a+2l-3\neq 0 for every integer l such that
1\leq l\leq a . Similarly we have X_{1}’(p(p+t)F_{n-1}’)\equiv\{(\kappa-4)p+\mu-2t\}qp(p+

t)F_{n-1}’ mod (p+t)^{b} . If b\geq 1 , we have p(p+t)F_{n-1}’\equiv 0 mod (p+t)^{b} by
Lemma 2.5 because (n-1)-(\kappa-4)+t^{-1}(\mu-2t)-2l+2=2b-2l+3\neq 0

for every integer l such that 1\leq l\leq b . Therefore, we have p(p+t)F_{n-1}’\equiv

0 mod p^{a}(p+t)^{b} . Then there exists an element C\in R_{0}’ such that

p(p+t)F_{n-1}’=C^{a}p(p+t)^{b}q^{n-1} . (53)

If we substitute (53) into (52) and divide the resulting equation by p^{a}(p+

t)^{b}q^{n-1} , then we obtain an equation for C :

L’(C)=\{\lambda-t^{-1}\nu+n-b

+(n-a-b)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p^{2}(p+t)q

+\{t^{-1}\nu+n-a

+(a+b-n)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}\}p(p+t)^{2}q

+a(v_{1}-v_{3})t(p+t)q+b(v_{2}-v_{4}-1)tpq , (54)

where we put L’(C)=X_{1}’C+(2p+t)qC . L’ defines a K-linear mapping of
R_{0}’ into R_{1}’ . Let W_{0} be the K-linear subspace of R_{0}’ generated by p , p+t
and p(p+t) , and let W_{1} be the K-linear subspace of R_{1}’ generated by pq ,
(p+t)q and p^{2}(p+t)q+p(p+t)^{2}q . If we consider the following formulae

L’(p)=-tpq , (55)

L’(p+t)=t(p+t)q , (56)

L’(p(p+t))=-p^{2}(p+t)q-p(p+t)^{2}q , (57)

then we see that the resriction of L’ to W_{0} induces a K-linear isomorphism
of W_{0} onto W_{1} . Furthermore, if A is a polynomial in R_{0}’ of degree d\geq 3

(in p), then L’(A) is a polynomial in R_{1}’ of degree d+1 in p. Therefore, it
follows that the polynomial C is of degree at most two in p . If we set

C=\xi p+\eta(p+t)+(p(p+t) (58)

with \xi , \eta , \zeta\in K and substitute it into (54), then we obtain

\xi=b(v_{4}-v_{2}+1) (59)
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\eta=a(v_{1}-v_{3}) (60)

-\zeta=\lambda-t^{-1}\nu+n-b+(n-a-b)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}

=t^{-1}\nu+n-a+(a+b-n)(v_{1}-v_{2}-v_{3}+v_{4})t^{-1}- (61)

From (61) we have

lJ =(a-i)t+(n-a-b)(v_{1}-v_{2}-v_{3}+v_{4}) . (62)

By substituting (62) into (61), we have

\zeta=i-n=-j . (63)

If we substitute (59), (60), (63) into (58), we have

C=b(v_{4}-v_{2}+1)p+a(v_{1}-v_{3})(p+t) -jp(p+t). (64)

From (53) and (64), we obtain

F_{n-1}’=a(v_{1}-v_{3})p^{a-1}(p+t)^{b}q^{n-1}

+b(v_{4}-v_{2}+1)p^{a}(p+t)^{b-1}q^{n-1}

-jp^{a}(p+t)^{b}q^{n-1} . (65)

We notice that (46) and (62) are compatible through (29) and (30).

Step 8 Here we treat the cases excepted in Steps 6 and 7. If m=0,
we have a=b=0 and \mu=(i+j)t by (27), (29), (30). Then the equation
(34) is turned to

\{\nu + it-(i+j)(v_{1}-v_{2}-v_{3}+v_{4})\}q^{i}(q-1)^{j}

+i(v_{1}-v_{2})q^{i-1}(q-1)^{j}+j(v_{3}-v_{4})q^{i}(q-1)^{j-1}=0 , (66)

from which we have

\nu=-it+(i+j)(v_{1}-v_{2}-v_{3}+v_{4}) , (67)

i(v_{1}-v_{2})=j(v_{3}-v_{4})=0 . (68)

The relation (68) with a=b=0 satisfies the relation (2), and (67) is a
special case of (46).

If n=0, we have i=j=0 and \lambda=a+b by (24), (29), (30). Then the
equation (50) is turned to
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\{\nu-at+(a+b)(v_{1}-v_{2}-v_{3}+v_{4})\}p^{a}(p+t)^{b}

+a(v_{1}-v_{3})tp^{a-1}(p+t)^{b}+b(v_{2}-v_{4}-1)tp^{a}(p+t)^{b-1}=0 , (69)

from which we have

\nu=at -(a+b)(v_{1}-v_{2}-v_{3}+v_{4}) , (70)

a(v_{1}-v_{3})=b(v_{2}-v_{4}-1)=0 . (71)

The relation (71) with i=j=0 satisfies the relation (2), and (70) is a
special case of (62).

Step 9 From (49) and (65), the coefficient of the monomial p^{m-1}q^{i+j-1}

=p^{a+b-1}q^{n-1} in F is represented in two ways. Namely the coefficient of
p^{m-1}q^{i+j-1} in F_{m-1} is

j(v_{4}-v_{3})+i(v_{1}-v_{2})-jbt , (72)

and the coefficient of p^{a+b-1}q^{n-1} in F_{n-1}’ is

a(v_{1}-v_{3})+b(v_{4}-v_{2}+1)-jbt . (73)

If we equate (72) and (73), we obtain the expected relation (2). Thus
Proposition 2.1 is proved. \square

Corollary 2.6 The vector v in Proposition 2.1 does not belong to the set
\Gamma-W

Proof. It is sufficient to prove that, for arbitrary non-negative integers
a , b , i , j such that a+b+i+j\geq 1 , a complex plane in V

i(v_{1}-v_{2})+j(v_{4}-v_{3})+a(v_{3}-v_{1})+b(v_{2}-v_{4}-1)=0 (74)

does not intersect \Gamma-W . Assume the contrary. There exist non-negative
integers a , b , i , j and a vector v=(v_{1}, v_{2}, v_{3}, v_{4})\in\Gamma-W such that a+b+
i+j\geq 1 and the relation (74) holds. From (74) we have

i\Re(v_{1}-v_{2})+j\Re(v_{4}-v_{3})+a\Re(v_{3}-v_{1})+b\Re(v_{2}-v_{4}-1)=0 (75)

and

i\propto s(v_{1}-v_{2})+j\propto s(v_{4}-v_{3})+as(\propto v_{3}-v_{1})+b\propto s(v_{2}-v_{4})=0 . (76)

The rest of the proof is divided into four cases:
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(i) If the four real parts \Re(v_{1}-v_{2}) , \Re(v_{4}-v_{3}) , \Re(v_{3}-v_{1}) and \Re(v_{2}-

v_{4}-1) are not equal to zero, then they all are positive because v\in\Gamma Hence
we have a=b=i=j=0 by (75), and this is a contradiction.

(ii) Assume that one of the real parts is equal to zero and the others
are not equal to zero. We assume, for example, \Re(v_{1}-v_{2})=0 and \Re(v_{4}-

v_{3})\Re(v_{3}-v_{1})\Re(v_{2}-v_{4}-1)\neq 0 because we can similarly treat the other
cases. The three non-zero real parts are positive because v\in\Gamma We have
j=a=b=0 by (75). Since v\not\in W , the imaginary part s^{\propto}(v_{1}-v_{2}) is
positive. Therefore we have i=0 by (76). This is a contradiction.

(iii) Assume that two of the real parts are equal to zero and the others
are not to zero. We assume, for example, \Re(v_{1}-v_{2})=\Re(v_{4}-v_{3})=0 and
\Re(v_{3}-v_{1})\Re(v_{2}-v_{4}-1)\neq 0 because we can similarly treat the other cases.
The two non-zero real parts are positive because v\in\Gamma r We have a=b=0
by (75). Since v\not\in W , the imaginary parts\propto s(v_{1}-v_{2})and\propto s(v_{4}-v_{3}) are
positive. Therefore we have i=j=0 by (76). This is a contradiction.

(iv) Assume that only one of the real parts is not equal to zero and
the others are equal to zero. Then we can deduce a contradiction by the
same argument as above. We omit the detail. \square

3. Determination of some invariant ideals

We determine all the non-trivial X(v)-invariant principal ideals of
K[p, q] for each v\in\Gamma\cap W First we prove the following

Lemma 3.1 (i) Let v_{1} be a vector in \Gamma\cap\{v\in V|v_{1}=v_{3}\} and not
in S_{1}\cup S_{2} . For every positive integer a , a principal ideal (p^{a}) is X(v_{1}) -

invariant. Conversely, if I is an X(v_{1}) -invariant principal ideal properly
between the zerO-ideal and K[p, q] , then there exists a positive integer a such
that I=(p^{a}) .

(ii) Let v_{2} be a vector in \Gamma\cap\{v\in V|v_{1}=v_{2}\} and not in S_{1}\cup

S_{2} . For every positive integer i , a principal ideal (q^{i}) is X(v_{2}) -invariant
Conversely, if I is an X(v_{2}) -invariant principal ideal properly between the
zerO-ideal and K[p, q] , then there exists a positive integer i such that I=
(q^{i}) .

(iii) Let v_{3} be a vector in \Gamma\cap\{v\in V|v_{3}=v_{4}\} and not in S_{1}\cup S_{2} .
For every positive integer j , a principal ideal ((q-1)^{j}) is X(v_{3}) -invariant
Conversely, if I is an X(v_{3}) -invariant principal ideal properly between the
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zerO-ideal and K[p, q] , then there exists a positive integer j such that I=
((q-1)^{j}) .

(iv) Let v_{4} be a vector in \Gamma\cap\{v\in V|v_{2}=v_{4}+1\} and not in
S_{1}\cup S_{2} . For every positive integer b , a principal ideal ((p+t)^{b}) is X(v_{4}) -

invariant. Conversely, if I is an X(v_{4}) -invariant principal ideal properly
between the zerO-ideal and K[p, q] , then there exists a positive integer b such
that I=((p+t)^{b}) .

Proof. We prove only the assertion (i). We can similarly prove the re-
maining assertions. Let the notation be as in Proposition 2.1. The first
half is obvious. For the second half, it is sufficient to prove that the X(v_{1} ) -

invariant polynomial F is equal to p^{a} for some positive integer a . We put
v_{1}=(v_{1}, v_{2}, v_{3}, v_{4}) . Since v_{1}=v_{3} , we have

i(v_{1}-v_{2})+j(v_{4}-v_{3})+b(v_{2}-v_{4}-1)=0

by (2) in \S 2. Then we have

i\Re(v_{1}-v_{2})+j\Re(v_{4}-v_{3})+b\Re(v_{2}-v_{4}-1)=0 ,

and

i_{S}^{\alpha}(v_{1}-v_{2})+j\propto s(v_{4}-v_{3})+b_{S}^{G}(v_{2}-v_{4})=0 .

Since v_{1} is in \Gamma\cap\{v\in V|v_{1}=v_{3}\} and not in S_{1}\cup S_{2} , we have i=j=b=0
by the same argument as in the proof of Corollary 2.6. Then we have a\geq 1

and n=0 by (1) and (30) in \S 2. Hence we find F=F_{0}’=p^{a} by (33) in \S 2.
\square

In the next lemma we determine all the non-trivial X(v)-invariant prin-
cipal ideals for each vector v in \Gamma\cap S_{1} and not in D .

Lemma 3.2 (i) Let V5 be a vector in \Gamma\cap\{v\in V|v_{1}=v_{3} and v_{2}=

v_{4}+1\} and not in D. For arbitrary non-negative integers a and b such that
a+b\geq 1 , a principal ideal (p^{a}(p+t)^{b}) is X(v_{5}) -invariant. Conversely, if
I is an X(v_{5}) -invariant principal ideal properly between the zerO-ideal and
K[p, q] , then there exist non-negative integers a and b such that a+b\geq 1

and I=(p^{a}(p+t)^{b}) .
(ii) Let v_{6} be a vector in \Gamma\cap { v\in V|v_{1}=v_{2} and v_{3}=v_{4} } and not in

D. For arbitrary non-negative integers i and j such that i+j\geq 1 , a principal
ideal (q^{i}(q-1)^{j}) is X(v_{6}) -invariant. Conversely, if I is an X(v_{6}) -invariant
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principal ideal properly between the zerO-ideal and K[p, q] , then there exist
non-negative integers i and j such that i+j\geq 1 and I=(q^{i}(q-1)^{j}) .

Proof. We prove only the assertion (i). We can similarly prove the asser-
tion (ii). Let the notation be as in Proposition 2.1. The first half is obvious.
For the second half, it is sufficient to prove that the X(v_{5}) -invariant poly-
nomial F is equal to p^{a}(p+t)^{b} for some non-negative integers a and b such
that a+b\geq 1 . We put v_{5}=(v_{1}, v_{2}, v_{3}, v_{4}) . Since v_{1}=v_{3} and v_{2}=v_{4}+1 ,
we have

i(v_{1}-v_{2})+j(v_{4}-v_{3})=0

by (2) in \S 2. Then we have

i\Re(v_{1}-v_{2})+j\Re(v_{4}-v_{3})=0 ,

and

i\propto s(v_{1}-v_{2})+j\propto s(v_{4}-v_{3})=0 .

Since V5 is in \Gamma\cap {v\in V|v_{1}=v_{3} and v_{2}=v_{4}+1 } and not in D , we
have i=j=0 by the same argument as in the proof of Corollary 2.6.
Then we have a+b\geq 1 and n=0 by (1) and (30) in \S 2. Hence we find
F=F_{0}’=p^{a}(p+t)^{b} by (33) in \S 2. \square

Next we determine all the non-trivial X(v)-invariant principal ideals
for each vector v in \Gamma\cap S_{2} and not in D .

Lemma 3.3 (i) Let v_{7} be a vector in \Gamma\cap\{v\in V|v_{1}=v_{2}=v_{3}\} and
not in D. For arbitrary non-negative integers a and i such that a+i\geq 1 ,
a principal ideal (p^{a}q^{i}) is X(v_{7}) -invariant. Conversely, if I is an X(v_{7})-

invariant p rincipal ideal properly between the zerO-ideal and K[p, q] , then
there exist non-negative integers a and i such that a+i\geq 1 and I=(p^{a}q^{i}) .

(ii) Let v_{8} be a vector in \Gamma\cap\{v\in V|v_{1}=v_{3}=v_{4}\} and not in D .
For arbitrary non-negative integers a and j such that a+j\geq 1 , a principal
ideal (p^{a}(q-1)^{j}) is X(v_{8}) -invariant. Conversely, if I is an X(v_{8}) -invariant
principal ideal properly between the zerO-ideal and K[p, q] , then there exist
non-negative integers a and j such that a+j\geq 1 and I=(p^{a}(q-1)^{j}) .

(iii) Let v_{9} be a vector in \Gamma\cap\{v\in V|v_{1}=v_{2}=v_{4}+1\} and not in D .
For arbitrary non-negative integers b and i such that b+i\geq 1 , a principal
ideal ((p+t)^{b}q^{i}) is X(v_{9}) -invariant. Conversely, if I is an X(v_{9}) -invariant
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principal ideal properly between the zerO-ideal and K[p, q] , then there exist
non-negative integers b and i such that b+i\geq 1 and I=((p+t)^{b}q^{i}) .

(iv) Let v_{10} be a vector in \Gamma\cap\{v\in V|v_{2}-1=v_{4}=v_{3}\} and not
in D. For arbitrary non-negative integers b and j such that b+j\geq 1 ,
a principal ideal ((p+t)^{b}(q-1)^{j}) is X(v_{10}) -invariant. Conversely, if I
is an X(v_{10}) -invariant principal ideal properly between the zerO-ideal and
K[p, q] , then there exist non-negative integers b and j such that b+j\geq 1

and I=((p+t)^{b}(q-1)^{j}) .

Proof. We prove only the assertion (i). We can similarly prove the re-
maining assertions. Let the notation be as in Proposition 2.1. The first
half is obvious. For the second half, it is sufficient to prove that the X(v_{7})-

invariant polynomial F is equal to p^{a}q^{i} for some non-negative integers a
and i such that a+i\geq 1 . We put v_{7}=(v_{1}, v_{2}, v_{3}, v_{4}) . Since v_{1}=v_{2}=v_{3} ,
we have

j(v_{4}-v_{3})+b(v_{2}-v_{4}-1)=0

by (2) in \S 2. Then we have

j\Re(v_{4}-v_{3})+b\Re(v_{2}-v_{4}-1)=0 ,

and

j\propto s(v_{4}-v_{3})+b_{S}^{\alpha}(v_{2}-v_{4})=0 .

Since v_{7} is in \Gamma\cap\{v\in V|v_{1}=v_{2}=v_{3}\} and not in D , we have j=b=0 by
the same argument as in the proof of Corollary 2.6. Then we have m=a,
F_{m}=p^{a}q^{i} , F_{m-1}=0 , \kappa=2i-2a , \lambda=a-2i by (23), (24), (29), (32),
(49) in \S 2. We also have a+i\geq 1 by (1) in \S 2. If m=a=0, we have
F=F_{0}=q^{i} with i\geq 1 . In this case the assertion (i) is proved. Assume
m=a\geq 1 . We need the following

Sublemma Let d be an integer such that 0\leq d<a and let A be a
polynomial in R_{d} . If A satisfies an equation

X_{1}A=\{(2i-2a)q+a-2i\}pA , (1)

then A=0 .

In fact, since we see d+\kappa+\lambda-2l+2=d-a-2l+2<-2l+2\leq 0

for every integer l\geq 1 , we have A\equiv 0 mod (q-1)^{k} for every integer k\geq 1
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by Lemma 2.3. Hence we have A=0 .
Now, let d be an integer such that 0\leq d<a , and assume F_{d’}=0 for

every integer d’ such that d\leq d’<a (This assumption holds when d=
a-1.) . Then, the polynomial F_{d-1} satisfies the equation (1) for A=F_{d-1}

because X_{-1}=0 . We have F_{d-1}=0 by Sublemma. By induction on d , we
have F_{d}=0 for every integer d such that 0\leq d<a , and the proof of the
assertion (i) is completed. \square

Finally we prove the following

Lemma 3.4 (i) For arbitrary non-negative integers a , i and j such that
a+i+j\geq 1 , a principal ideal (p^{a}q^{i}(q-1)^{j}) is X(0) -invariant. Conversely,
if I is an X(0) -invariant principal ideal properly between the zerO-ideal and
K[p, q] , then there exist non-negative integers a , i and j such that a+i+j\geq
1 and I=(p^{a}q^{i}(q-1)^{j}) .

(ii) For arbitrary non-negative integers a , b and i such that a+b+i\geq 1 ,
a principal ideal (p^{a}(p+t)^{b}q^{i}) is X( \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{3}{4}) -invariant. Conversely, if
I is an X( \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, -\frac{3}{4}) -invariant principal ideal properly between the zerO-

ideal and K[p, q] , then there exist non-negative integers a , b and i such that
a+b+i\geq 1 and I=(p^{a}(p+t)^{b}q^{i}) .

(iii) For arbitrary non-negative integers a , b and j such that a+b+
j\geq 1 , a principal ideal (p^{a}(p+t)^{b}(q-1)^{j}) is X(- \frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}) -invariant
Conversely, if I is an X(- \frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}) -invariant principal ideal properly
between the zerO-ideal and K[p, q] , then there exist non-negative integers a,
b and j such that a+b+j\geq 1 and I=(p^{a}(p+t)^{b}(q-1)^{j}) .

(iv) For arbitrary non-negative integers b , i and j such that b+i+
j \geq 1,aprincipalideal((p+t)^{bi}(q-1)^{j})isX(\frac{1}{2},\frac{1}{i2},-\frac{1}{2},-\frac{1}{2})- invariantConversely,ifIisanX(\frac{1}{2},\frac{1}{2},-\frac{q1}{2},-\frac{1}{2})- invariantprncipalidealproperly

.

between the zerO-ideal and K[p, q] , then there exist non-negative integers
b , i and j such that b+i+j\geq 1 and I=((p+t)^{b}q^{i}(q-1)^{j}) .

Proof. We prove only the assertion (i). We can similarly prove the remain-
ing assertions. Let the notation be as in Proposition 2.1. The first half is
obvious. For the second half, it is sufficient to prove that the X(0)-invariant
polynomial F is equal to p^{a}q^{i}(q-1)^{j} for some non-negative integers a , i
and j such that a+i+j\geq 1 . Since v=0, we have b=0 by (2) in \S 2.
Then we find m=a, F_{n}’=p^{a}q^{n} , F_{n-1}’=-jp^{a}q^{n-1} , \kappa=2i+2j-2a ,
\lambda=a-2i , \nu =(a-i)t by (23), (24), (29), (33), (46), (65) in \S 2. We also
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have a+i+j\geq 1 by (1) in \S 2.
First we show

F_{n-d}’=(\begin{array}{l}jd\end{array}) (-1)^{d}p^{a}q^{n-d} (2)_{d}

for every integer d such that 0\leq d\leq j . We proceed by induction on d.
We have already proved the cases d=0 and 1. Assume d\geq 2 , and assume
that F_{n-d+1}’ is given by (2)_{d-1} . The polynomial F_{n-d}’ satisfies the equation
(8)_{n-d} in \S 2:

X_{1}’F_{n-d}’=(\kappa p+\mu)qF_{n-d}’+(\lambda p+\nu)F_{n-d+1}’

-X_{0}’F_{n-d+1}’-X_{-1}’F_{n-d+2}’ , (3)

where \kappa , \lambda , \nu are given as above, and \mu is given by (27) in \S 2. Since X_{-1}’=0

and X_{0}’=t(\partial/\partial t)-(2p+t)q(\partial/\partial q)+(p+t)p(\partial/\partial p) , the equation (3) is
written as

X_{1}’F_{n-d}’=\{(2i+2j-2a)p+(n-2a)t\}qF_{n-d}’

+(j-d+1) (\begin{array}{l}jd-1\end{array}) (-1)^{d-1}(2p+t)p^{a}q^{n-d+1} . (4)

If we set E_{n-d}=F_{n-d}’- (\begin{array}{l}jd\end{array}) (-1)^{d}p^{a}q^{n-d} and eliminate F_{n-d}’ from this

and (4), then we find

X_{1}’E_{n-d}=\{(2i+2j-2a)p+(n-2a)t\}qE_{n-d} .

Since (n-d)-(2i+2j-2a)+(n-2a)-2l+2=-d-2l+2\neq 0 for
every integer l\geq 1 , we have E_{n-d}=0 by Lemma 2.5. Thus the equalities
(2)_{d} are proved.

Second we show

F_{i-d}’=0 (5)_{d}

for every integer d such that 1\leq d\leq i . We proceed by induction on d . The
polynomial F_{i-1}’ satisfies the equation (8)_{i-1} in \S 2:

X_{1}’F_{i-1}’=(\kappa p+\mu)qF_{i-1}’+(\lambda p+\nu)F_{i}’-X_{0}’F_{i}’-X_{-1}’F_{i+1}’ , (6)

where \kappa , \mu , \lambda , \nu , X_{0}’ , X_{-1}’ are given as above. Since F_{i}’=(-1)^{j}p^{a}q^{i} by (2)_{j} ,
the equation (6) is written as

X_{1}’F_{i-1}’=\{(2n-2a)p+(n-2a)t\}qF_{i-1}’ .
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Since (i-1)-(2n-2a)+(n-2a)-2l+2=-j-2l+1\neq 0 for every integer
l\geq 1 , we have F_{i-1}’=0 by Lemma 2.5. Assume d\geq 2 and F_{i-d+1}’=0 .
The polynomial F_{i-d}’ satisfies the equation (8)_{i-d} in \S 2:

X_{1}’F_{i-d}’=(\kappa p+\mu)qF_{i-d}’+(\lambda p+\nu)F_{i-d+1}’

-X_{0}’F_{i-d+1}’-X_{-1}’F_{i-d+2}’ . (7)

Then the equation (7) is written as

X_{1}’F_{i-d}’=\{(2n-2a)p+(n-2a)t\}qF_{i-d}’ .

Since (i-d)-(2n-2a)+(n-2a)-2l+2=-d-j-2l+2\neq 0 for every
integer l\geq 1 , we have F_{i-d}’=0 by Lemma 2.5. Thus the equalities (5)_{d} are
proved. By (2)_{d} and (5)_{d} , we see F=F_{n}’+ \cdot+F_{i}’=p^{a}q^{i}(q-1)^{j} , and the
proof of the assertion (i) is completed. \square

Remark 3.1 We can also determine the X(v)-invariant polynomial F for
v\in\Gamma\cap W by observing the figure of the Newton polygon of the polynomial
F (cf. Step 5 of the proof of Proposition 2.1).

4. Proof of Theorem 1.3

The derivation X(v) for every v\in\Gamma-W satisfies the condition (J) by
Corollary 2.6. Hence we see by Theorem 1.1 in [21] that every transcendental
solution (p, q) of S(v) for all v\in\Gamma-W is non-classical.

On the other hand, by the lemmas in \S 3 and the same argument as in
Subsection 2.3 in [21], all the transcendental classical solutions of S(v) for
v\in\Gamma\cap W are determined by the principal prime ideals (p), (p+t) , (q),
(q-1) , and the other transcendental solutions of S(v) for v\in\Gamma\cap W are
not classical. Thus we complete the proof of Theorem 1.3.
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