A note on extreme norms on \mathbb{R}^2

Kichi-Suke Saito*, Ken-Ichi Mitani and Naoto Komuro

(Received January 13, 2011; Revised January 13, 2012)

Abstract. We denote by AN_2 the set of all absolute normalized norms on \mathbb{R}^2 . It is known that the set AN_2 and the set of all continuous convex functions ψ on [0,1] with $\max\{1-t,t\} \leq \psi(t) \leq 1$ for $t \in [0,1]$ (denoted by Ψ_2) are in a one to one correspondence under the equation $\psi(t) = \|(1-t,t)\|$. Recently, we characterized extreme points of AN_2 by considering Ψ_2 . In this paper we give another proof of this result.

Key words: absolute normalized norm, extreme point.

1. Introduction and preliminaries

A norm $\|\cdot\|$ on \mathbb{R}^2 is said to be absolute if $\|(x_1, x_2)\| = \|(|x_1|, |x_2|)\|$ for all $x_1, x_2 \in \mathbb{R}$, and normalized if $\|(1,0)\| = \|(0,1)\| = 1$. The ℓ_p -norms $\|\cdot\|_p$ $(1 \le p \le \infty)$ are basic examples:

$$\|(x_1, x_2)\|_p = \begin{cases} (|x_1|^p + |x_2|^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{|x_1|, |x_2|\} & \text{if } p = \infty. \end{cases}$$

Let AN_2 be the family of all absolute normalized norms on \mathbb{R}^2 .

Let Ψ_2 be the set of all continuous convex functions on the interval [0,1] satisfying $\max\{1-t,t\} \leq \psi(t) \leq 1$ for $t \in [0,1]$. Then by [1], AN_2 and Ψ_2 are in a one-to-one correspondence with $\psi(t) = \|(1-t,t)\|$ for $t \in [0,1]$ and

$$\|(x_1, x_2)\|_{\psi} = \begin{cases} (|x_1| + |x_2|)\psi\left(\frac{|x_2|}{|x_1| + |x_2|}\right) & \text{if } (x_1, x_2) \neq (0, 0), \\ 0 & \text{if } (x_1, x_2) = (0, 0) \end{cases}$$

(see also [5], [7], [6]). For ℓ_p -norm $\|\cdot\|_p$, the corresponding convex function

²⁰⁰⁰ Mathematics Subject Classification: 46B20, 46B25.

^{*}Corresponding author.

The first author was supported in part by Grant-in-Aid for Scientific Research (C), 23540189, Japan Society for the Promotion of Science.

 ψ_p is

$$\psi_p(t) = \begin{cases} ((1-t)^p + t^p)^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1-t, t\} & \text{if } p = \infty. \end{cases}$$

We consider the convex structure of the set AN_2 in the sense that

$$\|\cdot\|, \|\cdot\|' \in AN_2, \ \lambda \in [0,1] \Rightarrow (1-\lambda)\|\cdot\| + \lambda\|\cdot\|' \in AN_2.$$

Note that Ψ_2 also has its own convex structure, and the correspondence $\psi \to \|\cdot\|_{\psi}$ preserves the operation to take a convex combination. A norm $\|\cdot\| \in AN_2$ is an *extreme point* of AN_2 if

$$\|\cdot\| = \frac{1}{2}(\|\cdot\|' + \|\cdot\|''), \ \|\cdot\|', \|\cdot\|'' \in AN_2 \Rightarrow \|\cdot\|' = \|\cdot\|''.$$

The definition of extreme point of Ψ_2 is similar to that of AN_2 . It is easy to see that ψ is an extreme point of Ψ_2 if and only if $\|\cdot\|_{\psi}$ is an extreme point of AN_2 (see [4]).

As in [4], we determined the set of all extreme points of AN_2 by considering the set Ψ_2 . After that, the authors were informed by Professor P. N. Dowling about the result of R. Grzaślewicz [2], which solved a problem posed by Professor A. Pietsch at the Winter School on Functional Analysis in January 1978 (cf. [8]). The method in [4] is different from that of R. Grzaślewicz [2].

The main results are stated as follows. Let $\psi'_L(1/2)$ (resp. $\psi'_R(1/2)$) be the left (resp. the right) derivative of ψ at t = 1/2.

Theorem 1 Let $\psi \in \Psi_2$. We define a function φ as $\varphi = 2\psi - \psi_{\infty}$.

(i) If $\psi_R'(1/2) \ge \psi_L'(1/2) + 1$, then $\varphi \in \Psi_2$ and

$$\psi = \frac{\varphi + \psi_{\infty}}{2}.$$

(ii) Let $\psi'_R(1/2) < \psi'_L(1/2) + 1$. Then $\varphi \notin \Psi_2$. However, we can find a function $\varphi_0 \in \Psi_2$ with

$$\varphi_0(t) = \begin{cases} \varphi(t) & \text{if } t \in [0, s_0] \cup [t_0, 1], \\ \frac{\varphi(t_0) - \varphi(s_0)}{t_0 - s_0} t + \frac{\varphi(s_0)t_0 - \varphi(t_0)s_0}{t_0 - s_0} & \text{if } t \in [s_0, t_0] \end{cases}$$

for some $s_0 \in [0, 1/2]$ and $t_0 \in (1/2, 1]$. Moreover, putting a function $\varphi_{\max} = 2\psi - \varphi_0$ we have $\varphi_{\max} \in \Psi_2$ and

$$\psi = \frac{\varphi_0 + \varphi_{\text{max}}}{2}.$$

For $0 \le \alpha \le \frac{1}{2} \le \beta \le 1$ and for the case $(\alpha, \beta) \ne (\frac{1}{2}, \frac{1}{2})$ we define

$$\psi_{\alpha,\beta}(t) = \begin{cases} 1 - t & \text{if } 0 \le t \le \alpha, \\ \frac{\alpha + \beta - 1}{\beta - \alpha} t + \frac{\beta - 2\alpha\beta}{\beta - \alpha} & \text{if } \alpha \le t \le \beta, \\ t & \text{if } \beta \le t \le 1. \end{cases}$$

For the case $(\alpha, \beta) = (\frac{1}{2}, \frac{1}{2})$ we put $\psi_{1/2, 1/2} = \psi_{\infty}$. We clearly have $\psi_{\alpha, \beta} \in \Psi_2$ for all α, β with $0 \le \alpha \le \frac{1}{2} \le \beta \le 1$ and the corresponding norm is

$$\|(x_1, x_2)\|_{\psi_{\alpha, \beta}} = \begin{cases} |x_1| & \text{if } |x_2| \leq \frac{\alpha}{1 - \alpha} |x_1|, \\ \frac{\beta(1 - 2\alpha)}{\beta - \alpha} |x_1| + \frac{(2\beta - 1)(1 - \alpha)}{\beta - \alpha} |x_2| & \\ & \text{if } \frac{\alpha}{1 - \alpha} |x_1| < |x_2|, \frac{1 - \beta}{\beta} |x_2| < |x_1|, \\ |x_2| & \text{if } |x_1| \leq \frac{1 - \beta}{\beta} |x_2|. \end{cases}$$

Theorem 2 ([3], [4]) Let $\psi \in \Psi_2$. Then the following are equivalent:

- (i) ψ is an extreme point of Ψ_2 ,
- (ii) $\|\cdot\|_{\psi}$ is an extreme point of AN_2 ,
- (iii) There exist α, β with $0 \le \alpha \le 1/2 \le \beta \le 1$ such that $\psi = \psi_{\alpha,\beta}$ (resp. $\|\cdot\|_{\psi} = \|\cdot\|_{\psi_{\alpha,\beta}}$).

Note that the equivalence of (ii) and (iii) in Theorem 2 is essentially the same as the next result given by R. Grzaślewicz [2].

Corollary 3 ([2]) Let $\|\cdot\| \in AN_2$. Then $\|\cdot\|$ is an extreme point of AN_2 if and only if all extreme points of the unit ball of $(\mathbb{R}^2, \|\cdot\|)$ are contained in the unit sphere of $(\mathbb{R}^2, \|\cdot\|_{\infty})$.

2. Proof of Theorem 1

Note that

$$\varphi(t) = \begin{cases} 2\psi(t) - 1 + t & \text{if } 0 \le t \le 1/2, \\ 2\psi(t) - t & \text{if } 1/2 \le t \le 1. \end{cases}$$

It is clear that φ is a convex function on [0,1/2] (resp. [1/2,1]). For each $t \in (0,1]$, we denote by $\varphi'_L(t)$ (resp. $\psi'_L(t)$) the left derivative of φ (resp. of ψ) at t. Similarly, for each $t \in [0,1)$, we denote by $\varphi'_R(t)$ (resp. $\psi'_R(t)$) the right derivative of φ (resp. of ψ) at t. Since $\varphi(0) = 1$ and $\varphi(t) \geq \psi_{\infty}(t) = 1 - t$ for $t \in [0,1/2]$, we have

$$\varphi'_R(0) = \lim_{t \to +0} \frac{\varphi(t) - \varphi(0)}{t} \ge \lim_{t \to +0} \frac{1 - t - 1}{t} = -1.$$

Since $\varphi(1) = 1$ and $\varphi(t) \ge \psi_{\infty}(t) \ge t$ for all $t \in [1/2, 1]$, we also have

$$\varphi'_L(1) = \lim_{t \to -0} \frac{\varphi(1+t) - \varphi(1)}{t} \le \lim_{t \to -0} \frac{1+t-1}{t} = 1.$$

Hence, if 0 < s < t < 1/2, then

$$-1 \le \varphi_R'(0) \le \varphi_R'(s) \le \varphi_L'(t) \le \varphi_R'(t) \le \varphi_L'(1/2) = 2\psi_L'(1/2) + 1,$$

and if 1/2 < s < t < 1, then

$$2\psi_R'(1/2) - 1 = \varphi_R'(1/2) \le \varphi_R'(s) \le \varphi_L'(t) \le \varphi_R'(t) \le \varphi_L'(1) \le 1.$$

We define a mapping G from [0,1] into the subsets of \mathbb{R} as

$$G(t) = \begin{cases} [-1, \varphi_R'(0)] & \text{if } t = 0, \\ [\varphi_L'(t), \varphi_R'(t)] & \text{if } 0 < t < 1/2, \ 1/2 < t < 1, \\ \{\varphi_L'(1/2)\} & \text{if } t = 1/2, \\ [\varphi_L'(1), 1] & \text{if } t = 1. \end{cases}$$

Let us give a necessary and sufficient condition of ψ that φ is convex on [0,1]. Note that φ is convex on [0,1] if and only if $\varphi'_L(1/2) \leq \varphi'_R(1/2)$.

Therefore we clearly have the following lemma.

Lemma 4 φ is convex on [0,1] if and only if $\psi'_R(1/2) \geq \psi'_L(1/2) + 1$.

We consider the case $\psi_R'(1/2) \geq \psi_L'(1/2) + 1$. Since φ is convex on [0,1] and $\varphi(0) = \varphi(1) = 1$, we have $\varphi(t) \leq 1$ for all $t \in [0,1]$. Moreover, we have $\varphi = 2\psi - \psi_{\infty} \geq \psi_{\infty}$ by $\psi \geq \psi_{\infty}$. Thus $\varphi \in \Psi_2$.

We next suppose that $\psi_R'(1/2) < \psi_L'(1/2) + 1$. By Lemma 4, φ is not convex on [0,1] and hence $\varphi \notin \Psi_2$. From $\varphi_L'(1/2) > \varphi_R'(1/2)$, there exists a real number $a \in (1/2,1]$ such that

$$\varphi_L'(1/2) > \frac{\varphi(a) - \varphi(1/2)}{a - 1/2}.$$
 (2.1)

The following lemma is easy and so the proof is omitted.

Lemma 5 (i) Let $0 \le t_1 < t_2 \le 1/2$. If $\lambda_1 \in G(t_1)$ and $\lambda_2 \in G(t_2)$, then $\lambda_1 \le \lambda_2$.

(ii) Let $0 < s_0 < 1/2$ and let $\lambda_n \in G(s_n)$ for each n. Then $\lambda_n \nearrow \varphi'_L(s_0)$ if $s_n \nearrow s_0$, and $\lambda_n \searrow \varphi'_R(s_0)$ if $s_n \searrow s_0$.

Put $A = \{(s, \lambda) : 0 \le s \le 1/2, \lambda \in G(s)\}$. Then we have

Lemma 6 The set A is a compact connected subset of $[0,1/2] \times [-1,\varphi'_L(1/2)]$.

Proof. By Lemma 5(ii) A is closed, which implies that A is compact. To prove that A is connected, it is enough to show that A is homeomorphic to the closed interval $I = [-1, 1/2 + \varphi'_L(1/2)]$. Define a mapping f from A into I as $f(s,\lambda) = s + \lambda$ for $(s,\lambda) \in A$. Then f is injective by Lemma 5(i). We show that f is surjective. For each $t \in I$, put

$$s_t = \sup\{s \in [0, 1/2] : s + \lambda \le t \text{ for some } \lambda \in G(s)\}.$$

Then it follows from Lemma 5(ii) that $\min G(s_t) \leq t - s_t \leq \max G(s_t)$, and so $t - s_t \in G(s_t)$. Putting $\lambda_t = t - s_t$, we have $t = s_t + \lambda_t$ and $(s_t, \lambda_t) \in A$. Hence f is surjective. Since f is one to one continuous and A is compact, f is a homeomorphism from A onto I. Thus A is homeomorphic to the closed interval I, which completes the proof.

The following is a key lemma to prove Theorem 1.

Lemma 7 There exist $s_0 \in [0, 1/2]$ and $t_0 \in [a, 1]$ such that

$$\lambda_0 = \frac{\varphi(t_0) - \varphi(s_0)}{t_0 - s_0} \in G(s_0) \cap G(t_0).$$

Proof. Let $\Omega = A \times [a,1]$. Then Ω is compact and connected by Lemma 6. For any $(s,\lambda,t) \in \Omega$, we define $F(s,\lambda,t) = \varphi(t) - \varphi(s) - \lambda(t-s)$. For any $t \in [a,1]$ we have $(0,-1,t) \in \Omega$ and F(0,-1,t) > 0. Also, $(1/2,\varphi'_L(1/2),a) \in \Omega$ and $F(1/2,\varphi'_L(1/2),a) < 0$ by (2.1). Since Ω is connected and F is continuous on Ω , there exists an element $(s,\lambda,t) \in \Omega$ with $F(s,\lambda,t) = 0$. Put $C = \{(s,\lambda,t) \in \Omega : F(s,\lambda,t) = 0\}$. Since C is compact, we put $s_0 = \min\{s : (s,\lambda,t) \in C\}$, $\lambda_0 = \min\{\lambda : (s_0,\lambda,t) \in C\}$ and $t_0 = \min\{t : (s_0,\lambda_0,t) \in C\}$, respectively. Note

$$\lambda_0 = \frac{\varphi(t_0) - \varphi(s_0)}{t_0 - s_0} \in G(s_0).$$

We show $F(s_0, \lambda_0, t) \geq 0$ for all $t \in [a, 1]$. Let $t_1 \in [a, 1]$. Let $s_0 > 0$ and $0 < s_1 < s_0$. Put $A_0 = \{(s, \lambda) : 0 \leq s \leq s_1, \lambda \in G(s)\}$ and $B_0 = \{(s, \lambda) \in A_0 : F(s, \lambda, t_1) > 0\}$. As in the proof of Lemma 6, A_0 is connected. By the definition of s_0 , $F(s, \lambda, t_1) \neq 0$ for all $(s, \lambda) \in A_0$. Hence B_0 is an open and closed set of A_0 . Also, $B_0 \neq \emptyset$ by $F(0, -1, t_1) > 0$. Hence B_0 coincides with A_0 . Thus $F(s, \lambda, t_1) > 0$ for all $(s, \lambda) \in A_0$. Let $s_n \nearrow s_0$ and let $\lambda_n \in G(s_n)$. By Lemma 5(ii) we have $\lambda_n \nearrow \varphi'_L(s_0)$ and so $F(s_0, \varphi'_L(s_0), t_1) \geq 0$. If $\varphi'_L(s_0) = \lambda_0$, then $F(s_0, \lambda_0, t_1) \geq 0$. If $\varphi'_L(s_0) < \lambda_0$, then $F(s_0, \varphi'_L(s_0), t_1) > 0$ by the definition of λ_0 . Assume $F(s_0, \lambda_0, t_1) < 0$. Then $F(s_0, \lambda, t_1) = 0$ for some λ with $\varphi'_L(s_0) < \lambda < \lambda_0$, which contradicts the definition of λ_0 . Hence $F(s_0, \lambda_0, t_1) \geq 0$. Let $s_0 = 0$. Assume $F(0, \lambda_0, t_1) < 0$. By $F(0, -1, t_1) > 0$ there exists $\lambda'_0 \in (-1, \lambda_0)$ such that $F(0, \lambda'_0, t_1) = 0$, which is a contradiction. Hence $F(0, \lambda_0, t_1) \geq 0$. Thus $F(s_0, \lambda_0, t) \geq 0$ for all $t \in [a, 1]$.

Finally we show $\lambda_0 \in G(t_0)$. Let $t \in [a, 1]$. By $F(s_0, \lambda_0, t) \geq F(s_0, \lambda_0, t_0)$ we obtain $\varphi(t) - \varphi(t_0) - \lambda_0(t - t_0) \geq 0$. This implies $\varphi'_L(t_0) \leq \lambda_0 \leq \varphi'_R(t_0)$ and thus $\lambda_0 \in G(t_0)$, which completes the proof.

For s_0 and t_0 given in Lemma 7, we define a function φ_0 on [0,1] as

$$\varphi_0(t) = \begin{cases} \varphi(t) & \text{if } t \in [0, s_0] \cup [t_0, 1], \\ \frac{\varphi(t_0) - \varphi(s_0)}{t_0 - s_0} t + \frac{\varphi(s_0)t_0 - \varphi(t_0)s_0}{t_0 - s_0} & \text{if } t \in [s_0, t_0]. \end{cases}$$

Let us show that φ_0 is convex on [0,1]. Note that φ_0 is convex on [0,1] if and only if $(\varphi_0)'_L(t) \leq (\varphi_0)'_R(t)$ for $t = s_0, t_0$. By Lemma 7,

$$(\varphi_0)'_L(s_0) = \varphi'_L(s_0) \le \lambda_0 = (\varphi_0)'_R(s_0)$$

and

$$(\varphi_0)'_L(t_0) = \lambda_0 \le \varphi'_R(t_0) = (\varphi_0)'_R(t_0).$$

Hence φ_0 is convex on [0,1] and so $\varphi_0 \in \Psi_2$. If $s_0 = 1/2$, then since φ is convex on [1/2,1] and from $\varphi'_L(t_0) \leq \lambda_0$, we have $\varphi(t) = \varphi_0(t)$ for $t \in [1/2, t_0]$, which is a contradiction. Thus $s_0 \neq 1/2$. Putting $\varphi_{\max}(t) = 2\psi(t) - \varphi_0(t)$, we have

$$\varphi_{\max}(t) = \begin{cases} \psi_{\infty}(t) & \text{if } t \in [0, s_0] \cup [t_0, 1], \\ 2\psi(t) - \varphi_0(t) & \text{if } t \in [s_0, t_0]. \end{cases}$$

Note that φ_{\max} is convex if and only if $(\varphi_{\max})'_L(t) \leq (\varphi_{\max})'_R(t)$ for $t = s_0, t_0$. By Lemma 7,

$$(\varphi_{\max})'_L(s_0) = (\psi_{\infty})'_L(s_0) = -1 \le \varphi'_R(s_0) - \lambda_0 - 1$$
$$= 2\psi'_R(s_0) - \lambda_0 = (\varphi_{\max})'_R(s_0)$$

and

$$(\varphi_{\max})'_L(t_0) = 2\psi'_L(t_0) - \lambda_0 = \varphi'_L(t_0) + 1 - \lambda_0 \le 1$$

= $(\psi_{\infty})'_R(t_0) = (\varphi_{\max})'_R(t_0)$.

Hence φ_{max} is convex on [0, 1] and so $\varphi_{\text{max}} \in \Psi_2$. Thus this completes the proof of Theorem 1.

Example 8 We consider the case $\psi = \psi_2$. It is clear that $(\psi_2)'_L(1/2) = (\psi_2)'_R(1/2)$. Hence it follows from Lemma 4 that $\varphi(=2\psi_2-\psi_\infty)$ is not convex. Put $s_0 = \frac{1}{2} - \frac{\sqrt{7}}{14}$ and $t_0(=1-s_0) = \frac{1}{2} + \frac{\sqrt{7}}{14}$. Note that since φ

is symmetric to t=1/2, we have $\varphi(s_0)=\varphi(t_0)$. Easy calculation shows that φ has local minimums at $t=s_0,t_0$ and hence $\lambda_0=\frac{\varphi(s_0)-\varphi(t_0)}{s_0-t_0}=0\in G(s_0)\cap G(t_0)$. For s_0,t_0 and λ_0 , two functions φ_0 and φ_{\max} are the following:

$$\varphi_0(t) = \begin{cases} 2((1-t)^2 + t^2)^{1/2} - 1 + t & \text{if } 0 \le t \le \frac{1}{2} - \frac{\sqrt{7}}{14}, \\ -\frac{1}{2} + \frac{\sqrt{7}}{2} & \text{if } \frac{1}{2} - \frac{\sqrt{7}}{14} \le t \le \frac{1}{2} + \frac{\sqrt{7}}{14}, \\ 2((1-t)^2 + t^2)^{1/2} - t & \text{if } \frac{1}{2} + \frac{\sqrt{7}}{14} \le t \le 1 \end{cases}$$

and

$$\varphi_{\max}(t) = \begin{cases} 1 - t & \text{if } 0 \le t \le \frac{1}{2} - \frac{\sqrt{7}}{14}, \\ 2((1 - t)^2 + t^2)^{1/2} + \frac{1}{2} - \frac{\sqrt{7}}{2} & \text{if } \frac{1}{2} - \frac{\sqrt{7}}{14} \le t \le \frac{1}{2} + \frac{\sqrt{7}}{14}, \\ t & \text{if } \frac{1}{2} + \frac{\sqrt{7}}{14} \le t \le 1. \end{cases}$$

3. Proof of Theorem 2

The equivalence of (i) and (ii) is clear (see [4]). (i) \Rightarrow (iii). Suppose that ψ is an extreme point of Ψ_2 . If $\psi_R'(1/2) \geq \psi_L'(1/2) + 1$, then we have by Theorem 1, $\psi = \frac{\varphi + \psi_{\infty}}{2}$ and $\psi = \varphi = \psi_{\infty} = \psi_{1/2,1/2}$. If $\psi_R'(1/2) < \psi_L'(1/2) + 1$, then we have by Theorem 1, $\psi = (\varphi_0 + \varphi_{\max})/2$ and so $\psi = \varphi_{\max} = \varphi_0$. This implies that $\psi = \psi_{s_0,t_0}$. We may put $\alpha = s_0$ and $\beta = t_0$, respectively.

(iii) \Rightarrow (i). Suppose that $\psi = \psi_{\alpha,\beta}$ for some α, β . If $\psi_{\alpha,\beta} = \frac{1}{2}(\varphi_1 + \varphi_2)$ where $\varphi_1, \varphi_2 \in \Psi_2$, then $\psi_{\alpha,\beta} = \varphi_1 = \varphi_2$ on $[0,\alpha] \cup [\beta,1]$. For each $t \in [\alpha,\beta]$, $\psi_{\alpha,\beta}(t) = \frac{1}{2}(\varphi_1(t) + \varphi_2(t))$. Since φ_1 and φ_2 are convex, we have $\psi_{\alpha,\beta} = \varphi_1 = \varphi_2$. Thus $\psi_{\alpha,\beta}$ is an extreme point of Ψ_2 . This completes the proof.

Acknowledgement. The authors would like to thank the referees for their helpful comments and careful reading in this paper.

References

- [1] Bonsall F. F., Duncan J., *Numerical Ranges II*. London Math. Soc. Lecture Note Series, Vol. 10, 1973.
- [2] Grzaślewicz R., Extreme symmetric norms on \mathbb{R}^2 . Colloq. Math. **56** (1988), 147–151.

- [3] Komuro N., Saito K.-S. and Mitani K.-I., Extremal structure of absolute normalized norms on \mathbb{R}^2 . Proceedings of Asian Conference on Nonlinear Analysis and Optimization (Matsue, Japan, 2008), 185–191.
- [4] Komuro N., Saito K.-S. and Mitani K.-I., Extremal structure of the set of absolute norms on R² and the von Neumann-Jordan constant. J. Math. Anal. Appl. 370 (2010), 101–106.
- [5] Mitani K.-I. and Saito K.-S., The James constant of absolute norms on \mathbb{R}^2 . J. Nonlinear Convex Anal. 4 (2003), 399–410.
- [6] Saito K.-S., Kato M. and Takahashi Y., Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 . J. Math. Anal. Appl. **244** (2000), 515–532.
- [7] Saito K.-S., Kato M. and Takahashi Y., Absolute norms on \mathbb{C}^n . J. Math. Anal. Appl. **252** (2000), 879–905.
- [8] Tomczak-Jaegermann N., *Problems on Banach spaces*. Colloq. Math. **45** (1981), 45–47.

Kichi-Suke SAITO
Department of Mathematics
Faculty of Science
Niigata University
Niigata 950-2181, Japan
E-mail: saito@math.sc.niigata-u.ac.jp

Ken-Ichi MITANI Department of Systems Engineering Okayama Prefectural University Soja 719-1197, Japan E-mail: mitani@cse.oka-pu.ac.jp

Naoto Komuro
Department of Mathematics
Hokkaido University of Education
Asahikawa Campus
Asahikawa 070-8621, Japan
E-mail: komuro@asa.hokkyodai.ac.jp