
Hokkaido Mathematical Journal Vol. 24 (1995) p. 139-150

Nonhomogeneity of Picard dimensions on the half ball
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(Received June 21, 1994)

We denote by H^{m} the upper half space \{x=(x_{1}, \cdots, x_{m})\in R^{m} : x_{m}>0\} in

the Euclidean m-space R^{m}(m\geq 2) and by \overline{H}^{m} the closure of H^{m} with
respect to the one point compactification of R^{m} . Setting \delta H^{m}=\hat{H}^{m}\backslash H^{m} ,

we may view \{x\in\hat{H}^{m} : x_{m}=0\} as a subset of an ideal boundary \delta H^{m} of
H^{m} and the origin x=0 as an ideal boundary point of H^{m} . Take the

upper half ball U_{S}^{+}=\{x=(x_{1^{ }},\cdots, x_{m})\in H^{m} : |x|<s\}(0<s\leq 1) which may be
regarded as a relative neighbourhood of the ideal boundary point x=0 of
H^{m} . The set \Gamma_{s}^{+}\equiv\{x\in H^{m} : |x|=s\} is a relative boundary of U_{S}^{+} and \gamma_{S}^{+}\equiv

\{x\in\delta H^{m} : |x|\leq s\} is an ideal boundary of U_{s}^{+} Therefore the boundary
\partial U_{S}^{+} of U_{S}^{+} and the closure \overline{U}_{S}^{+} of U_{S}^{+} in \overline{H}^{m} are \Gamma_{s}^{+}\cup\gamma_{S}^{+} and U_{S}^{+}\cup\Gamma_{s}^{+}\cup

\gamma_{s}^{+} , respectively. In particular we set U_{1}^{+}=U^{+} and \Gamma_{1}^{+}=\Gamma^{+} . By a density

P(x) on U_{s}^{+} we mean a locally H\"older continuous function P(x) defined
on U-s^{\dagger\backslash \{0\}} . Hence P may have a singularity at the ideal boundary point

x=0.
Consider the time independent Schr\"odinger equation

L_{P}u(x)\equiv-\triangle u(x)+P(x)u(x)=0 (1)

defined on \overline{U}_{S}^{+}\backslash \{0\} , where \triangle is the Laplacian \triangle=\Sigma_{i=1}^{m}\partial^{2}/\partial x_{i}^{2} . We are
interested in the class PP(U_{s}^{+}) of nonnegative solutions of (1) in U_{s}^{+} with
vanishing boundary values on \partial U_{s}^{+}\backslash \{0\} . The first P indicates the depen-

dence of the class on the density P and the second P stands for the initial

of the term positive (nonnegative) so that the class associated with

another density Q is denoted by QP(U_{s}^{+}) . It is convenient to consider the

subclass PP_{1}(U_{s}^{+})\equiv\{u\in PP(U_{s}^{+}):u(x_{s})=1\} , where xs is an arbitrary point

fixed in U_{S}^{+}\tau Since PP_{1}(U_{s}^{+}) is a compact and convex set with respect to

almost uniform convergence on U_{s}^{+} , we can consider the set ex. PP_{1}(U_{s}^{+})

of extreme points of PP_{1}(U_{S}^{+}) and the cardinal number \#(ex. PP_{1}(U_{S}^{+})) of

ex. PP_{1}(U_{s}^{+}) which will be referred to as the Picard dimension of ( ^{U_{S}^{+}}

at x=0, \dim(U_{S}^{+}. P) in notation:
\dim(U_{S}^{+}, P)=\#(ex.PP_{1}(U_{S}^{+})) .

In particular we say that the Picard principle is valid for (^{U_{s}^{+}} at x=0
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if \dim(U_{s}^{+}, P)=1 .
A density P(x) is said to be radial if it depends only upon |x| .

T. Tada showed in [15] \dim(U^{+}, P)=1 or c for any nonnegative radial
density on U^{+} if m=2 , where c is the cardinal number of a continuum.
M. Murata [10] showed \dim(U_{s}^{+}, P)=1 if P is locally H\"older continuous
on the entire \overline{U}_{s}^{+} and if there exists the Green’s function of (1) on U_{s}^{+} .
Also Y. Pinchover [14] showed \dim(U_{s}^{+}. P)=1 provided that there exists
the Green’s function of (1) on U_{s}^{+} and P(x)=O(|x|^{-2}) as xarrow 0 .

If P is a density on U^{+} , then (1) is defined on \overline{U}^{+}\backslash \{0\} . In this case
we will show:

Proposition There exists a t in (0, 1] such that

\dim(U_{s}^{+}, P)=\dim(U_{t}^{+}, P)

for any s in (0, t] .

Hence we can define for a density P on U^{+} the Picard dimension of P
at x=0, \dim P in notation, by

dim P= \lim_{s\downarrow 0}\dim(U_{s}^{+}, P) .

In particular we say that the Picard principle is valid for a density P at
x=0 if \dim P=1 .

In contrast with U_{s}^{+} we take a punctured ball U_{s}=\{x\in R^{m} : 0<|x|<s\}

(0<s\leq 1) in R^{m}\backslash \{0\} and we may regard x=0 as an ideal boundary comp0-

nent of the space R^{m}\backslash \{0\} so that the relative boundary of U_{s} is \Gamma_{s}\equiv\{x\in

R^{m} : |x|=s}. But in this case we denote by \overline{U}_{s} the relative closure U_{s}\cup\Gamma_{s}

of U_{s} in R^{m}\backslash \{0\} . We set U_{1}=U and \Gamma_{1}=\Gamma If \tilde{P} is a density defined on
U, i.e. a locally H\"older continuous function defined on \overline{U} , then Schr\"odin-
ger equation

L_{\overline{P}}u(x)\equiv-\triangle u(x)+\overline{P}(x)u(x)=0

is defined on \overline{U} . We can consider the class \tilde{P}P(U_{s}) of nonnegative solu-
tions of L_{\overline{P}}u=0 on U_{s} with vanishing boundary values on \Gamma_{s} for each s in
(0, 1] . With an arbitrary fixed point \tilde{x}_{s} in U_{s},\tilde{P}P_{1}(U_{s})\equiv\{u\in\tilde{P}P(U_{s}) :
u(\tilde{x}_{s})=1\} is a compact and convex set. The cardinal number of the set
of extreme points of \overline{P}P_{1}(U_{s}) will be referred to as the Picard dimension
of ( U_{s},\tilde{P}) at x=0 , \dim(U_{s},\tilde{P}) in notation (M. Nakai [11]). It was
shown in M. Nakai [12], M. Murata [9] and M. Nakai and T. Tada [13]
that there exists a t in (0, 1] such that
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\dim(U_{s},\tilde{P})=\dim(U_{t},\overline{P})

for each s in (0, t] . Hence by the same way as above the Picard dimen-
sion of the density \overline{P} on U at x=0 and the Picard principle for the density
\tilde{P} at x=0 are defined in [13] (also see M. Nakai [11] and [12]). We say
that for a density \overline{P} on U the homogeneity of Picard dimensions holds at
x=0 if dim \tilde{P}=\dim c\overline{P} for any constant c>0([11], [13]) . In particular we
say that for a density \overline{P} on U the homogeneity of the Picard principle is
valid at x=0 if \dim\tilde{P}=\dim c\tilde{P}=1 for any constant c>0([13]) .

It was shown in M. Kawamura and M. Nakai [7] that for non-
negative radial densities on U the homogeneity of Picard dimensions is
always valid at x=0 . The nonhomogeneity of the Picard principle for
negative radial densities at x=0 is studied in [4] and [5]. The non-
homogeneity of Picard dimensions for signed radial densities is also stud-
ied in T Tada [16].

In anologous to the case of the punctured ball U in which x=0 is an
isolated ideal boundary component, we say that for a density P on U^{+} the
homogeneity of Picard dimensions holds at x=0 if dim cP=\dim P for any
c>0 . In particular we say that for a density P on U^{+} the homogeneity of
the Picard principle is valid at x=0 if dim cP=\dim P=1 for any c>0 .

Consider the negative densities Q and R on U^{+} given by

Q(x) \equiv-\frac{1}{4|x|^{2}}\{m^{2}+\frac{1}{(\log\frac{\eta}{|x|})^{2}}+\frac{l}{(\log\frac{\eta}{|x|}\cdot 1og\log\frac{\eta}{|x|})^{2}}\}
(2)

and

R(x) \equiv-\frac{1}{4|x|^{2}}\{m^{2}+\frac{1}{(\log\frac{\eta}{|x|})^{2}}+\frac{2}{(\log\frac{\eta}{|x|}\cdot 1og\log\frac{\eta}{|x|})^{2}}\} , (3)

where \eta is any fixed constant with \eta>e^{e} . The purpose of this paper is to
show the following result which states that the homogeneity of the Picard
principle does not necessarily hold at x=0 for negative densities on U^{+} .

Theorem The density Q given by (2) satisfies
dim Q=1 but \dim cQ=0

for any c>1 . The density R given by (3) satisfies
\dim R=0 but \dim cR=1
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for any 0<c<1 .

To show the theorem we will see that \dim(U_{s}^{+}, Q)=1 and \dim(U_{s}^{+}, R)

=0 for any s in (0, 1] so that we can take 1 as the value of t in the prop0-
sition for densities Q and R. But in the latter half of the theorem we will
see that, whenever we select a constant c\in(0,1) , we merely can take a t

in (0, 1) depending upon the constant c .

1. We begin with some definitions. A function u is a solution of (1) in
U_{s}^{+} if u is a C^{2} function on U_{s}^{+} which satisfies (1) in U_{s}^{+} . A lower
semicontinuous, lower finite function v on U_{s}^{+} is a supersolution of (1) in
U_{s}^{+} if v(x)\geq u(x) in B whenever v(x)\geq u(x) on the boundary \partial B of B for
any ball B in U_{s}^{+} with \overline{B}\subset U_{s}^{+} and for any solution u(x) of (1) in B con-
tinuous in \overline{B} . If v(x) is a C^{2} function on U_{s}^{+} , then v(x) is a supersolution
of (1) on U_{s}^{+} if and only if L_{P}v(x)\geq 0 on U_{s}^{+} . A potential p of (1) on U_{s}^{+}

is a positive supersolution of (1) in U_{s}^{+} such that, if p\geq u holds on U_{s}^{+} for
some solution u of (1) in U_{s}^{+} , then u\leq 0 on U_{s}^{+} . We take any point y
fixed in U_{s}^{+} . By the Green’s function G_{s}(x, y) of (1) on U_{s}^{+}(with its pole
y in U_{S}^{+} ) we mean, if it exists, the potential of (1) on U_{s}^{+} satisfying
LPGs(x,y) =\delta_{y}(x) on U_{s}^{+} , where \delta_{y}(x) is the Dirac measure at y . The
pair ( U_{s}^{+}, \mathscr{H}_{P}) with the sheaf \mathscr{H}_{P} of solutions of (1) on U_{s}^{+} is a Brelot’s
harmonic space. There exits a potential of (1) on U_{s}^{+} if and only if there
exists the Green’s function G_{s}(x, y) of (1) on U_{s}^{+} ([2], [6], etc.).

Choose the negative radial densities \tilde{Q} and \tilde{R} on U given by

\tilde{Q}(x)\equiv-\frac{1}{4|x|^{2}}\{(m-2)^{2}+\frac{1}{(\log\frac{\eta}{|x|})^{2}}+\frac{l}{(\log\frac{\eta}{|x|}\cdot 1og\log\frac{\eta}{|x|})^{2}}\} (4)

and

\tilde{R}(x)\equiv-\frac{1}{4|x|^{2}}\{(m-2)^{2}+\frac{1}{(\log\frac{\eta}{|x|})^{2}}+\frac{2}{(\log\frac{\eta}{|x|}\cdot 1og\log\frac{\eta}{|x|})^{2}}\} . (5)

We set \log_{2}|x|=\log\log|x| and \log_{3}|x|=\log\log_{2}|x| . Take the functions \Phi(x)

and \tilde{q}(x) given by

\Phi(x)\equiv|x|^{\frac{m-2}{2}}\{\log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|}\}^{\frac{1}{2}}

\tilde{q}(x)\equiv\log_{3}\frac{\eta}{|x|} .
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Consider the Schr\"odinger equations

L_{\overline{Q}}u(x)\equiv(-\triangle+\tilde{Q}(x))u(x)=0 (6)

L_{\overline{R}}u(x)\equiv(-\triangle+\tilde{R}(x))u(x)=0 (7)

on \overline{U}_{s} with 0<s<1 .

Lemma 1 ([5]) \Phi(x) and \Phi(x)\tilde{q}(x) are linearly independent solutions of
(6) on U.

Lemma 2 ([5]) \dim(U_{s},\tilde{R})=0 for any s in (0, 1] .
We also use the following boundary Harnack principle ([1]):

Lemma 3 Take any r in (0, s) and an arbitrary a in (0, r) with
a+r<s . Let u and v be any positive solutions of (1) on U_{r+a}^{+}\backslash \overline{U}_{r-a}^{+}

which vanish continuously on \partial(U_{r+a}^{+}\backslash U_{r-a}^{+})\backslash (\Gamma_{r+a}^{+}\cup\Gamma_{r-a}^{+}) . Then there
exists a positive constant c>1 such that

\frac{u(x)}{u(x’)}\leq c\frac{v(x)}{v(x’)}

holds for any u, v, x and x’ in \Gamma_{r}^{+} .

2. We denote by \omega=(\omega_{1}, \cdots, \omega_{m}) the coordinates of the unit sphere \Gamma so
that the spherical coordinates of a point x\neq 0 can be expressed as r\omega with
r=|x| and \omega=x/|x| . The Laplacian \triangle=\triangle_{X}=\triangle_{r\omega} is decomposed into the
form

\triangle_{X}=\triangle_{r}+r^{-2}\triangle_{\omega}

where \triangle_{r}=\partial^{2}/\partial r^{2}+(m-1)r^{-1}\partial/\partial r and \triangle_{\omega} is the Laplace-Beltrami opera-
tor on \Gamma with respect to the natural Riemannian metric on \Gamma induced by
the Euclidean metric on R^{m}- Since the coordinate function \omega_{m} is a spheri-
cal harmonic of order one, we have \triangle_{\omega}\omega_{m}=-(m-1)\omega_{m} on \Gamma(cf., e.g. [8]).
We consider the function p(x) on U^{+} given by

p(x)=p(r\omega)\equiv\Phi(r)\omega_{m} .

Then it is easy to see that

\triangle p(x)=(\triangle_{r}+\frac{1}{r^{2}}\triangle_{\omega})\Phi(r)\omega_{m}=(\triangle_{r}\beta(r))\omega_{m}+\frac{1}{r^{2}}p(r)\triangle_{\omega}\omega_{m}

on U^{+} Since \tilde{Q}(x)-(m-1)/|x|^{2}=Q(x) on \overline{U}^{+}\backslash \{0\} , the function p(x) is a
solution of L_{Q}u=0 on U^{+} where Q(x) is the density given by (2). Since
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\Phi (x)\overline{q}(x) is also a solution of (6) on U , by the same computation
\tilde{q}(x)p(x) is also a solution of L_{Q}u=0 on U^{+}

Choose any s in (0, 1] and take an arbitrary t fixed in (0, s) . We set

h(x)= \frac{\overline{q}(x)-\tilde{q}(s)}{\tilde{q}(t)-\overline{q}(s)}p(x)

which is a solution of L_{Q}u=0 on U_{s}^{+}\backslash \overline{U}_{t}^{+} which coincides with p(x) on \Gamma_{t}^{+}

and 0 on \Gamma_{s}^{+} Observe that

\frac{\tilde{q}(x)-\overline{q}(s)}{\tilde{q}(t)-\tilde{q}(s)}>1 ( <1 , resp.)

for |x|<t ( >t , resp.). In view of this we see that

h(x)>p(x) ( h(x)<p(x) , resp.)

for |x|<t ( >t , resp.). Consider the function v(x) given by h(x) on U_{S}^{+}\backslash \overline{U}_{t}^{+}

and p(x) on \overline{U}_{t}^{+} Since

v(x)= \min(h(x), p(x)) (x\in U_{s}^{+}) ,

v(x) is a positive supersolution of L_{Q}u=0 on U_{s}^{+} . The unicity theorem
assures that v(x) is not a solution of L_{Q}u=0 on U_{s}^{+} by virtue of the fact
that h(x)\neq p(x) on U_{s}^{+} . Hence by the Riesz decomposition theorem (cf.,
e.g. [2], [6] ) there exists a potential and thus the Green’s function of L_{Q}u=0

on U_{s}^{+} . Observe that Q(x)=O(|x|^{-2}) as xarrow 0 . Theorem 7. 1 in [14]
shows that dim ( U_{s}^{+}, P)=1 if there exists the Green’s function of (1) on U_{s}^{+}

and P(x)=O(|x|^{-2}) as xarrow 0 . Therefore dim ( U_{s}^{+}, Q)=1 for any s in (0, 1] .
We have shown:

Assertion Let Q be the density on U^{+} given by (2). Then \dim(U_{s}^{+}, Q)=1

for any s in (0, 1] and hence \dim Q=1 .

3. Proof of Theorem. For the density Q given by (2) suppose that there
exists a positive solution h in cQP(U_{s}^{+}) for some constant c>1 and some
s in (0, 1] . Consider the function h^{*}(x) given by

h^{*}(x)= \int_{\Gamma^{+}}h(r\omega)\omega_{m}d\omega .

For x= (x_{1^{ }}, \cdots , Xm-l,x_{m} ) we denote x_{1} , \cdots , x_{m-1} by x’ so that x can be ex-
pressed as (x’, x_{m}) . We also take the function \tilde{h}(x) given by

\overline{h}(x)=\{

h(x, x_{m}) if x_{m}>0

-h(x’,-x_{m}) if x_{m}\leq 0 .
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Since the density cQ is radial, we may regard cQ as a density on U_{s} so
that \triangle\tilde{h}(x)=cQ(x)\tilde{h}(x) holds on U_{s} . Since \overline{h}(x’,x_{m})\omega_{m}=\tilde{h}(x’,-x_{m})(-\omega_{m})

for any x=(x’,x_{m}) in U_{s} , we have 2h^{*}(x)= \int_{\Gamma}\tilde{h}(r\omega)\omega_{m}d\omega . Since \Gamma is com-
pact, the Green’s formula yields that

\int_{\Gamma}(\triangle_{\omega}\tilde{h}(r\omega)\omega_{m}-\tilde{h}(r\omega)\triangle_{\omega}\omega_{m})d\omega=0 .

Also we observe that

2 \triangle_{r}h^{*}(x)=\int_{\Gamma}\triangle_{r}\tilde{h}(r\omega)\omega_{m}d\omega=\int_{\Gamma}\{(\triangle-\frac{1}{r^{2}}\triangle_{\omega})\tilde{h}(r\omega)\}\omega_{m}d\omega .

Therefore we have

\int_{\Gamma}\triangle\tilde{h}(r\omega)\omega_{m}d\omega=cQ(x)\int_{\Gamma}\tilde{h}(r\omega)\omega_{m}d\omega=2cQ(x)h^{*}(x)

and

- \frac{1}{r^{2}}\int_{\Gamma}\triangle_{\omega}\tilde{h}(r\omega)\omega_{m}d\omega=-\frac{1}{r^{2}}\int_{\Gamma}\tilde{h}(r\omega)\triangle_{\omega}\omega_{m}d\omega

= \frac{m-1}{|x|^{2}}\int_{\Gamma}\tilde{h}(r\omega)\omega_{m}d\omega=2\frac{m-1}{|x|^{2}}h^{*}(x) .

It follows from these identities that

\triangle_{r}h^{*}(x)=(cQ(x)+\frac{m-1}{|x|^{2}})h^{*}(x)

on U_{s} . For any densities \tilde{S}(x) and \tilde{T}(x) on U we write \tilde{S}(x)\prec\overline{T}(x) if
there exists an s in (0, 1] such that \overline{S}(x)<\tilde{T}(x) on U_{s} . Observe that the
relation

4|x|^{2}( \log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}(\tilde{R}(x)-cQ(x)-\frac{m-1}{|x|^{2}})

=(c-1) \{m^{2}(\log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}+(\log_{2}\frac{\eta}{|x|})^{2}+1\}-1\succ 0

is valid for any constant c>1 where \overline{R} is the density given by (5). There-
fore we have cQ(x)+(m-1)/|x|^{2}\prec\tilde{R} for any c>1 . Since

L_{\overline{R}}h^{*}(x)=(- \triangle+cQ(x)+\frac{m-1}{|x|^{2}})h^{*}(x)+(\tilde{R}(x)-cQ(x)-\frac{m-1}{|x|^{2}})h^{*}(x)

=( \tilde{R}(x)-cQ(x)-\frac{m-1}{|x|^{2}})h^{*}(x)\succ 0 ,

there exists a t in (0, 1] such that L - h^{*}(x)>0 on U_{s} for any s in (0, t) so
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that h^{*} is a positive supersolution of (7) on U_{s} but not a solution of (7).
Therefore there exists the Green’s function of (7) on U_{s} . It is known
([3]) that \dim(U_{s},\tilde{P})=1 whenever \tilde{P}(x)=O(|x|^{-2}) as xarrow 0 and there exists
the Green’s function of L - u=0 on U_{s} . Hence dim ( U_{s},\overline{R})=1 . But this
contradicts Lemma 2. Thus dim ( U_{s}^{+}, cQ)=0 for any c>1 and every s in
(0, 1] and a fortiori dim cQ=0 for any c>1 . From this and the above
assertion the first part of the theorem follows.

We next consider the density R on U^{+} given by (3) and suppose that
there exists a positive solution u in RP(U_{s}^{+}) for some s in (0, 1] . We set

u^{*}(x)= \int_{\Gamma^{+}}u(r\omega)\omega_{m}d\omega

and

\tilde{u}(x)=\{

u(x’,x_{m}) if x_{m}>0

-u(x’,-x_{m}) if x_{m}\leq 0 .

Then we have

2 \triangle_{r}u^{*}(x)=\int_{\Gamma}\{(\triangle-\frac{1}{r^{2}}\triangle_{\omega})\overline{u}(r\omega)\}\omega_{m}d\omega .

The density R(x) is radial so that we may consider R(x) as a radial den-
sity on U. Then by the same method as in the proof of the first part of
Theorem we deduce that

\int_{\Gamma}\triangle\tilde{u}(r\omega)\omega_{m}d\omega=2R(x)u^{*}(x)

and

- \frac{1}{r^{2}}\int_{\Gamma}\triangle_{\omega}\overline{u}(r\omega)\omega_{m}d\omega=-\frac{1}{r^{2}}\int_{\Gamma}\tilde{u}(r\omega)\triangle_{\omega}\omega_{m}d\omega=2\frac{m-1}{|x|^{2}}u^{*}(x) .

Since u^{*}(x) is radial, we may regard u^{*}(x) as a positive radial function
on U_{s} . Therefore we have \triangle_{r}u^{*}(x)=(R(x)+(m-1)/|x|^{2})u^{*}(x) on U_{s} .
Since \tilde{R}(x)=R(x)+(m-1)/|x|^{2} on U_{s} , u^{*}(x) is a positive radial solution of
(7) on U_{s} . This contradicts Lemma 2. Therefore dim ( U_{s}^{+}. R)=0 for any
s in (0, 1] .

To complete the proof of Theorem we only have to show that
dim (cR)=1 for any c in (0, 1) . For any densities S(x) and T(x) on U^{+}

we also write S(x)\prec T(x) if there exists an s in (0, 1] such that S(x)<
T(x) on U_{s}^{+} . We observe that the following relation is valid for any c in
(0, 1) :



Nonhomogeneity of Picard dimensions on the half ball 147

4|x|^{2}( \log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}(cR(x)-Q(x))

=(1-c) \{m^{2}(\log\frac{\eta}{|x|}\log_{2}\frac{\eta}{|x|})^{2}+(\log_{2}\frac{\eta}{|x|})^{2}+1\}-c\succ 0 .

Therefore we have Q(x)\prec cR(x) for any c in (0, 1) . By the Assertion
there exists a positive solution u(x) in QP(U^{+}) . Since we have

L_{cR}u(x)=L_{Q}u(x)+(cR(x)-Q(x))u(x)=(cR(x)-Q(x))u(x)\succ 0 ,

there exists a t\in(0,1) such that L_{cR}u(x)>0 on U_{S}^{+} for any s\in(0, t) so
that u(x) is a positive supersolution but not a solution of L_{cR}u=0 in U_{s}^{+} .
Also cR(x)=O(|x|^{-2}) as xarrow 0 . Therefore Theorem 7. 1 in [14] yields that
\dim(U_{s}^{+}. cR)=1 for any s in (0, t) and a fortiori dim cR=1 for any c in
(0, 1) . The proof of Theorem is herewith complete.

4. Proof of Proposition. The proposition will be shown by the minor
modification of the method in [12] and [13] where it was shown that the
existence of a t such that there exists a bijective positive linear mapping
of \tilde{P}P(U_{t}) onto \tilde{P}P(U_{s}) for any s in (0, t) .

We denote by \hat{C}(\overline{\Gamma}_{t}^{+}) the space of all continuous functions \varphi on the
closure \overline{\Gamma}_{t}^{+} of \Gamma_{t}^{+} with \varphi(x’, 0)=0 and for each \varphi in \hat{C}(\overline{\Gamma}_{t}^{+}) we set

\tilde{\varphi}(x)=\{

\varphi(x’,x_{m}) if x_{m}>0

-\varphi(x’,-x_{m}) if x_{m}\leq 0 .

Then \tilde{\varphi} is in the space \hat{C}(\Gamma_{t}) of all continuous functions \emptyset on \Gamma_{t} which
satisfy \phi(x’,-x_{m})=-\phi(x’,x_{m}) for each x=(x’,x_{m})\in\Gamma_{t} . Conversely if \emptyset is in
\overline{C}(\Gamma_{t}) , then \phi|_{\overline{\Gamma}_{t}^{+}} is in \hat{C}(\overline{\Gamma}_{t}^{+}) . Therefore \hat{C}(\overline{\Gamma}_{t}^{+}) is the restriction of \hat{C}(\Gamma_{t})

to \overline{\Gamma}_{t}^{+} The space \hat{C}(\Gamma_{t}) is a closed subspace of the Banach space C(\Gamma_{t})

of all continuous functions on \Gamma_{t} equipped with the \sup-norm on \Gamma_{t} .
Therefore \hat{C}(\overline{\Gamma}_{t}^{+}) may be regarded as a Banach space for any t in (0, 1] .

If PP(U_{t}^{+})=\{0\} for any 0<t<1 , then the proposition trivially holds.
If PP(U_{to}^{+})\neq\{0\} for some t_{0} in (0, 1] , then there exists a positive solution h
in PP(U_{to}^{+}) . Take any t in (0, t_{0}) . Then we have h>0 on U_{t}^{+}\cup\Gamma_{t}^{+} . We
choose any s fixed in (0, t) and any r in (0, s) . Denote by D_{s,r}h the solu-
tion of (1) on U_{s}^{+}\backslash \overline{U}_{r}^{+} with boundary values h on \Gamma_{s}^{+} and zero on \partial(U_{s}^{+}\backslash

U_{r}^{+})\backslash \Gamma_{s}^{+} . Then the minimum principle yields that h\geq D_{s.r}h on U_{s}^{+}\backslash \overline{U}_{r}^{+} for
every r in (0, s) . Hence we have h \geq D_{s}h\equiv\lim_{r\downarrow 0}D_{s,r}h on U_{s}^{+} . We also
denote by K_{s}h the solution of (1) on U_{t}^{+}\backslash \overline{U}_{s}^{+} with boundary values h on
\Gamma_{s}^{+} and zero on \partial(U_{t}^{+}\backslash U_{s}^{+})\backslash \Gamma_{s}^{+} Then K_{s}h<h on U_{t}^{+}\backslash \overline{U}_{s}^{+} . Setting v(x)=
D_{s}h on U_{s}^{+} and v(x)=K_{s}h on U_{t}^{+}\backslash U_{s}^{+} , v(x) is a positive supersolution of
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(1) but not a solution of (1) on U_{t}^{+} . Therefore there exists the Green’s
function of (1) on U_{t}^{+} for any t in (0, t_{0}) . We fix any such t in (0, t_{0}) and
take any s in (0, t) .

For any u in PP(U_{t}^{+}) , we set

\tau u\equiv u-D_{S}u . (8)

Then we have u-D_{s}u\geq 0 on U_{s}^{+} . The mapping \tau given by (8) is a posi-
tive, homogeneous and additive operator of PP(U_{t}^{+}) into PP(U_{s}^{+}) .

We now show that \tau is injective, i.e. if \tau u=\tau v on U_{s}^{+} fo some u , v in
PP(U_{t}^{+}) , then w\equiv u-v=0 on U_{t}^{+} . For this it sufficies to show that w=0
on \Gamma_{s}^{+} by the minimum principle. Suppose that w\neq 0 on \Gamma_{s}^{+} . Considering
-w instead of w if necessary, we assume that \sup_{\Gamma_{s}^{+}}w>0 . Then there
exists a point x_{s}^{0} in \Gamma_{s}^{+} with w(x_{s}^{0})>0 . We set c \equiv\inf\{\mathcal{A}\in R:\mathcal{A}h\geq w on
\Gamma_{s}^{+}\} . Since u+v>w on \Gamma_{s}^{+} . c is a positive finite constant by Lemma 3.
Also since ch - w\geq 0 on \partial(U_{t}^{+}\backslash U_{s}^{+}) , the minimum principle yields that
ch - w>0 on U_{t}^{+}\backslash \overline{U}_{s}^{+} . Owing to the identity w=D_{s,r}w on \Gamma_{s}^{+} . ch-D_{s,r}w\geq 0

is valid on \partial(U_{S}^{+}\backslash U_{r}^{+}) and hence on U_{s}^{+}\backslash \overline{U}_{r}^{+} . As rarrow 0 we obtain that
ch-D_{s}w\geq 0 on U_{s}^{+} . Also, since \tau u=\tau v on U_{S}^{+} , the identity w=D_{s}w on
U_{s}^{+} implies that ch - w\geq 0 on U_{s}^{+} Therefore ch - w\geq 0 on U_{t}^{+} . The mini-
mum principle yields that ch - w>0 on U_{t}^{+} . Applying Lemma 3 to solu-
tions ch - w and h, there exists a constant c_{1}>1 such that (h(x)/h(x_{s}^{0}))\leq

c_{1}((ch(x)-w(x))/(ch(x_{s}^{0})-w(x_{s}^{0}))) on \Gamma_{s-}^{+} Hence

w \leq c(1-\frac{1}{c_{1}}(1-\frac{w(x_{s}^{0})}{ch(x_{s}^{0})}))h

on \Gamma_{s}^{+} . But this contradicts the definition of c . Thus we have w(x)=0 on
\Gamma_{s}^{+} and a fortiori \tau is injective.

We next show that \tau is surjective. We show that there exists a func-
tion u in PP(U_{t}^{+}) with \tau u=v for any v in PP(U_{s}^{+}) . Take an r in (0, s)

and for a given \varphi in \hat{C}(\overline{\Gamma}_{r}^{+}) consider the solution K\varphi of (1) on U_{t}^{+}\backslash \overline{U}_{r}^{+}

with boundary values \varphi on \Gamma_{r}^{+} and zero on \partial(U_{t}^{+}\backslash U_{r}^{+})\backslash \Gamma_{r}^{+} . Then K is a
linear and order-preserving mapping of \hat{C}(\overline{\Gamma}_{r}^{+}) into the class of solutions
of (1) on U_{t}^{+}\backslash \overline{U}_{r}^{+} with boundary values zero on \partial(U_{t}^{+}\backslash U_{r}^{+})\backslash \Gamma_{r}^{+} .

For any \varphi in \overline{C}(\overline{\Gamma}_{r}^{+}) we consider the operator T given by

T\varphi=D_{s}(K\varphi|_{\Gamma_{S}^{+}}) .

Then T is a linear operator of \hat{C}(\overline{\Gamma}_{r}^{+}) into itself which is also order-
preserving.
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We fist suppose that the equation

\varphi-T\varphi=v on \Gamma_{r}^{+} (9)

is solved by a function \varphi in \overline{C}(\overline{\Gamma}_{r}^{+}) with \varphi\geq 0 on \Gamma_{r}^{+} for a given v in
PP(U_{s}^{+}) . We set

u=\{
K\varphi on U_{t}^{+}\backslash U_{r}^{+}

D_{s}K\varphi+v on \overline{U}_{s}^{+} .

We observe that K\varphi-(D_{s}K\varphi+v) is equal to \varphi-(T\varphi+v)=0 on \Gamma_{r}^{+} in view
of (9) and is equal to K\varphi-(K\varphi+0)=0 on \Gamma_{s}^{+} . Therefore K\varphi-(D_{s}K\varphi+v)

is a solution of (1) on U_{s}^{+}\backslash \overline{U}_{r}^{+} with boundary values zero on \partial(U_{s}^{+}\backslash U_{r}^{+}) .
Hence K\varphi=D_{s}K\varphi+v on U_{s}^{+}\backslash \overline{U}_{r}^{+} . Therefore u is a well defined solution
of (1) on U_{t}^{+} Since K\varphi=u on \Gamma_{s}^{+}D_{s}K\varphi=D_{s}u on U_{s}^{+} . Thus we have
u-D_{s}u=v , i.e. \tau u=v on U_{s}^{+} . Hence \tau is surjective.

It remains to solve the integral equation (9) for a given v\in PP(U_{s}^{+}) .
We set c= \inf{ c_{0}>0:c_{0}h\geq v on \Gamma_{r}^{+} } which is finite and positive by Lemma
3. Then ch\geq v on \Gamma_{r}^{+} . Since h>0 on \Gamma_{t}^{+} . h>Kh on U_{t}^{+}\backslash \overline{U}_{r}^{+} in view of
the minimum principle. In particular we have h>Kh on \Gamma_{s}^{+} . This in-
equality yields that h\geq D_{s}h>D_{s}Kh on U_{s}^{+} Again applying Lemma 3 to
solutions h-D_{s}Kh and h , there exists a constant c_{1}>1 such that h\leq

c_{1} ( h -Th) on \Gamma_{r_{r}}^{+} Therefore Th\leq(1-1/c_{1})h on \Gamma_{r}^{+} and a fortiori we
have

q \equiv\sup_{\Gamma_{r}^{+}}\frac{Th(x)}{h(x)}<1 .

From this \dot{1}t follows that q^{n}h\geq T^{n}h on \Gamma_{r}^{+} for any positive integer n .
Also T is order-preserving so that the inequality ch\geq v on \Gamma_{r}^{+} implies that
cTh\geq Tv on \Gamma_{r}^{+} Therefore the inequalities q^{n}c||h||\geq q^{n}ch\geq cT^{n}h\geq T^{n}v

are valid where ||\cdot|| is the \sup-norm on \Gamma_{r}^{+} . This implies that ||T^{n}v||\leq

c||h||q^{n} . Therefore \varphi=\sum_{n=0}^{\infty}T^{n}v has \sum_{n=0}^{\infty}c||h||q^{n} as its majorant series
and a fortiori \varphi\in\hat{C}(\overline{\Gamma}_{r}^{+}) with \varphi\geq 0 on \Gamma_{r}^{+}
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