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Nonhomogeneity of Picard dimensions on the half ball

Hideo IMAI
(Received June 21, 1994)

We denote by H™ the upper half space {x=(x1, -, xn)ER™ : xn >0} in
the Euclidean m-space R™(m=>2) and by H™ the closure of H™ with
respect to the one point compactification of R™. Setting 0H m—H™H™
we may view {xeﬁ m. x.=0} as a subset of an ideal boundary éH™ of
H™ and the origin x=0 as an ideal boundary point of H™. Take the
upper half ball Us={x=(x1, =, xn)EH™: |x|<s} (0<s<1) which may be
regarded as a relative neighbourhood of the ideal boundary point x=0 of
H™ The set Ii={xEH™: |x|=s} is a relative boundary of Us and 7s=
(x€8H™: |x|<s} is an ideal boundary of Us. Therefore the boundary
oUs of U and the closure U of Us in H™ are It U 75 and Us U I¥" U
¢, respectively. In particular we set U =U" and IT'=TI*. By a density
P(x) on Ui we mean a locally Holder continuous function P(x) defined
on U:\{0}. Hence P may have a singularity at the ideal boundary point
x=0.

Consider the time independent Schrodinger equation

Leu(x) = —2ulx)+Px)u(x) =0 (1)

defined on U:\{0}, where A is the Laplacian A=2%, ¢*/0xi. We are
interested in the class PP(U{) of nonnegative solutions of (1) in Us with
vanishing boundary values on dUs\{0}. The first P indicates the depen-
dence of the class on the density P and the second P stands for the initial
of the term positive (nonnegative) so that the class associated with
another density @ is denoted by QP(U#). It is convenient to consider the
subclass PP U ={uc PP(U$): u(xs)=1}, where xs is an arbitrary point
fixed in Uf. Since PP.(U#) is a compact and convex set with respect to
almost uniform convergence on U, we can consider the set ex. PP.(Us)
of extreme points of PPi(Uy) and the cardinal number #(ex. PP(UY)) of
ex. PP(U?) which will be referred to as the Picard dimension of (U$, P)
at x=0, dim(Us, P) in notation:

dim(U#, P) = #(ex. PP(UY)).
In particular we say that the Picard principle is valid for (U#, P) at x=0
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if dim(US, P)=1.

A density P(x) is said to be radial if it depends only upon |x]..
T. Tada showed in dim(U", P)=1 or c¢ for any nonnegative radial
density on U*' if m=2, where ¢ is the cardinal number of a continuum.
M. Murata showed dim(Us, P)=1 if P is locally Holder continuous
on the entire Us and if there exists the Green’s function of (1) on Us.
Also Y. Pinchover showed dim(UJ, P)=1 provided that there exists
the Green’s function of (1) on Us and P(x)=0(x|™®) as x— 0.

If Pis a density on U*, then (1) is defined on U*\{0}. In this case
we will show :

Proposition  There exists a t in (0, 1] such that
dim(Us, P) = dim(U?, P)
for any s in (0, t].

Hence we can define for a density P on U* the Picard dimension of P
at x=0, dim P in notation, by

dimP = llilg‘l dim(U¢, P).

In particular we say that the Picard principle is valid for a density P at
x=0 if dim P=1.

In contrast with Us we take a punctured ball Us={xER™: 0<|x|<s}
(0<s<1) in R™\{0} and we may regard x=0 as an ideal boundary compo-
nent of the space R™\{0} so that the relative boundary of Us is [s={x<
R™: |x|=s}. But in this case we denote by Us the relative closure UsUTIs
of Usin R™\{0}. We set Uy=U and I'=TI". If P is a density defined on
U, i.e. a locally Holder continuous function defined on U, then Schrsdin-
ger equation

Lru(x) = —2u(x)+ Plx)u(x) =0

is defined on U. We can consider the class PP(Us) of nonnegative solu-
tions of Lsu=0 on Us with vanishing boundary values on [ for each s in
(0,1]. With an arbitrary fixed point %s in Us, PPi(Us)={u< PP(Us) :
u(%s)=1} is a compact and convex set. The cardinal number of the set
of extreme points of PPi(Us) will be referred to as the Picard dimension
of (Us, P) at x=0, dim(Us, P) in notation (M. Nakai [11]). It was
shown in M. Nakai [12], M. Murata and M. Nakai and T. Tada
that there exists a ¢ in (0, 1] such that
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dim(Us, P) = dim(U,, P)

for each s in (0, ¢]. Hence by the same way as above the Picard dimen-
sion of the density P on U at x=0 and the Picard principle for the density
P at x=0 are defined in (also see M. Nakai and [12]). We say
that for a density P on U the homogeneity of Picard dimensions holds at
x=0 if dim P=dim cP for any constant ¢ >0 ([11], [13]). In particular we
say that for a density P on U the homogeneity of the Picard principle is
valid at x=0 if dim P=dimcP=1 for any constant ¢>0 ([13]).

It was shown in M. Kawamura and M. Nakai that for non-
negative radial densities on U the homogeneity of Picard dimensions is
always valid at x=0. The nonhomogeneity of the Picard principle for
negative radial densities at x=0 is studied in and [5]. The non-
homogeneity of Picard dimensions for signed radial densities is also stud-
ied in T. Tada [16].

In anologous to the case of the punctured ball U in which x=0 is an
isolated ideal boundary component, we say that for a density P on U* the
homogeneity of Picard dimensions holds at x=0 if dimcP=dim P for any
¢>0. In particular we say that for a density P on U" the homogeneity of
the Picard principle is valid at x=0 if dim cP=dim P=1 for any ¢ >0.

Consider the negative densities @ and R on U™ given by

Q()—~%{ Pyt ! } 2)
: 41| " (logﬁ) <log-|xl-loglog1;”|—>

and

R(x)E———l—z{m2+ L Z 2}, (3)
4l <logﬁ) <log|—zrloglog—|¥T)

where 7 is any fixed constant with 7>e®. The purpose of this paper is to
show the following result which states that the homogeneity of the Picard
principle does not necessarily hold at x=0 for negative densities on U™,

Theorem  The density Q given by (2) satisfies
dim@ =1 but dimc@ =0

for any c>1. The density R given by (3) satisfies
dimR =0 but dimcR =1
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for any 0<c<1.

To show the theorem we will see that dim(Us, @)=1 and dim(Us, R)
=0 for any s in (0, 1] so that we can take 1 as the value of ¢ in the propo-
sition for densities @ and R. But in the latter half of the theorem we will
see that, whenever we select a constant ¢<(0, 1), we merely can take a ¢
in (0,1) depending upon the constant c.

1. We begin with some definitions. A function « is a solution of (1) in
Us if u is a C* function on Us which satisfies (1) in Uf. A lower
semicontinuous, lower finite function v on Us is a supersolution of (1) in
Us if v(x)=u(x) in B whenever v(x)>u(x) on the boundary 9B of B for
any ball B in Us with BCUs and for any solution «(x) of (1) in B con-
tinuous in B. If v(x) is a C? function on U, then v(x) is a supersolution
of (1) on U{ if and only if Lpv(x)>0 on Us. A potential p of (1) on Us
is a positive supersolution of (1) in Us such that, if p>u« holds on Ui for
some solution # of (1) in UJ, then #<0 on Us. We take any point y
fixed in US. By the Green’s function Gs(x,y) of (1) on Us(with its pole
y in US) we mean, if it exists, the potential of (1) on U{ satisfying
LpGs(x, y)=0y(x) on U{, where 8,(x) is the Dirac measure at y. The
pair (U, # ;) with the sheaf #, of solutions of (1) on U is a Brelot’s
harmonic space. There exits a potential of (1) on U¢ if and only if there
exists the Green’s function Gs(x, y) of (1) on Us ([2], [6], etc.).
Choose the negative radial densities @ and R on U given by

Qlx) = - 12{<m—z>2+ L+ L } (4)
4T <10g—|£]-> <IogTz—|-loglogﬁ>

and

2

R()z—TlF‘[( —pt—L ot } (5)
* 4 (logﬁ> <Iog-|xll-loglog|—z|->

We set logz|x|=loglog|x| and logs|x|=loglog:|x|. Take the functions #(x)
and ¢(x) given by

[N

plx) = ixl_yz;{logﬁlogzﬁ} :

g(x) = 1og3-|;c’7T.
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Consider the Schrodinger equations
Lou(x) = (=24 Q(x)u(x) = 0 (6)
Lpu(x) = (—A+R(x)ulx) =0 (7)
on Us with 0<s<1.

Lemma 1 ([5]) 5(x) and 3(x)G(x) are linearly independent solutions of
(6) on U.

Lemma 2 ([5)) dim(Us, R)=0 for any s in (0, 1].
We also use the following boundary Harnack principle () :

Lemma 3 Tuake any » in (0,s) and an arbitrary a in (0, ») with
at+r<s. Let u and v be any positive solutions of (1) on Ujid\Ui-a
which vanish continuously on N Uro\UF-o)\(I7dUIV0). Then there
exists a positive constant ¢ >1 such that

(x) (%)
Z(f') = sz)(ff')

holds for any u, v, x and x’ in I'y.

2. We denote by w=(w, ", wm) the coordinates of the unit sphere I' so
that the spherical coordinates of a point x#0 can be expressed as rw with
r=|x| and w=x/|x|. The Laplacian A=Ar=A,, is decomposed into the
form

Ax == Ar—i—r_zAw

where A,=0%/0r*+(m—1)r"'9/dr and A, is the Laplace-Beltrami opera-
tor on I' with respect to the natural Riemannian metric on I induced by
the Euclidean metric on R™. Since the coordinate function wn» is a spheri-
cal harmonic of order one, we have Awwn=—(m—1)wn on I'(cf., eg. [8].
We consider the function p(x) on U* given by

p(x) = p(ro)=3p(r)wn.
Then it is easy to see that

1

£9(0) = (Ar =780 B(P)wn = (A5 wn+ 7 5(r) Down

on U*. Since Q(x)—(m—1)/|xP=Q(x) on TU*\{0}, the function p(x) is a
solution of Lou=0 on U* where Q(x) is the density given by (2). Since
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p(x)g(x) is also a solution of (6) on U, by the same computation
g (x)p(x) is also a solution of Lex=0 on U*.
Choose any s in (0,1] and take an arbitrary ¢ fixed in (0,s). We set

_ dx)—4q(s)
M) =gn=a(s*™
which is a solution of Lex=0 on Us\U; which coincides with »(x) on I}
and 0 on Is. Observe that

%ﬂ(’;g:—gg%>1 (<1, resp.)

for |x|<t(>t, resp.). In view of this we see that
h(x) > p(x)  (h(x)<p(x), resp.)

for |x|<#(>t,resp.). Consider the function v(x) given by k(x) on Ui\U{
and p(x) on U#. Since

v(x) = min(k(x), p(x)) (x€Uy),

v(x) is a positive supersolution of Leu=0 on Us. The unicity theorem
assures that v(x) is not a solution of Lex=0 on Us by virtue of the fact
that Z#(x)#p(x) on Us. Hence by the Riesz decomposition theorem (cf.,
e.g. [2],[6]) there exists a potential and thus the Green’s function of Lou=0
on UJ. Observe that Q(x)=0(x|™®) as x— 0. Theorem 7.1 in [14]
shows that dim(Us, P)=1 if there exists the Green’s function of (1) on Ui
and P(x)=0(x|") as x — 0. Therefore dim(Us, @)=1 for any s in (0, 1].
We have shown :

Assertion Let Q be the density on U* given by (2). Then dim(Us, Q)=1
for any s in (0, 1] and hence dimQ=1.

3. Proof of For the density @ given by (2) suppose that there
exists a positive solution % in cQP(US) for some constant ¢>1 and some
sin (0,1]. Consider the function Z*(x) given by

h*(x) = [ﬂﬁ(rw)w»:dcu.
For x=(x1, ***, Xn-1, xn) we denote xi, ***, Xxm—1 by x’ so that x can be ex-
pressed as (x’, xn). We also take the function %(x) given by

—h(x,—xm) if xn=0.

ﬁ(x)={
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Since th~e density CQ is radial, we may regau’d~ cQ as a dezlsity on Us so
that A k(x)=cQ(x) h(x) holds on Us. Since A(x/xmn)wn=i(x —xn)(— wn)

for any x=(xx») in Us, we have 2h*(x)=£ﬁ(rw)wmdw. Since I' is com-

pact, the Green’s formula yields that

fP(AwlZ(ra))a)m— h(rw) A wwn)do = 0.
Also we observe that

2N h*(x) = /FArIZ(Vw)a)mdw = ﬁ{(A—%Aw)ﬁ(rw)}wmdw.
Therefore we have

/;Aﬁ(rw)a)mda) = cQ(x)/rﬁ(rcu)wmdw = 2¢Q(x)h*(x)
and

—%/PAwﬁ(rw)wmdw = ——iyﬁﬁ(rw)ﬁwwmdw

= ﬂl’lﬁ;[ﬁ(,@)wm‘dw = Z%Tz—lh*(x).

It follows from these identities that

A (x) = (cQ(x)+ ) (x)
on Us. For any densities S(x) and T(x) on U we write S(x)< T(x) if

there exists an s in (0, 1] such that S(x)< T(x) on Us,. Observe that the
relation

4|x|2(10gT£|'10g2Tg]')2(E(x)—CQ(X)*%P‘L)
= (c—1){m2(10g|777|10gz-|xl|)2+(10g2T;7T)2+1}-1 >0

is valid for any constant ¢>1 wherg R is the density given by (5). There-
fore we have cQ(x)+(m—1)/|x?’<R for any ¢>1. Since

Leh*(x) = (—A+cQ(x)+—"";_|z—1)h*(x)+(l?(x)—cQ(x)——m'jzi) 7*(x)
- <z?<x>—cca<x>—%>h*<x> >0,

there exists a ¢ in (0, 1] such that Lzh*(x)>0 on Us for any s in (0, ¢) so
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that #* is a positive supersolution of (7) on Us but not a solution of (7).
Therefore there exists the Green’s function of (7) on Us. It is known
([3]) that dim(Us, P)=1 whenever P(x)=0(|x|?) as x — 0 and there exists
the Green’s function of L;z=0 on Us. Hence dim(Us, R)=1. But this
contradicts Lemma 2. Thus dim(Us, cQ)=0 for any ¢>1 and every s in
(0,1] and a fortiori dimc@Q=0 for any c¢>1. From this and the above
assertion the first part of the theorem follows.

We next consider the density R on U* given by (3) and suppose that
there exists a positive solution » in RP(US) for some s in (0,1]. We set

u*(x) = /I;u(rw)a)mdw

and

oy (ulxixm) if xn>0
a(x) = {—u(xf—xm) if xn<0.

Then we have
N\ 1 -
20N u*(x) = fr{(A__rz No)i(rw)}ondw.

The density R(x) is radial so that we may consider R(x) as a radial den-
sity on U. Then by the same method as in the proof of the first part of
we deduce that

ﬁ Aa(re)ondw = 2R(x)u*(x)

and

—%ﬁAwd(ny)wmda} = —%Z—ﬁd(rw)Awwmdw = Z%u*(x).

Since u*(x) is radial, we may regard «*(x) as a positive radial function
on Us. Therefore we have A-u*(x)=(R(x)+(m—1)/|x)u*(x) on U..
Since R(x)=R(x)+(m—1)/|x]* on Us, u*(x) is a positive radial solution of
(7) on Us. This contradicts Lemma 2. Therefore dim(Us, R)=0 for any
s in (0, 1].

To complete the proof of we only have to show that
dim(cR) =1 for any c in (0,1). For any densities S(x) and 7(x) on U*
we also write S(x)< T'(x) if there exists an s in (0, 1] such that S(x)<

T(x) on Us. We observe that the following relation is valid for any c¢ in
(0,1):
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4|x|2(10g—,z—llogz|—;7|')2(CR(x) —Q(x))
- <1—c){mZ(logﬂ—llogzﬁ)u(1og2ﬁ)2+1}—c>o.

Therefore we have Q(x)<cR(x) for any c¢ in (0,1). By the Assertion
there exists a positive solution #(x) in QP(U"). Since we have

L gu(x) = Lou(x)+(cR(x)— Q(x))u(x) = (cR(x)— Q(x))u(x) > 0,

there exists a ¢€(0,1) such that Lu(x)>0 on U for any s€(0, ) so
that «(x) is a positive supersolution but not a solution of L_z=0 in Uy,
Also cR(x)=0(|x|"?) as x — 0. Therefore Theorem 7.1 in yields that

dim(Us, ¢cR)=1 for any s in (0, ¢) and a fortiori dimcR=1 for any ¢ in
(0,1). The proof of is herewith complete.

4. Proof of The proposition will be shown by the minor
modification of the method in and where it was shown that the
existence of a ¢ such that there exists a bijective positive linear mapping
of PP(U.) onto PP(Us) for any s in (0, ¢).

We denote by C(I'#) the space of all continuous functions ¢ on the
closure I'i* of I with ¢(x’,0)=0 and for each ¢ in C(I'#) we set

oy [e(xixm) if xn>0
#lx) = {—-qo(xf—xm) if x»<0.

Then ¢ is in the space C(I}) of all continuous functions ¢ on I, which
satisfy ¢(x;—xn)=—¢(x/xn) for each x=(x/x»)EI:. Conversely if ¢ is in
C(I), then ¢|r: is in C(I'#). Therefore C(I'f) is the restriction of C(I')
to I'!. The space C(I}) is a closed subspace of the Banach space C(I,)
of all continuous functions on I} equipped with the sup-norm on I%.
Therefore C(I";*) may be regarded as a Banach space for any ¢ in (0, 1].
If PP(U#)={0} for any 0<¢<1, then the proposition trivially holds.
If PP(UZ)=#{0} for some % in (0, 1], then there exists a positive solution %
in PP(U:). Take any ¢ in (0, 4). Then we have >0 on UrUIT. We
choose any s fixed in (0, #) and any #» in (0,s). Denote by Ds,% the solu-
tion of (1) on U\U? with boundary values % on I+ and zero on d(U:\
A\Is. Then the minimum principle yields that %2> Ds 4 on Ui\U; for
every 7 in (0,s). Hence we have %n>Dsh=lim, :Ds%» on Us. We also
denote by Ksk the solution of (1) on UX\Us with boundary values % on
IS and zero on A(U\USN\IE. Then Kih<h on US\US. Setting v(x)=
Dsh on Us and v(x)=Ksh on U\US, v(x) is a positive supersolution of
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(1) but not a solution of (1) on Us. Therefore there exists the Green’s
function of (1) on U# for any ¢ in (0, t). We fix any such ¢ in (0, %) and
take any s in (0, ¢).

For any # in PP(U:), we set

tu = u—Dsu. (8)

Then we have u—Dsu=>0 on Us. The mapping r given by (8) is a posi-
tive, homogeneous and additive operator of PP(U¢) into PP(UY).

We now show that 7 is injective, i.e. if r7u=rv on Us fo some u, v in
PP(U{), then w=u—v=0 on U7. For this it sufficies to show that w=0
on I's by the minimum principle. Suppose that w#0 on Is. Considering
—w instead of w if necessary, we assume that suprrw>0. Then there
exists a point x? in I's with w(x2)>0. We set c=infl]A€R: Ah=w on
Is}. Since u+v>w on I, ¢ is a positive finite constant by Lemma 3.
Also since ch—w=0 on H(U\US), the minimum principle yields that
ch—w>0 on Uf\Us. Owing to the identity w=2Ds,w on Is", ch— Ds,w=0
is valid on d(US\U7) and hence on US\U;. As » — 0 we obtain that
ch—Dsw=0 on Ud. Also, since ru=rv on Us, the identity w=Dsw on
Us implies that ch—w=0 on Us. Therefore ch—w=0 on U{. The mini-
mum principle yields that ck—w>0 on U?. Applying to solu-
tions ch—w and %, there exists a constant ¢:>1 such that (A(x)/h(x?))<
a((ch(x)—w(x))/(ch(x3)—w(x?))) on I's. Hence

L
on Iy. But this contradicts the definition of ¢. Thus we have w(x)=0 on
I's and a fortiori r is injective.

We next show that r is surjective. We show that there exists a func-
tion # in PP(U{) with ru=v for any v in PP(U{). Take an # in (0, s)
and for a given ¢ in C(I'}') consider the solution K¢ of (1) on U\U/
with boundary values ¢ on Iy and zero on o(U\UF)\IY. Then K is a
linear and order-preserving mapping of C(I/') into the class of solutions
of (1) on U#\U; with boundary values zero on d(UF\U)\IT.

For any ¢ in C(I';') we consider the operator T given by
T = Ds(Kolr).

Then T is a linear operator of C(I';) into itself which is also order-
preserving.
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We fist suppose that the equation
p—Teo=v on I} (9)

is solved by a function ¢ in C(I’7) with ¢=0 on I} for a given v in
PP(US). We set

u:{Kgo on UNU/S
DsKo+v on Us.

We observe that Keo—(DsKe+v) is equal to ¢—(Te+v)=0 on I7 in view
of (9) and is equal to Ko—(K¢+0)=0 on Is. Therefore Ke¢—(DsKe+v)
is a solution of (1) on US\U; with boundary values zero on (U:s\U;).
Hence K¢=DsKeo+v on US\U;S. Therefore u is a well defined solution
of (1) on U#. Since Keo=u on Is, DsKe=Dsu on Us. Thus we have
u—Dsu=v, i.e. tu=v on Us. Hence 7 is surjective.

It remains to solve the integral equation (9) for a given v PP(U5).
We set c=inf{co>0: coh=v on I} which is finite and positive by
3. Then ch=v on Iy. Since 2>0 on I, h>Kh on Uf\U; in view of
the minimum principle. In particular we have 2>Kh on Is. This in-
equality yields that #=Dsh>DsKh on Us. Again applying to
solutions 2—DsKh and &, there exists a constant ¢:>1 such that 2<
cilh—Th) on IY. Therefore Th<(1—1/ci)h on I} and a fortiori we
have

_ Th(x)
4 = Sup—j 0y <1.

From this it follows that ¢"2>7T"h on I7 for any positive integer .
Also T is order-preserving so that the inequality cZ=v on I implies that
¢cTh=Tv on IY. Therefore the inequalities g"c||k||=q"ch=cT"h=T"v
are valid where is the sup-norm on IY. This implies that ||7™||<
c|lzllg”. Therefore p=225-0T"v has Dn-ocl||k|lg” as its majorant series
and a fortiori o€ C(I'}') with ¢=0 on I}
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