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1. Introduction

Sheaf theory was mainly applied to topology, differential geometry,
algebraic geometry, and so on (see G. E. BREDON [1], R. G. SWAN [2] and
J. DlEUDONNft [7] ) . For example in topology, it is very useful in proving
theorems such as the duality theorems of POINCARE, ALEXANDER, and
LEFSCHETZ. It is important when we want to obtain global properties
from local ones. It takes more effect when combined with homological
algebra, especially cohomology theory. For instance, cohomology theory

is used in defining characteristic classes and cohomology vanishing the0-
rem is useful in calculating them.

The aim in this paper is to develop a sheaf cohomology theory for a
measurable space (\Omega, \mathfrak{A}) . To each \sigma-subalgebra \mathfrak{B} of \mathfrak{A} we associate an
abelian group \mathscr{F}(\mathfrak{B}) and call the system of them \sigma-sheaf \mathscr{I}^{-} over (\Omega, \mathfrak{A}) .
We formulate cohomology group with coefficients in it. We treat mainly

a cohomology group with coefficients in a \sigma-sheaf of measurable transfor-
mation group or automorphism on (\Omega, \mathfrak{A}) . It gives certain relation
between the local characteristics and the global ones of transformation
group on (\Omega, \mathfrak{A}) . We show cohomology vanishing theorems with respect
to it.

We state a summary of each section below.
In Section 2, we give the definition of \sigma-sheaf which plays a role of

describing the local-global interplay. We construct two kinds of
\sigma-sheaves: one is a \sigma-sheaf of measurable transformation group and the
other is a \sigma-sheaf of integrable functions over a finite measure space.

Section 3 constructs a cohomology group with coefficients in a \sigma-sheaf
\mathscr{F} in the similar way to the construction of the oe\veech cohomology for
topological space. To irrustlate cohomology group, we regard the \sigma-alge-

bra \mathfrak{A} and \sigma-subalgebras of \mathfrak{A} as the domain and its sub-domains, respec-
tively. By a \sigma- covering over (\Omega, \mathfrak{A}) , we mean a collection of \sigma-subalge-
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bras \mathfrak{A}_{i} of \mathfrak{A} such that \mathfrak{A}=\vee \mathfrak{A}_{i}i\in I^{\cdot} The cohomology group H^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F}) with

respect to it gives the degree of variety of the difference between the
abelian groups \mathscr{I}^{-}(\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq}) and \mathscr{I}^{-}(\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq}) ,

corresponding to domain \mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq} and to its neighbor domain \mathfrak{A}_{io}\cap

\ldots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq} , respectively.
In Section 4, we investigate a cohomology group with coefficients in a

\sigma-sheaf of an automorphism \phi:\Omegaarrow\Omega . We describe the local recurrence
of it by the cohomology group. The local recurrence means the occur-
rence that there exists an integer m such that \phi^{m}A=A holds for every A
\in \mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq} . In terms of \sigma-sheaf, this corresponds to \phi^{m}\in \mathscr{F}(\mathfrak{A}_{io}\cap

\ldots\cap \mathfrak{A}_{iq}) , where \phi is regarded as a set map \mathfrak{A}arrow \mathfrak{A} . We study in Theorem
4. 1 the difference between the abelian groups \mathscr{I}^{-}(\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq}) and
\mathscr{I}^{-}(\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq}) , namely, whether \phi^{m}A\neq A for some
A\in \mathfrak{A}_{i_{0}}\cap\cdots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq} or not. It is shown that the existence
of the nonzero element of cohomology group corresponds to the difference.
We state the structure of the 0-th cohomology group H^{0} in Theorem 4. 2
and give an automorphism, named increasing automorphism, that the c0-

homology groups become zero in Theorem 4. 6 and Theorem 4. 7.
As the cohomology group indicates the degree of difference of local

recurrence of automorphism among local parts of a given space, it will
enable us to classify automorphisms on measurable spaces or measure
spaces by the cohomology group.

The author wants to express his gratitude to Professor OKABE for
valuable advices and warm encouragements.

2. \sigma -Sheaf

In this section we give the definition of \sigma-sheaf and some examples of
it.

Let (\Omega, \mathfrak{A}) be a measurable space. A \sigma-sheaf \mathscr{F} over (\Omega, \mathfrak{A}) is a col-
Section \{\mathscr{F}(\mathfrak{B}), \rho_{\mathfrak{C}\mathfrak{B}}\} of abelian groups and homomorphisms which satisfies
the following conditions (C1) and (C2).

(C1) An abelian group \mathscr{T}^{\vee}(\mathfrak{B}) corresponds to each \sigma-subalgebra \mathfrak{B} of \mathfrak{A} .
(C2) For any two \sigma-subalgebras \mathfrak{B} and \mathfrak{C} with \mathfrak{C}\subset \mathfrak{B} , a group

homomorphism

\rho_{\mathfrak{C}.\mathfrak{B}} : \mathscr{I}^{-}(\mathfrak{B})arrow \mathscr{F}(\mathfrak{C}) ,

called the restriction mapping, possesses the property \rho_{\mathfrak{B},\mathfrak{B}}=idf^{-}(\mathfrak{B})

and \rho_{\mathfrak{D},\mathfrak{B}}=\rho_{\mathfrak{D},\mathfrak{C}^{\circ}}\rho_{\mathfrak{C},\mathfrak{B}} for any triplet \mathfrak{D}\subset \mathfrak{C}\subset \mathfrak{B} of \sigma-subalgebras.

Let \mathscr{I}^{\vee} be a \sigma-th at over (\Omega, \mathfrak{A}) and \mathfrak{B} be a \sigma-subalgebra of \mathfrak{A} . An
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element s\in \mathscr{F}(\mathfrak{B}) is called a section of \mathscr{I}^{-} over R. For every A\in \mathfrak{A} ,
\mathscr{F}(A):=\mathscr{F}\{\Omega, \phi, A, A^{c}\}) is called the stalk of \mathscr{F} at A.

At first we consider a transformation group on the measurable space
(\Omega, \mathfrak{A}) .

An abelian group G is called a measurable transformation group on
(\Omega, \mathfrak{A}) if G acts on (f), \mathfrak{A}) , i.e., every element g\in G is a bijection from \Omega

onto \Omega such that

(1) g and g^{-1} are measurable.
(2) eA=A and g_{1}(g_{2}A)=(g_{1}g_{2})A for every A\in \mathfrak{A} and g_{1} , g_{2}\in G , where e

denotes the unit element of G .

Definition 2. 1 We call the measurable space (\Omega, \mathfrak{A}) with such a group
action G a measurable G-space (\Omega, \mathfrak{A}) .

We construct a \sigma-sheaf for a measurable G-space (\Omega, \mathfrak{A}) .

Example 2. 2. ( \sigma-sheaf of measurable transformation group) Let (f), \mathfrak{A}) be
a measurable G-space. For every \sigma-subalgebra \mathfrak{B} of \mathfrak{A} , we define an
abelian group

\mathscr{F}(\mathfrak{B})= {g\in G|gA=A for every A\in \mathfrak{B}}

and the inclusion mapping

\rho_{\mathfrak{C}.\mathfrak{B}} : \mathscr{F}(\mathfrak{B})arrow \mathscr{P}^{-}(\mathfrak{C})

for \sigma-subalgebras \mathfrak{B} and \mathfrak{C} with \mathfrak{C}\subset \mathfrak{B} . We call this \sigma-sheaf a \sigma-sheaf of
measurable transformation group G over (\Omega, \mathfrak{A}) .

We consider the case of measure space. A measurable mapping \phi :
(\Omega, \mathfrak{A}, \mu)arrow(\Omega, \mathfrak{A}, \mu) on a measure space (\Omega, \mathfrak{A}, \mu) is called an automor-
phism if \phi is measure-preserving, bij ective, and \phi^{-1} is also measure
-preserving. We call a class \{\phi_{t}\}_{t\in R} of automorphisms on (\Omega, \mathfrak{A}, \mu) a from
if \phi_{t}\circ\phi_{s}=\phi_{t+s} holds for t , s\in R and \phi_{0} is the identity mapping.

A measurable transformation group G on a measure space (\Omega, \mathfrak{A}, \mu) is
called a measure-preserving transformation group if every element g of G

is measure-preserving. It is an abstract automorphism or flow on the
measure space (\Omega, \mathfrak{A}, \mu) . Refer to [10] for measure-preserving transfor-
mation, automorphisms and flows.

To construct a \sigma-sheaf for an automorphism \phi , we associate a cyclic
group

G_{\phi}=\{\phi^{n}|n\in Z\}
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as a measure-preserving transformation group. The same consideration
can be applied to the case of flow. We will study the behavior of the
automorphism \phi in terms of the cohomology group in Section 4.

Example 2. 3. (The case of measure space) We may need a \sigma-sheaf of
transformation group handling the omittion of sets of measure zero. We
introduce the way to take measure into consideration. Let G be a mea-
sure-preserving transformation group on a measure space (\Omega, \mathfrak{A}, \mu) . We
define an equivalence relation on \mathfrak{A} by A–B iff \mu(A\Delta B)=0 , where A\Delta B

denotes the symmetric difference (A\backslash B)\cup(B\backslash A) . For every \sigma-subalgebra
\mathfrak{B} of \mathfrak{A} , we set

\mathscr{I}’(\mathfrak{B})= {g\in G|gA-A for every A\in \mathfrak{B}}.

Then we get a \sigma-sheaf of measure-preserving transformation group G

mod 0 over the measure space (\Omega, \mathfrak{A}, \mu) . Of course we can also apply
Example 2. 2 to an arbitrary measure space.

We introduce a \sigma-sheaf of integrable functions.

Example 2. 4. ( \sigma-sheaf of integrable functions) Let (\Omega, \mathfrak{A}, \mu) be a finite
measure space. We denote by \mathscr{I} the class of all integrable functions on
(\Omega, \mathfrak{A}, \mu) . For every \sigma-subalgebra \mathfrak{B} of \mathfrak{A} , we set

\mathscr{I}^{-}(\mathfrak{B})= { f\in \mathscr{I}|f is \mathfrak{B}-measurable

and define the restriction mapping

\rho_{\mathfrak{C},\mathfrak{P}} : f\in_{\mathscr{I}^{-}}(\mathfrak{B})\vdasharrow E(f|\mathfrak{C})\in \mathscr{F}(\mathfrak{C})

by taking the conditional expectation (see [8] and [9]). We obtain a
\sigma-sheaf of integrable functions over (\Omega, \mathfrak{A}, \mu) .

3. Cohomology group with coefficients in \sigma -sheaf

In this section we formulate a cohomology group with coefficients in
\sigma-sheaf in the similar way to the oe\veech cohomology theory (see [3] and
[4] ) . We investigate a cohomology group with coefficients in a \sigma-sheaf of
an automorphism in Section 4.

At first we give the definition of a covering over a measurable space
(\Omega, \mathfrak{A}) .

Definition 3. 1 Let (\Omega, \mathfrak{A}) be an arbitrary measurable space. A class
\{\mathfrak{A}_{i}\}_{i\in I} of \sigma-subalgebras of \mathfrak{A} is called a \sigma-covering of \mathfrak{A} if \mathfrak{A}=_{\check{i\in I}}\mathfrak{A}_{i} , where

the right-hand side denotes the smallest \sigma-algebra that includes \bigcup_{i\in I}\mathfrak{A}_{i} .
Similarly \sigma-covering mod 0 \{\mathfrak{A}_{i}\} of \sigma-algebra \mathfrak{A} of a measure space



Sheaf cohomology theory for measurable spaces 155

(\Omega, \mathfrak{A}, \mu) can be defined by \mathfrak{A}/-=_{\check{i\in I}}\mathfrak{A}_{i}/- with an equivalence relation–
defined in Example 2. 3.

We get ready for constructing a cohomology group with respect to a
\sigma-covering, in the same way as the oe\veech cohomology group with respect
to an open covering.

Let \{\mathfrak{A}_{i}\}_{i\in I} be a \sigma-covering of \sigma-algebra \mathfrak{A} of the measurable space
(\Omega, \mathfrak{A}) and \mathscr{I}^{-} a \sigma-sheaf over (\Omega, \mathfrak{A}) . For each nonnegative integer q , we
put

\sum_{q} :=\{I_{q}=(i_{0}, \cdots, i_{q})|i_{0}, \cdots, i_{q}\in I\} , \mathfrak{A}_{Iq} :=\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq}

and

C^{q}( \{\mathfrak{A}_{i}\}, \mathscr{F}):=\prod_{I_{q}\in\Sigma_{q}}\mathscr{F}(\mathfrak{A}_{Iq}) .

It is to be noted that the elements i_{0} , \cdots , i_{q} of I_{q} may overlap. Each ele-
ment \sigma=\{\sigma_{i_{0},\cdots,iq}\}\in C^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F}) is called a q- cochain of the \sigma- covering \{\mathfrak{A}_{i}\} .

We define a coboundary homomorphism

\delta_{q} : C^{q}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-})arrow C^{q+1}(\{\mathfrak{A}_{i}\}, \mathscr{F})

by

\{(\delta_{q}\sigma)_{i_{0}\cdots iq+1}\}=\{_{k=0}^{q+1}\Sigma(-1)^{k}\rho_{\mathfrak{A}}(I_{q+1}),\mathfrak{A}(I_{q+1}^{k}))(\sigma_{i_{0}\cdots i_{k-1}i_{k+1}\cdots iq+1})\} ,

where \mathfrak{A}(I_{q+1})=\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq+1} and \mathfrak{A}(I_{q+1}^{k})=\mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq+1} .
We often omit writing \rho \mathfrak{A}(I_{q+1}),\mathfrak{A}(I_{q+1}^{h}) .

Lemma 3. 2 \delta_{q+1^{\circ}}\delta_{q}=0 , q=0,1,2 , \cdots .

Proof. We assume that \{\tau_{i_{0}\cdots iq+1}\}=\delta_{q}\{\sigma_{i_{0}\cdots iq}\} . Then

\sum_{j=0}^{q+2}(-1)^{j}\tau_{i_{0}\cdots i_{j}iq+2}\wedge\ldots

= \sum_{j=0}^{q+2}(-1)^{j}(_{k=0}^{j-1}\Sigma(-1)^{k}\sigma_{i_{0}\cdots i_{k}\cdots i_{J}iq+2}\wedge\wedge\ldots+\sum_{k=j+1}^{q+2}(-1)^{k-1}\sigma_{i_{0}\cdots i_{J}i_{k}\cdots iq+2)}\wedge\ldots\wedge

= \sum_{k<j}(-1)^{i+k}\sigma_{io\cdots i_{k}\cdots i_{j}\cdots iq+2}\wedge\wedge+\sum_{j<k}(-1)^{k+j-1}\sigma_{i_{0}\cdots i_{J}\cdots i_{k}\cdots iq+2}\wedge\wedge=0 ,

where f_{k} means that we omit this index i_{k} . \square

Now we formulate a cohomology group with respect to a \sigma-covering.

Definition 3. 3 Let \{\mathfrak{A}_{i}\} be a \sigma-covering of \mathfrak{A} and \mathscr{I}^{-} a \sigma-sheaf over
(\Omega, \mathfrak{A}) . We define the class of q- cocycles Z^{q}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-}) by
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Z^{q}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-}) :=\{\sigma\in C^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F})|\delta_{q}\sigma=0\}

and the class of q- coboundaries B^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F}) by

B^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F}):=\delta_{q-1}(C^{q-1}(\{\mathfrak{A}_{i}\},\mathscr{P}^{-})) , if q\geq 1 , and B^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F}):=0 .

Since it follows from Lemma 3. 2 that B^{q}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-}) is a subgroup of
Z^{q}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-}) , we can define a quotient group

H^{q}(\{\mathfrak{A}_{i}\},\mathscr{P}^{-}) :=Z^{q}(\{\mathfrak{A}_{i}\},\mathscr{P}^{-})/B^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F}) ,

called a cohomology group with coefficients in \mathscr{F} with respect to \{\mathfrak{A}_{i}\} .

To define a cohomology group for the measurable space (\Omega, \mathfrak{A}) , we
don’t use an inductive limit with respect to the refinement of covering. It
is due to the difference of structures between measurable spaces and
topological spaces.

Definition 3. 4 We define a cohomology group of \mathfrak{A} with coefficients in
\mathscr{F}^{-} by the direct product of cohomology groups of all \sigma-coverings of \mathfrak{A} .

H^{q}( \mathfrak{A}, \mathscr{F}):=\prod_{\{\mathfrak{A},\}}H^{q}(\{\mathfrak{A}_{i}\},\mathscr{F}) .

4. Cohomology group of measurable transformation group and some
cohomology vanishing theorems

In this section we state some results concerning the cohomology group
with coefficients in \sigma-sheaf of measurable or measure-preserving transfor-
mation group. We state the significance of cohomology group of automor-
phism. Cohomology group of automorphism is related to the orbit struc-
ture of automorphism, especially recurrence. Refer to [5] and [6] for
topological transformation groups.

Let \{\mathfrak{A}_{i}\} be a \sigma-covering of \mathfrak{A} . We consider a \sigma-th at \mathscr{F} of an
automorphism \phi on a measure space (\Omega, \mathfrak{A}, \mu) and regard the \phi as a set
map \phi:\mathfrak{A}arrow \mathfrak{A} . We study certain connection between the recurrence of \phi

with respect to a domain \mathfrak{A}_{io}\cap\cdots \cap \mathfrak{A}_{iq} and the one with respect to its
neighbor domain \mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{i_{k-1}}\cap \mathfrak{A}_{i_{k+1}}\cap\cdots\cap \mathfrak{A}_{iq} . Cohomology group
H^{q}(\{\mathfrak{A}_{i}\}, \mathscr{B}^{-}) reflects the recurrence of an automorphism \phi as a set map,
with respect to a decomposition \{\mathfrak{A}_{i}\} of \mathfrak{A} . Of course it depends on the
choice of \sigma-covering \{\mathfrak{A}_{i}\} .

We denote by \{\phi^{m(i_{0},\cdots,iq)}\} a q-cochain with respect to the \sigma-th at \mathscr{F},
where m is a function from \Sigma_{q} into Z and \phi^{m(i_{0},\cdots,iq)}\in \mathscr{F}(\mathfrak{A}_{i_{0}}\cap\cdots\cap \mathfrak{A}_{iq}) .

Theorem 4. 1 Let \phi be an automo2phism on a measure space (\Omega, \mathfrak{A}, \mu) ,
\{\mathfrak{A}_{i}\}_{i\in I} a \sigma- covering of \mathfrak{A} , and \mathscr{F} a \sigma-sheaf of G_{\phi} . If there exists a non-
zero element
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[\phi^{m(i_{0},\cdots,iq)}]\in H^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F})

with a representative element \{\phi^{m(i_{0},\cdots,iq)}\}\in Z^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F})(q\geq 1) , then for
every k\in I there exists a (j_{0}, \cdots, j_{q-1})\in\Sigma_{q-1} such that \phi^{m(jo,\cdots,j,k)}q- 1\not\in

\mathscr{F}(\mathfrak{A}_{j_{0}}\cap\cdots\cap \mathfrak{A}_{jq- 1}) , that is, \phi^{m(j_{0},\cdots,jq- 1}’ k
) has difference of recurrence

between \mathfrak{A}_{jo}\cap\cdots\cap \mathfrak{A}_{jq- 1}\cap \mathfrak{A}_{k} and \mathfrak{A}_{j_{0}}\cap\cdots\cap \mathfrak{A}_{jq- 1} .

Proof. We take and fix an arbitrary index k\in I Suppose that
\phi^{m(i_{0}}’\cdots

, iq-l, k ) \in{?}^{-}(\mathfrak{A}_{io\cap\cdots\cap \mathfrak{A}_{iq- 1}) for every (i_{0}, \cdots, i_{q-1})\in\Sigma_{q-1} . Then we
define a (q-1)-cochain

\{\phi^{n()}io,\cdots,iq- 1\}\in C^{q-1}(\{\mathfrak{A}_{i}\}, \mathscr{F})

by \phi^{n(i_{0},\cdots,iq- 1)} :=\phi^{(-1)^{q}m(}i_{0},\cdots, iq-l. Since \{\phi^{m(i_{0},\cdots,iq)}\} is a q -cocycle,

\phi^{m(i_{0},\cdots,iq)}=(-1)^{q}\{\phi^{m(i_{1},\cdots iq,k)}-\phi^{m(i_{0},i_{2},\cdots,iq,k)}+\cdots+(-1)^{q}\phi^{m(iik)}0,\cdots,q- 1,\}

=\phi^{n(i_{1},\cdots,iq)}-\phi^{n(i_{0},i_{2},\cdots,iq)}+\cdots+(-1)^{q}\phi^{n(i_{0},\cdots,iq- 1}\rangle

=(\delta_{q-1}\{\phi^{n(i_{0},\cdots,iq- 1)}\})_{i_{0},\cdots,iq}

for every (i_{0}, \cdots, i_{q})\in\Sigma_{q} . Hence \{\phi^{m(i_{0},\cdots,iq)}\}\in B^{q}(\{\mathfrak{A}_{i}\},\mathscr{F}) . This contra-
dicts our assumption. \square

The order of cohomology group of automorphism indicates and mea-
sures the variety of behavior of the automorphism \phi . If the cohomology
group H^{q}(\{\mathfrak{A}_{i}\},\mathscr{F}) doesn’t vanish for large integer q , then \phi has different
recurrence around the intersections \mathfrak{A}_{io}\cap\cdots\cap \mathfrak{A}_{iq} of many domains \mathfrak{A}_{i} of
\sigma-covering and hence the behaviors of \phi on each \mathfrak{A}_{i} are various. If
H^{q}(\{\mathfrak{A}_{i}\}, \mathscr{F})=0 for all q\geq 1 , the behaviors of \phi on each \mathfrak{A}_{i} are alike each
other.

We show the structure of 0-th cohomology group H^{0} .

Theorem 4. 2 Let (\Omega, \mathfrak{A}) be a measurable G-space and \mathscr{F} a \sigma-sheaf of
G. Then H^{0}(\{\mathfrak{A}_{i}\},\mathscr{I}^{-})\simeq \mathscr{F}(\mathfrak{A}) holds for every \sigma- covering \{\mathfrak{A}_{i}\} of \mathfrak{A} .

Proof. We define a homomorphism f:=\mathscr{P}^{-}(\mathfrak{A}) -arrow C^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F}) by

g\in \mathscr{F}(\mathfrak{A})\mapsto\{\rho_{\mathfrak{A}_{\iota}.\mathfrak{A}}(g)\}\in C^{0}(\{\mathfrak{A}_{i}\},\mathscr{F}) .

Since \delta_{0}f(g)=0 for every g\in \mathscr{F}(\mathfrak{A}) , we can regard f as a mapping from
\mathscr{F}(\mathfrak{A}) into H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F}) . At first, we show that f is injective. For two
elements g_{1} and g_{2} of \mathscr{F}(\mathfrak{A}) , suppose that \rho_{\mathfrak{A},,\mathfrak{A}}(g_{1})=\rho_{\mathfrak{A}_{\iota},\mathfrak{A}}(g_{2}) holds for every
i\in I . Then since \rho is an inclusion mapping, g_{1}=g_{2} . Hence f is injective.
We show the surjectiveness. For every \sigma\in H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-}) , there exists an g_{\sigma}

\in G such that g_{\sigma}A=A for every A \in\bigcup_{i\in I}\mathfrak{A}_{i} . Since

\mathscr{M}=\{A\in_{\check{i\in I}}\mathfrak{A}_{i}|g_{\sigma}A=A\}
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is a \sigma-algebra including \bigcup_{i\in I}\mathfrak{A}_{i} , \mathscr{M}=\vee \mathfrak{A}_{i}i\in I holds. Hence g_{\sigma}\in \mathscr{P}^{-}(\vee \mathfrak{A}_{i})i\in I and

f is surjective. This completes the proof. \square

We can obtain the same result as above for a \sigma-sheaf of G mod 0. In
the case of general \sigma-sheaf \mathscr{F}^{-} . the cohomology group H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F}) isn’t
always isomorphic to \mathscr{F}(\mathfrak{A}) .

Corollary 4. 3 Let (\Omega, \mathfrak{A}) be a measurable G-space and \mathscr{I}^{-}a \sigma-sheaf of
G, and \{\mathfrak{A}_{i}\} a \sigma- covering of \mathfrak{A} . Then if the or&r of H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F}) is
finite, it equals to the number of automorphisms g\in G such that gA=A
holds for every A\in \mathfrak{A} .

The proof follows immediately from Theorem 4. 2.

Next we shall show automorphisms whose cohomology groups vanish.

Lemma 4. 4 Let \phi be an automorphism on a measure space (\Omega, \mathfrak{A}, \mu) and
\mathscr{F} a \sigma- sheaf of G_{\phi} mod 0. For every \sigma- subalgebra \mathfrak{B} of \mathfrak{A} . we have

\mathscr{F}(\phi^{n}\mathfrak{B})=\check{n=}0\infty \mathscr{F}(\mathfrak{B}) .

Proof We take an arbitrary g\in \mathscr{F}(\mathfrak{B}) and prove that g\in \mathscr{F}(^{\infty}\phi^{n}\mathfrak{B})\check{n=}0^{\cdot}

Note that

\mathscr{F}(\mathfrak{B})=\mathscr{F}(\phi \mathfrak{B})=\ldots=\mathscr{F}(\phi^{n}\mathfrak{B})

and gA-A holds for every A \in\bigcup_{n=0}^{\infty}\phi^{n}\mathfrak{B} . We show that

\mathscr{M}=\{A\in_{\check{n=}0}\phi^{n}\mathfrak{B}|gA-A\}\infty

is a \sigma-algebra. It is clear that \phi\cdot, \Omega\in \mathscr{M} . If A\in \mathscr{M} holds, then
\mu(gA^{c}\Delta A^{c})=\mu((gA^{c}\backslash A^{c})\cup(A^{c}\backslash gA^{c}))

=\mu((gA^{c}\cap A)\cup(A^{c}\cap gA))=\mu((A\cap(gA)^{c})\cup(gA\cap A^{c}))

=\mu((A\backslash gA)\cup(gA\backslash A))=\mu(gA\Delta A)=0 ,

and hence A^{c}\in \mathscr{M} .

Suppose that A_{1} , A2, \cdots , A_{i} , \cdots\in \mathscr{M} , then

\mu(g(\bigcup_{i=1}^{\infty}A_{i})\Delta\bigcup_{i=1}^{\infty}A_{i})=\mu((g(\bigcup_{i=1}^{\infty}A_{i})\backslash \bigcup_{i=1}^{\infty}A_{i})\cup(\bigcup_{i=1}^{\infty}A_{i}\backslash g(\bigcup_{i=1}^{\infty}A_{i})))

= \mu(g(\bigcup_{i=1}^{\infty}A_{i})\backslash \bigcup_{i=1}^{\infty}A_{i})+\mu(\bigcup_{i=1}^{\infty}A_{i}\backslash g(\bigcup_{i=1}^{\infty}A_{i})) .
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Since

\mu(g(\bigcup_{i=1}^{\infty}A_{i})\backslash \bigcup_{i=1}^{\infty}A_{i})=\mu(g(\bigcup_{i=1}^{\infty}A_{i})\cap(\bigcup_{i=1}^{\infty}A_{i})^{c})=\mu(g(\bigcup_{i=1}^{\infty}A_{i})\cap(\bigcap_{i=1}^{\infty}A_{i}^{c}))

=\mu((\cup gA_{i})\cap(\cap A_{i}^{c}))\leqq\Sigma\mu(gA_{i}\cap(\cap A_{i}^{c}))\leqq\Sigma\mu(gA_{i}\cap A_{i}^{c})\infty\infty\infty\infty\infty

i=1 i=1 i=1 i=1 i=1

= \sum_{i=1}^{\infty}\mu(gA_{i}\backslash A_{i})

and

\mu(\bigcup_{i=1}^{\infty}A_{i}\backslash g(\bigcup_{i=1}^{\infty}A_{i}))=\mu(\bigcup_{i=1}^{\infty}(A_{i}\backslash g(\bigcup_{i=1}^{\infty}A_{i})))

\leqq\sum_{i=1}^{\infty}\mu(A_{i}\backslash g(\bigcup_{i=1}^{\infty}A_{i}))\leqq\sum_{i=1}^{\infty}\mu(A_{i}\backslash gA_{i}) ,

it holds that

\mu(g(\bigcup_{i=1}^{\infty}A_{i})\Delta\bigcup_{i=1}^{\infty}A_{i})

\leqq\sum_{i=1}^{\infty}(\mu(gA_{i}\backslash A_{i})+\mu(A_{i}\backslash gA_{i}))\leqq\sum_{i=1}^{\infty}\mu((gA_{i}\backslash A_{i})\cup(A_{i}\backslash gA_{i}))

= \sum_{i=1}^{\infty}\mu(gA_{i}\Delta A_{i})=0 ,

which concludes that \bigcup_{i=1}^{\infty}A_{i}\in \mathscr{M} . Hence \mathscr{M} is a \sigma-algebra and \mathscr{M}=_{\check{n=}0}\phi^{n}\mathfrak{B}\infty .

Therefore g\in \mathscr{F}(^{\infty}\phi^{n}\mathfrak{B})\check{n=}0 holds. This completes the proof. \square

Definition 4. 5 An automorphism \phi on a measure space (\Omega, \mathfrak{A}, \mu) is
called an increasing automorphism if there exists a \sigma-subalgebra R of \mathfrak{A}

such that

fR\subsetneqq\phi R and \check{n=}0\infty\phi^{n}R/\sim=\mathfrak{A}/- ,

where –is an equivalence relation defined in Example 2. 3. It is to be
noted that \{\phi^{i}R\} is a \sigma-covering mod 0 of \mathfrak{A} .

An increasing automorphism \phi on a probability space (\Omega, \mathfrak{A}, P) satis-
fying that

\bigcap_{n=0}^{\infty}\phi^{-n}f8/-= {A\in \mathfrak{A}|P(A)=0 or 1}

is called a Kolmoqorov automorphism.

Theorem 4. 6 Let \phi be an increasing automo?phism on a measure space
(\Omega, \mathfrak{A}, \mu) and \mathscr{F} a \sigma-sheaf of G_{\phi} mod 0. Then H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{I}^{-})=0 for eve\uparrow y
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\sigma- covering \{\mathfrak{A}_{i}\} .

Proof. By Theorem 4. 2 and Lemma 4. 4,

H^{0}(\{\mathfrak{A}_{i}\},\mathscr{F})\simeq \mathscr{F}(\mathfrak{A})=\mathscr{F}(^{\infty}\phi^{n}R)=\mathscr{F}(R)\check{n=}0^{\cdot}

The increasing property R\subsetneqq\phi R implies that \mathscr{F}(R)=\{id.\} , because if \phi^{m}A=

A for every A\in R(m>0) then \phi^{m}R=R , which contradicts that R\subsetneqq\phi^{m}f8 .
Hence H^{0}(\{\mathfrak{A}_{i}\}, \mathscr{F})=0 holds. This completes the proof. \square

Theorem 4. 7 Let \phi be an increasing automorphism on a measure space
(\Omega, \mathfrak{A}, \mu) and \mathscr{F} a \sigma-sheaf of G_{\phi} mod 0. Then we obtain

H^{q}(\{\phi^{i}f8\}, \mathscr{F})=0 , q\geq 1 .

Proof. Since it follows from the increasing property of \phi that
\mathscr{F}(\phi^{io}R\cap\cdots\cap\phi^{iq}R)=\mathscr{T}(\phi^{\min\{i_{0},\cdots,iq\}}R)=\mathscr{F}(R)=\{id.\}

for every (i_{0}, \cdots, i_{q})\in\Sigma_{q} , we find

C^{q}( \{\phi^{i}R\}, \mathscr{I}^{-})=\prod_{I_{q}\in\Sigma_{q}}\mathscr{F}(\phi^{i_{0}}R\cap\cdots\cap\phi^{iq}R)

= \prod_{I_{q}\in\Sigma_{q}}\mathscr{T}(\phi^{\min\{i_{0},\cdots,iq\}}R)

= \prod_{I_{q}\in\Sigma_{q}}\mathscr{F}(R)=\prod_{I_{q}\in\Sigma_{q}}\{id.\}=0 .

Hence we obtain H^{q}(\{\phi^{i}R\}, \mathscr{T})=0 . \square
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