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Models for coactions of finite groups
on the AFD factor of type II,;
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Abstract. We proved in [Y1] that every coaction 8 of a finite group G on a II;-factor
gives rise to a normal subgroup Ng of G, called the inner part of 3, and a “dual” 2-cocycle
pg on £°(G/Ng). In this paper, we shall show that such a coaction 8 produces a function
s on G X G/Ng as well so that the triple (Ng, 1g,v3) (modulo some equivalence) is a
conjugacy invariant. It shall be shown too that, given an abstract triple (NN, u,y) as above
which satisfies suitable conditions, there exists a coaction 8 = B(N,u,~), called a model
coaction, of G on the AFD factor of type Iy so that (Ng, ug,v3) realizes the given data
(N, p, )

Key words: coactions, Kac algebras, I1;-factors, inner parts, 2-cocycles, (twisted) crossed
products.

0. Introduction

After Connes’ breakthrough in classification of actions of cyclic groups
and the integer group on the AFD (approximately finite-dimensional) factor
of type II; [C1-2], his automorphism technique has been intensively devel-
oped and extended by several mathematicians [J], [O], [S-T1,2], to
the case of discrete amenable group actions on the AFD factors. When we
consider a furhter possible extension of these results, it would be natural
to ask ourselves what happens if we repalce groups by (discrete) quantized
groups. As a result in connection with this question, we now know (see
L] and [Y]) that every finite-dimensional Kac algebra acts outerly on the
AFD I1; factor. Thus it is naturally expected that classification of actions
of finite-dimensional Kac algebras should be possible as well along the line
of Jones’ work. If possible, this means that one needs to introduce a Kac
algebra version of the characteristic invariant and the inner invariant. This
program has been successfully completed by S. Popa and A. Wassermann
in [P-W/] in the case of cocommutative Kac algebras, i.e., in the case of
coactions (of compact Lie groups), by classifying their dual actions. The

results in §5 of [S-T1| also should be noted. Meanwhile, in connection with
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this program, we associated in with every coaction (3 of a finite group
G on a finite factor A a unique reduced Kac algebra of the group algebra of
G, largest among the reduced Kac algebras the restriction (of 3) to which
is “inner.” It was proven there too that there exists a “2-cocycle” ug on the
Kac algebra dual Cp of the reduced algebra in such a way that the twisted
algebra associated with pg, together with the restriction of the dual action
[;’ of 3 and “the derived coaction,” corresponds to the characteristic invari-
ant (of the dual action B) in the sense of Popa and Wassermann. So, the
next natural step one can think of would be to construct appropriate models
for coactions on the AFD II; factor. The purpose of the present paper is
to achieve this goal. It should be, however, remarked with emphasis that
a construction of such models has been already given again by Popa and
Wassermann in [P-W]| (see also [S-T1]) by means of constructing models
for dual actions (of compact Lie groups); they even exhibited models for
a wider class of actions. Therefore, the author must frankly admit that
the only excuse for presenting this note is that our (alternative) method
employed in this paper has a close connection with “the inner parts of coac-
tions” introduced in [Y1} and “dual 2-cocycles,” and is thus more analogous
to the argument set out in [J].

We now describe the organization of this paper. In Section 1, we review
fundamental results obtained in [Y1}, introducing the notation used in the
following sections. In Section 2, we show that the derived coaction of a
coaction on a finite factor is always inner. In Section 3, we deduce important
properties of a function which completely determines the derived coaction.
In Section 4, we study 2-cocycles on commutative Kac algebras and twisted
crossed products by coactions of finite groups. Section 5 is devoted to
constructing models for coactions of finite groups on the AFD factor of type
I1;. In the last section, we give a definition of some conjugacy invariant
for finite group coactions, which may be regarded as “the characteristic
invariant” for coactions in our framework.

1. The inner part of coactions — Review

This section contains a review of the results concerning the inner part
of finite group coactions on finite factors. In [Y1], it is shown that every
coaction 3 of a finite group G on a finite factor A determines a unique
normal subgroup Nj of G so that the “restriction” of 8 to the reduced
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algebra R(G/Ng) of the group algebra R(G) is “inner.” It is proven there
too that there exists a “2-cocycle” pg on £*°(G/Ng) in such a way that the
twisted product associated with the 2-cocycle is isomorphic to the relative
commutant of A in the crossed product by the coaction. Both Ng and pug
are conjugacy invariants for coactions of G on A. In the following, we review
the construction of these invariants in order to prepare for the discussion
starting from Section 2. Readers are referred to for more details.
Throughout this paper, G is a finite group. We use the standard nota-
tion ¢>°(G) for the set CY of all functions on G when each element of it is
viewed as a multiplication operator on the Hilbert space ¢*(G). We always
consider that ¢*°(G) is equipped with the usual Kac (Hopf) algebraic struc-
ture: the coproduct Iz, the coinvolution jg, the counit e etc. are defined

by

FG(f)(Sat):f(St)> jG(f)(S):f(s_l)’ EG(f):f(e),

where e € G is the identity of G. When C¢ is regarded as the (pre)dual of
the C*-algebra £>°(G), it is denoted by £!(G), which is an involutive Banach
algebra with product (convolution) * and involution § defined by

(Fxa) )= f(s)g(s™t),  fH(t) = f(t71)

seG
(f.g € (G), te Q).

We set fY(t) = f(t7!) and f(t) = f(t). The symbol §; € £°(G), where
s € G, stands for the function on G given by 8,(t) = é5+. The left regular
representation of G (or £1(G)) is denoted by A. The von Neumann algebra
generated by A(G) on £2(G) is denoted by R(G) (i.e., R(G) is the group
algebra of ). We also fix a coaction 8 of G on a finite factor .A. For the
definition of a coaction, we refer readers to . The coaction (3 determines
a unique family {®;}scq of linear transformations on A characterized by
the equation

B(a) = Z@S(a)@))\(s) (ac A). (1.1)
sed
This family satisfies the following conditions:

(CA0) Dy (1) =0bs5e-1 (CA1) ®50P; = 6,,:Ps,

(CA2) ®,(a)* =B, -1(a”),  (CA3) ida=)_ &,
seG
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(CA4) ®y(ab) = > Dy(a)Py-14(b (a,b € A).
s€G
It is well-known that the coactions of G on A are in bijective correspondence
with the families {®s}scc of linear maps of A satisfying (CA0)—(CA4).
Every element X in the crossed product A xg R(G) by the coaction
can be written uniquely in the form X = > .5 B(c(s))(1 ® 85) for some
a = {a(s)}sec € [lseq A (see Proposition 1.1 of [Y1]). We write X, for X
in this case. The relative commutant A€ of 3(.A) in the crossed product is
then the set of all elements X, in which {c(s)} satisfies

ze(t) = Z c(s)Pg-1(x) (1.2)
s€eG

for all z € A. We denote by Rel(3) the set of all families {c(s)}scq satisfying
[1.2). The set Rel(3) has a x-algebraic structure coming from that of .A°:
ac = {a(s)c(s)}seq € Rel(B) and ¢* = {c(s)*} € Rel(B) if a = {a(s)},c =
{c(s)} € Rel(B). Moreover, if ¢ = {c(s)} € Rel(8) and f € C%, then
cf = {Xeq b(s)f(571t) }1eq also belongs to Rel(3). Under this operation,
Rel(f) is proven to be an ¢!(G)-module. Namely, one has (cf)y = cf.y for
any f,g € £1(G). For any a = {a(s)},c = {c(s)} € Rel(8), > e a(s)c(st)
lies in the center of A for any ¢ € G. Since A is a factor, the equation

Z a(s)c(st)* = fac(t) -1

s€G

defines a function f, . on G. With this notation, we have

fg,c = fC,CH fa,c = fa*,c*:
g * fa,c * h = .fagv,cE

for any g, h € C%. The linear span Is of elements f in £1(G) of the form
f = fa.c for some a,c € Rel(3) then forms a two-sided ideal of £}(G). So
there exists a unique central projection pg in £!(G) such that Zg = £!(G)*pg.
We denote by Int(3) the set of all normalized irreducible characters x of G
such that x *pg # 0, and call it the inner part of 5. Here, by an irreducible
character, we mean that it is the character of some irreducible representation
of G. It can be shown that there exists an element b = {b(s)} € Rel(8) so
that pg = fo(= fop) and Yo b(s) = 1. With this b = {b(s)}, if we
define an operator V3 in A ® R(G) by Vg = > ,ccb(s) ® A(s)*, then it
can be viewed as a unitary in the reduced algebra A ® R(G)y(p,) (ie.,
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VE Vs = Vﬁvg* =1® )\(pg)) and satisfies

Bla)1® A(pg)) = V5(a® 1)V3s (a € A).

We describe this situation by saying that the restriction of 8 to R(G)x(p 5) 18
inner. We showed in Theorem 3.6 of that the reduced algebra R(G)y(, 5)
has a (reduced) Kac algebraic strucure (cf. [E-S]). Thus there exists a unique
normal subgroup Ng of G such that R(G)y(p,) is isomorphic to R(G/Npg)
as Kac algebras. Hence the Kac algebra dual Cs of R(G) A(pg) 18 the *-
subalgebra of £°(G) that is invariant under translation by elements of Ng,
so that Cj can be identified with £*°(G/Ng). With b = {b(s)} as above, the

equation

g)- 1= by(t)bs(t)b(t)”  (f,9€Cg)
teG
defines a bilinear form pg on Cg. It turned out in Proposition 3.4 of
that pg is a cocycle on Cg in the sense of theory of Hopf algebras (see
for example). Thus, with the ordinary sigma notation, the equation

fig= > ws(fay 90) fo9e  (f,9€Cs)
(f)(9)

defines a new product, called the twisted product associated with ug, in
Cp with 1 the identity with respect to the twisted product. Each vector f
in Cp can be uniquely written in the form f = fp» for some ¢ € Rel(5).
From this, it follows that the equation

fi)k*,'c* - fb*,c

defines a conjugate-linear map of Cs. It is in fact an involution in Cg with
the twisted product. It is proven in Theorem 4.9 of that the map
Il : A° — Cpg defined by II(X.) = fp* is a *-isomorphism from the
realtive commutant A° onto the twisted algebra Cs. For each s € G, we
define a linear map ¥, from Rel(3) into itself by

Us(c)(t) = Byt (c(t)) (¢ € Rel(B)).
Then {VU,},cc also satisfies conditions (CA0)-(CA4). Thus

8(fores) = D For w1 (c)r @ A(S)

seG
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gives rise to a coaction d5 of GG on the twisted algebra Cg. We call it the de-
rived coaction of 3. The author was informed by Professor Y. Doi that this
coaction is called the Miyashita(-Ulbrich) action in theory of Hopf algebras
(see [D-T]). I am grateful to Prof. Doi for this information and sending me
a reprint . Under the isomorphism II, the fixed-point algebra of the
derived coaction coincides with the center of the crossed product.

2. The inner part of the derived coaction

Throughtout this section, we fix a coaction 8 of a finite group G on
a finite factor A with 7 the unique faithful normal tracial state. We shall
freely use the notation introduced in Section 1.

Let b = {b(t)}scc be the element of Rel(3) that appeared in the pre-
ceding section. Suppose that f € C3. Then we have

f = Tor b)) (2.1)

Indeed, since pg = fi~p» and pg * f = f by definition, it follows from
Lemma 1.6 of that f = fb*’(b*)T = fb*,(bf)*- Hence the derived coaction
63 of G on the twisted algebra Cj can be described as follows.

6(f) = Z fb*,\IJS“l(bf)* ® A(s).

sEG

With this in mind, we define, for each s € G, a linear map Q, from Cjs into
itself by

Q(f) = for vy () (f € Cg) (2.2)

Thus the family {Q}scq determines the derived coaction on Cg. By a
simple calculation, we obtain

frw o= fo__\ et ().

rel

So let us define a function 79 on G x G by

Y0(5,t) = fu, ) p(t).
Then, with f € C3, we have

Qs(f)(t) = Z Yo(rs™ et rt ™) (). (2.3)

reG
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We put &y = fp~p. From (2.1) and Lemma 1.6 of , we easily find that,
for any f € Cp,

Eox f=f (2.4)
In the meantime, we assert tha
Eo(t) = D pp(by 15y 85) = Y up(bp-15 % pg, 65 % pp) (2.5)
seG seG

In fact, by the definition of the bilinear form pg, we have

D18 1y 6) = Y (b, (r)bs,_, (r)b(r))

seG r,s€G

= Z 7(b(rs~1)b(rs=1t)b(r)*)

r,s€G

= N 7(b(s~1)b(s~Tt)b(r)*)

r,selG

= )_ 7(b(s™H)b(s~11))

seG

= D_7(b(s)b(sTH)") = &),

s€G

This proves [2.5). Since (f*)* = f for any f € Cg, it follows that &, %€ = Ps-
Moreover, from Lemma 1.6 of [Y1] , we have £ = &). To sumn up, we obtain

o+ &0 =Eox &l = - pg- (2.6)

From this, it results the equation
Juf =17 (feCp)

defines a conjugate-linear unitary involution J, on the Hilbert space { f €
(G): feCs}.

Now we turn attention to compute the inner part of the derived coac-
tion. To do so, for each t € G, we define a family {d(t) };cq of functions on
G by d(t) = 6,1 *pg, which clearly belongs to Cz. Our immediate goal is to
show that this family d = {d(t) }+cc plays the same role as b = {b(s)}sc in
the previous section does. First, we assert that {d(t)} belongs to Rel(g).
For this, let f € Cg. From and Lemma 4.5 of ,

> {d(r) § Q-1 ()} (s)

reG
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=D {foy | Bfor 00 }()

reG

=Y {fe U v, 1 (bp)* }(5)

re@G

= D 7(b(w) "Wy (bg)(us)b(usr))

rueG

= Z T(b(w)* @y pp—15-14-1(bp(us))b(usr))

raueQG

= Z T(b(w)* Py -1 (bg(us))b(r)).

rueqG

Since {b(s)} is in Rel(3), we have ®4(x)b(s) = b(gs)Py(z) for any z € A
and g,s € G. From this, together with (4.1) of [Y1}, it follows that

> Ad(r) §Q-1()}(s)

reG

= 3 7(b(w)*b(ust)®ye-1 (by(us)))

= T(b(ust)bs(us)b(u)*) = {f1d(t)}(s).

uelG

Thus Y, cqd(r) 4 Q-1 (f) = f#d(t), which shows that d = {d(t)}:cc be-
longs to Rel(63). Moreover, {d(t)} satisfies the following identities.

Lemma 2.7  With d(t) = 6;-1 * pg, we have

(a) fHd(t) =) d(s)t Q1

seG
(b) Y d(s)td(st) =pg(t)-1, > d(s)*td(t™"s) =pg(t)-1;
seqG se@G
(€) D _d(s)ffadt ™ s) = pa(st)s(
seG seG

foranyt € G and f € Cp.

Proof. We have already proven the first identity. For (b), note that
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d(s) = Jox b L Thus, by Lemma 4.5 of [Y1], we have

2 ) ds) @) = 3 Aoty | I

s€G s€G t=tsml

=Y fir B bo, (u)
seG

= Z T(b(r)*b(rust)*b(rus))
r,s€G

= Z 7(b(1)*b(st)*b(s))
r,s€G

= > 7(b(st)*b(s))= fu(t) = ps(t).
seG@

This proves the first identity of (b). For the second identity, we use the last
equality of [2.5) of [Y1]. From this,

D {d(s) fd(t™ )} w) = D forps b5, (1)

seG seG

= > 7(b(r)*b(ruts)b(rus)")

r,s€G

= ) 7(b(rus)*b(r)*b(rut~'s))

r,s€G

= Z T(b(s)*b(r)*b(rut“lu_l7"_13))

r,s€G

= 3 pa(s™Hrutu”tr T (@4(b(r))),

r,s€G

Recall that ®. is a conditional expectation from A onto the fixed-point
algebra AP, In fact, it is the unique conditional expectation that preserves
the trace 7, since &, = (t®pg)oB, where pg denotes the Plancherel measure
of G. Thus 7 = 70®,. From this, it follows that 7(®4(b(r)*)) = bs.7(b(r)*).
Hence

> {d(s)" 4t s)Hu) = Y pp(rutu™'r )7 (b(r)")

seG reG
= pa(t)-

This proves the second identity. For the last identity, let f € Cg. we
use the equality of of again in the following computation. Since
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[ = Tor (b)) we have

S {d(s) i fid(t " s)" F(u)

seG

- Z fb* ’bgs’l b}bés_lt (U,)
seG

= Z 7(b(r)*b(rut ™' s)*bp(ru)b(rus))
r,s€G

= Z T(b(r)*b(s)*bf(ru)b(rutu“lrwls))
r,seG

= Z pg(sulrut_luﬂlral)T(b(r)*fbs(bf(ru)))
r.seG

= Y pals HTHT(O(r) Ppyeu- 1,1 (bp(ru)))
r,s€G

= Y (s T(b(r) W (bs)(ru))
r.s€G

=Y pa(sT ) for w, b))+ ()
sed

=Y ps(sT)2(f)(u)
seG

This completes the proof. []

Proposition 2.8  The restriction of the deried couction on Cg to the re-
duced Kac algebra R(G)y(p,,) s inner in the sense that there erists a unitary
Vo, in Cy @ R(G)\(py) such that

55(1)(1® Ap)) = Vi (f © )V,
forall f € Cg.
Proof.  With {d(s)}scq in Rel(dg) introduced above, we define an element
Vs, in Cg ® R(G) by
Vs, = > d(s) @ A(s)".
s€G

From the first identity of Part (b) of Lemma 2.7, we find that Vi,V =
1® A(pg). Remark that 1 ® A(pg) is central in Cg ® R(G). Thus the finite-
dimensionality of C3 ® R(G) implies that ViVe, =1® A(pg). Now, by
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identity (a) of Lemma 2.7, it can be verified that

Vesbp(f) = (f ® 1)Vs,
for all f € Cg. Thus, we are done. []

3. The function «

In the preceding section, we introduced the function 49 on G x G which
completely describes the G-grading in Cg (recall [2.3)) determined by the
derived coaction é3. The purpose of the present section is to closely exam-
ine some properties this function possesses. In what follows, we still fix a
coaction 3 of G on A with 7 the unique faithful normal tracial state, and
keep all the notation established in Section 2, except that we write p for pg
for simplicity.

Lemma 3.1 We have

Yo(s,t) = vo(t st t™1), (3.2)
Z Yo(3,7)pg(r~1t) = yo(s, t). (3.3)
reG

In particular, the function t € G —— ~o(s,t) belongs to Cg for each s € G.
Proof.  First, by Lemma 4.6 of [Y1],

Yo(s:t) = fu ) p(t)

= fu, @)= (1)

- ET(ws(b)(r)*b(rt))

— z(:;(@rsrl(b(r))*b(rt))
_gzﬂ@swquwum
- if(b(r)*éml (b(rt)))
— gr(qlt-lst(b)(rt)b(ﬂ*)

= fu, o o) = ot st t 7).

This proves . The second identity is clearly equivalent to fg, ), *pg =
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fu,(v),p- But this follows from the fact that fy, ) € Cp- []

In the subsections A—F that follow, we deduce identities that vy needs
to satisfy for {Q2s}scc to define the derived coaction.

A. By [2.3), we have

= Z vo(rstrm et ).

reG

Hence, the identity 24(1) = 65 1 is equivalent to

Z vo(rs_lr_l,rt_l) = bs,e (s,t € G) (3.4)
reG
If we use (3.2), then identity can be transformed into

Y yoltst=1, tr=1) = b,
reG

Upon replacing s by t~1st in the above equality, we obtain

Z 70(3a T) = 68,6 (3 € G) (34),
reG

B. Let f € Cﬁ. Then
S (N = Y vlrsTirThrt T f(r)

s€G r,s€G

S (Z 'yo(s,rt—1)>f(r).

rcG seG

In the meantime,

Ft)=(pg* H)t) =D pa(r™'t)f
reG
Thus the condition Y .o Qs(f) = f is equivalent to
S (S wols,rt ™) = palr ™) £(r) = 0.
reG seG
This is true for all f € Cg. From this, together with [3.3), it follows that
Z Yo(s, 7t ") = pg(r~ t).

seG
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Therefore, we may conclude that

3" 0(s,) = ps(t). (3.5)

seG

for any t € G.
C. Let f bein Cg. Then

Qu (0 (H))(2)
=3 00w et (£)(r)
reG
= 3 (T volrutrh rt (s s ) £()
seG red

In the meantime, we have
Suvu(f)(t) = Z 6u,vfyo(su_ls_l,st—l)f(s).
seG

Hence the identity 2,(Q,(f)) = 6uQu(f) for all f € Cz and u,v € G
implies that

Z Yo(ru tr T rt )y (st sr ) = 6y v0(suT s T, st
reG

for all s,t,u,v € G. It is easy to see that the above equality is the same as
Z ’)/O(T"U,T_l, rt)’)’O(U—17 7'_1) = Oy, v70 (ua t) (3'6)
reCG

for all t,u,v € G.

D. Let f,g bein Cg. Recall that fig =3 ;cc m(ds*pg, 61*pg)(6s-1%
f)(64-1 % g). Thus

Q(ft9)(t)

= Z Yo(rs'r 1 rt ) (b * pg, 6y x pg) f(ur)g(vr)
r,u,veEG

= Z Yo(rs e rt T (81 * D, Oyt ¥ pg) f(u)g(v).
ru,VEG

Meanwhile, we have

> % () £ Q-14(9)} ()

peG
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Z 1(6m * Dg, On * PB)p(f)(Mt)Q2,-14(nt)

p,mneG

= > wbm *pg, bn * pg)v0(up”
p,m,n,u,vEG

xvo(vs™'pu~ !, vt Tn ) fu)g(v).

Hence the identity Qs(f#g) = > pcq Qp(f) §2,-15(g) for all f,g € Cs and
s € GG implies that

Z Yo(rs™ et rt ™ (8,1 * P, Byr—1 * D)
reG

= Y u(bm* g, S xpa)v0(uwptuT  utTim Y
p,m,neG

T )

xyo(vs tpv~ vt In ) (3.7)
for all s,t,u,v € G.
E. Let f € Cg. From [2.4), we have

= 3 &o(r)rolus Tu L, ut- ) f(w),

rueG
Meanwhile,
Q1 () = Z’yo(rsr—l,rt_l)f*(r)
reG
= Z vo(rsr™ L rt € (ru™t) £ (u).
ruceG

Hence the identity Q4(f)* = Q,-1(f*) for all f € Cg and s € G yields

Z So(r) vo(us™lut ut=1r) = Z vo(rsr™, rt™Héo(ru™t)

reG reG

for all s,t,u € G. This turns out to be equivalent to

Y &o(r)wo(s~Ttr) =Y &o(r)yo(rsr ™", rt) (3.8)

reG reG

for all s,t € G.

F. Finally, we consider the property of the derived coaction that its
restriction to the Kac algebra R(G)y(p,) is inner. In view of (the proof of)
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IProposition 2.8, this property can be characterized as

fedt) =) d(s)Qu1( (f € Cp), (3.9)

seG

where d(t) = 6,-1 * pg € C. Recall again that ffig= > ,cqu(bs * pg, 6 *
pﬁ)(5s—1 * f)((st—l * g). We have

{F1d®O}r) = D 1p(bu*ps, bu % pg)f(ur)ps(tor)

u,veG
= > 15(Bur—1 * g, b1 ¥ 1) f(w).
ueG
Meanwhile,
Z {d ﬁ Qst 1 )}(T)
seqG

Y 18(6m *pps 6n * pp)p(smr) Q-1 (£) (nr)
s,m,neG

= Y 148(6rs)-1 %P8, bn * pp)yo(uts™ uT urTtn ) £ (u).
snueG

Thus identity implies that

H’,@(éur_l *PB; 6(T‘t)_1 *p,B)

= Z 18(6(rs)—1 * D, b *pﬁ)fyo(vts_lv— ,vr“ln_l)pg(v_lu)
s,nveG

Z 18(6(rs)-1 * Pg, 6n * Pg)

s,nweG

1,,—-1

x yo(vrts tr o™ on T pg(v!

ur—l).

for any r,¢t,u € G. Upon replacing u by ur and t by r—!t in the above
equality, we obtain

136y * pg, 64-1 % pg)

= Z 15(6(rs)-1 * D@, On *pg)'yo(vts_lr_lv_l,vn_l)pg(v_lu)
s,nVEG

= Z 13(85-1 * pg, 6n *x pg)vo(vts vt on Hpg(vtu). (3.10)
s,n,veG

for any u,t € G.
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We summarize the discussion in the subsections A—F in the lemma that
follows.

Lemma 3.11 Define a function v on G X G by

Yo(s,t) = fu,@)5(t)-

Then it satisfies the following identities.

(11.0) = o(rs'r7hrt ™) f(r);
reGG
(11.1) Z vo(rs ™t rt™h) = Os.e;
reG
(11.2) Y yo(rt) = ps(t);
reG
(11.3) Y volrur™', rt)vo(v, 77 h) = bupo(u, t);
reG
(11.4) Z Yo(rs ™ rt ) (61 * Dgy Spr—1 * Pg)
reG

= > p(bm * g, 6n * pg)yo(up” uTt, ut

p,m,neG

—lm—l)

-1 —1),

?

(11.5) Y &o(r)ro(s~Ltr) =Y &o(r)vo(rsr—,rt);

re@ reG
(11.6)  pg(by * p3, 641 * pg)

S 1s(8,-1 % pa, & *pp)volgtr g ap ps(a )
7,p,q€G

for all s,t,u,v € G and f € Cg.

X vo(vs pv™t vt

From Theorem 3.6 of [Y1], R(G) A(pg) 18 isomorphic to the group algebra
R(G/Njg) of the quotient group G/Ng as Kac algebras for a unique normal
subgroup N of G. Hence Cj is exactly the set of all functions on G that are
invariant under translation by elements of N3, and thus can be regarded as
£*°(G/Ng). In what follows, we do identify Cg with £°(G//Ng). The iden-
tification is thus done through the embedding =, : £*°(G/Ng) — €<°(G)
defined by m.(f) = fom (f € £*°(G/Ng) ), where m denotes the canonical
surjection from G onto G/Ng. So p shall be regarded as a bilinear form
on £>*°(G/Ng) from now on. Note that, under this identification, the func-
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tion pg = |Ng|~'xn, is the same as |Ng|718. (ie., 77 (pg) = |Ng|~tée),
where . in this case stands for the characteristic function of the iden-
tity e of G/Ng. In general, we have 7, !(6s * p/g) |Ng| 165y for any
s € G, so that we identify 6, x pg with |[Ng| ™16,y Moreover 1t is true
that m.(g * h) = |Ng|m.(g) * mi(h) for all g,h € ¢*°(G/Ng). Our next
purpose is to examine how the family {Qs}scc and the function 9 can
be described through this identification. For this end, we choose a section
¢ : G/Ng — G of n. By [Lemma 3.7, the function t € G —— ~(s, 1)
belongs to Cg for each s € G; hence it can be viewed as a function on
G x G/Ng. More precisely, the equation

(s, w) = Y0 (s, p(w)) (s € G, we G/Ng)

defines a function v on G x G/Ng, and this definition is independent of the
choice of the section ¢. In fact, by definition, one has v(s,w) = fu, @) s(w).
The function v is characterized by the equality:

Yo(s,t) = (s, m(t)) (s,t € G).

In the later discussion, we shall find that this function + is more important
than 9. So, in the next lemma, we would like to restate equations (11.0)-
(11.6) of [Lemma 3.11] in terms of the function vy. We leave the verification
to readers.

Lemma 3.12  The function v on G x G/Ng defined above satisfies the
following equalities., where, in (P5) and (P6), ng is the function on G/Ng
defined by no(z) = Lyea/n; #(8z-1y; 6y) (ie., mo = |Ng|lm71(&) with the

previous notation).

(PO)  Qu(f)(w) =) y(rs™ ™! m(r)w ™) f((r));

re@
(P1) Z 'y(rs'lr_l, 71'(7‘)10_—1) = Os.e;
reG
(P2) Y v(r,w) = |Ng| ™ 6w
reG
(P3) Z y(rur™, w(r)w)y(v, 7(r)7) = Ou,v V(U W);
TEG
(P4) s~ _1 T)w_l):u(én'(ur)_la 71'(1)7*)‘1)

TEG
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:Z Z 16z, 6 )y(up~tut w(uw)w T

peEG w,yEG/Ng

X'Y(US‘lpv‘l,Tr(v) 1y‘1),

(P5) Z no(x)y(s~1, wx) Zno Yy (rsrt, w(r)w);

.’EGG/NB T‘EG

(P6) 16w bry1) =3 > Z (8r(r)» 62)v(gtrg™", wa™")

r€G zeG /N w(q)=w
for all s,u,v € G, w € G/Ng and f € Cg = {>°(G/Ng).

We now concentrate attention to the support of the function v in the
first variable. It will turn out that it has something to do with the spectrum
of the derived coaction 6g in the sense of Nakagami-Takesaki ([N-TJ).

Let ¢ = {c(t) }tec be in Rel(B). By the definition of pg, we have c = ¢,
with the notation in Section 1. Since pg = |N[3\”1XNB, we get

c(t) = Cpg (t)

= Z c(ts)pﬁ(s_l)

sEG

-y

SENﬁ

It follows that c(ts) = ¢(t) for any t € G and s € Ng. Since Ng is normal,
we may obtain the following lemma.

Lemma 3.13  Let ¢ = {c(t) }seq be in Rel(B). We have c(rts) = c(t) for
anyt € G and r,s € Ng.

In the next lemma, recall that the grading {¥s}sc in Rel(5) which
determines the derived coaction is defined by W(c) = {®;-1(c(t))}ec for

any ¢ = {c(t)} € Rel(B).

Lemma 3.14  Let GIV8 be the centralizer of Ngin G, i.e., GN8 be the set
of all elements g € G satisfying sgs™* = g for all s € Ng. Ift ¢ GN8, we
have ¥, = 0 as a linear map.

Proof. Let g € G. In view of the preceding lemma, we have ¥4(c)(ts) =
U,(c)(t) for any ¢ € Rel(B), t € G and s € Ng. But a straightforward
calculation shows that the left-hand side of this identity equals W ,-1(c)(t).
This implies that ¥, .1 = ¥, for all s € Ng. Since ¥, 0o ¥, = Oy 0¥, for
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u,v € G, it follows that ¥, =0 if g & GNs. []

By Lemma 3.14], we find that the spectrum of the derived coaction ég
(see §1 of Chap. IV of for the definition of the spectrum of a coaction)
is contained in the normal subgroup G"4.

Corollary 3.15  With the notation introduced above, we have ¥(t,w) = 0
whenever t € GN8

Proof.  This immediately follows from the definition of +. L]

Before we close this section, we briefly examine the dependence of v
on the choice of the element b = {b(s)}sec in Rel(B) with f, = pg and
e b(s) = 1. So let ¢ = {c(s)}sec be another such a choice. Recall (see
Lemma 4.16 of [Y1]) that, if uy (resp. i) is the 2-cocycle on Cg that arises
from b = {b(s)} (resp. ¢ = {c(s)}), then they are related to each other in
the following way:

pe(fy 9) = up(@x f 5 -1, Tx g x 6-1)n(t),

teG

where ' = fy. € Cg. Under the identification Cg = ¢°°(G/Ng), this is
equivalent to

pe(f, 9) = Y m(Mep * f* 61, Top * g * 0p-1)7ep(2)
:EGG/Ng
(f,g9 € £°(G/Ng) ), (3.16)

where 1., = |N|m;(fsc) with the previous notation. We would like to
obtain a result similar to the one as above for the function ~.

Lemma 3.17  In the situation described above, we denote by v° (resp.
7€) the function on G x G/Ng defined by

V(s,w0) = fy,mp(w)  (resp. ¥(s,0) = fu (o) c(w))-
Then they satisfy the identity

7( Z Y AP (usu™ w(w)e” s (m(u)ney(zw)

CDEG/NQ ueG

for any s € G and w € G/Ng.

Proof. By [4.15) of [Y1], we have ¢ = bp—. The assertion now follows
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from a direct computation. ]

4. General theory on 2-cocycles and twisted crossed products

In this section, we shall give a new definition of a 2-cocycle on a com-
mutative Kac algebra. Then we shall discuss crossed products by coactions
twisted by 2-cocycles. The argument given here can be extended to the case

of general finite-dimensional Kac algebras (cf. [Y2]). We shall deal with that
case elsewhere in the future.

In the next definition, G is a finite group as usual. We always con-

sider that the algebra ¢*°(G) is equipped with the ordinary Kac algebraic
structure.

Definition 4.1 A 2-cocycle on £*°(G) is a bilinear form p on {*(G) ®
¢>*°(G) such that

(C1) in the involutive Banach algebra ¢}(G) ® £}(G), we have

i i

prxp=pxpt =eq®eq,

where e, the counit of £°°(G), is defined by eg(f) = f(e);

)
(C2) p satisfies the cocycle condition, i.e., with the conventional sigma
notation,

Y ulfay 90)e(f@)9@) h)
():(9)

= Y wlgay ha)elf, ghe) (f.9,h € €°(G));
(9),(h)

(C3) p is normal in the sense of [BCM], i.e.,
w(f, 1) =n(, f)=ec(f)  (f €£2(G));
(C4) for any f,g € £°(G), we have

S nlbs, 8)u(bu-ru, 8) F (07 st g (t7Y) = ulf, 9);

s,t,u,veG

(C5) for any f € £°(G),
Z p(f * b5, bs) = Z ,u(fv * Os, bs).

seG seG

We denote by Z?(£>°(G)) the set of all 2-cocycles on £*°(Q). It is easy
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to check that e ® e also belongs to Z2(¢*°(G)). We call this 2-cocycle the
trivial 2-cocycle.

Given a bilinear form p on £*°(G) ® £°(G) satisfying (C1)—(C3) of
Definition 4.1. Then, by , the equation

flug= Y wlfay 90) fi9e  (f,9 €£7(G))
(£):(9)

defines a new (associative) product, called the twisted product by u, with 1
the identity with respect to this multiplication. We write £ (G) for £°(G)
with the twisted product. We would like to introduce an involution on
£°(G). First, for each f € £7°(G), we define an operator Ty on /%(G) by

Trg= flug (g € £2(Q)).

It is easily checked that

Tp= Y p(f*8s-1, 6)6: ()" (4.2)

s,teG

From this, it follows that f € £3°(G) — Ty € L(¢%(G)) is an injective
homomorphism. It is obvious that this map is a homomorphism. To see that
it is injective, suppose that Ty = 0 for some f € £;°(G). From and the
fact that {8;A(t)*}s ¢eq forms a basis of L(¢*(G)), we obtain pu(f*6s-1, 6t) =
0 for all s,t € G. Then, by (C3), we have eg(f * 6,-1) = 0, which is
equivalent to f = 0. For the moment, we denote by D, the subalgebra
{Ty : f e £X(G)} of L(¢*(G)). The following lemma is proven in
in more general setting. We, however, exhibit its proof for the sake of
completeness.

Lemma 4.3  Retain the notation described above. Then the following
conditions are equivalent:

(a) the algebra D, is self-adjoint;

(b) u satisfies condition (C4).
If one of the conditions (a) and (b) occurs, then, for any f € £7(G), we
have

* — —
Tf - Tno*f’

where 1y is a function on G defined by no(t) = Y gcq 1(6i-14, Os).
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Proof.  (a) = (b): Let f € £7(G). From identity [4.2),

Tr = 3 u(F * 6ot 67) A(t)Ss

steG

= N u(f %81, 6) bisA(2)

s,teG

= Y bl 811, 61) SA()". (4.4)

s,teG

Hence, if there exists an element h € £;°(G) such that T7 =Tj, = 3 e it
(h % 64-1, 61)6sA(t)*, then we have

N(f * Og-14-1, 6t“1) - /“L(h * 05-1, 6t) (S,t € G)

By summing up both sides of the above identity with respect to ¢, we obtain,
by (C3),

- Z :U’(f * 65_1757 6t)

teG

It is readily checked that Y. pu(f * 85-14, 8:) = mo * f with 1y occurring in
the assertion of this lemma. By substituting ng * f for f in (4.4), we have

T - = Z p(ng * ? * Og—14-1, 64-1) 65 A(t)".

no* f
s,teG

This must be equal to Ty = 37, ;cq u(f * 85-1, 6;)6sA(t)*. From this, it
follows that we have

Wm0 T 8mrms, 1) = pl(f # 6,4, 8) (5,1 € G).

By letting s = e, we obtain

/1,(770 X ? X 6t_1a (5t—1) = ,Lt(f, 6t) (45)
Suppose now that g € £;°(G). Then, from [4.5),

u(f,9) = Y g(t)u(no * f * 84-1, ;1)

teG

= D 9(&)(mo* F)(st) u(bs, 6,-1)

s,teG

= Y g®)mo(r)f(r~"st) u(bs, 8-1)

r,s,teG
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= Z g(t) :u’(ér_lw 6u)f(7“_18t) u(‘ssa 6t—1>'
r,8,t, ueG
This shows that condition (C4) holds true.
(b) = (a): The argument in the preceding paragraph shows that con-

dition (C4) (or, equivalently, identity (4.5)) is equivalent to the identity

T* _ =Ty. Therefore the algebra D, is self-adjoint. L]
no* f

Now we suppose that u further satisfies condition (C4). Then, for each
f € 3(G), we set

ff=nox*f

with ny the function defined in Lemma 4.3. In view of Lemma 4.3, this
defines an involution on £7°(G). Hence D, is a *-subalgebra of L(2(Q)). Tt
is clear that the vector 1 € £2(G) is a cyclic and separating vector for D,
so that the functional ¢o on D, defined by ¢o(Ty) = (Ty1 | 1) = (f | 1)
(f € £2(@)) is faithful. It is easily checked that ¢o(T§Ty) = (f1]g)- This
implies that the Hilbert space L?(¢g) obtained from g is isomorphic to
¢%(G), and that the pair {D,,, £2(G)} is a standard representation.

Lemma 4.6  With the notation as above, the following conditions are
equivalent:

(a) the conjugate-linear map J, : f € £3(G) — f* € £#(G) is a
unitary involution, i.e., wo s a trace;

(b) u also satisfies condition (C5);

(c) the function ny defined in Lemma 4.3 satisfies ng = 1o.
If one of the above conditions is satisfied, then we have g * g = .

Proof.  The equivalence of (b) and (c) is obvious.
(a) = (b): Let f,g € £>(G). By assumption and the definition of the
involution %, we have

(flg) = (" |f)
= (mhxmoxg|f).

From this, it follows that ng * N9 = O.. In the meantime, the fact that
(6%)* = 6. ylelds no * g = .. Hence we conclude that ng = Tjp. Thus
v

Mo = 7o-

(b) = (a): By the preceding paragraph, we find that, if ny = 7o, then we
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have ng * 1 = 8¢, which implies that (f | g) = (¢* | f*) for any f,g € £2(G).
[]

Corollary 4.7  Let yi be a 2-cocycle on £°(G), i.e., u € Z2((*(G)). Then
the equation

alf, g) =ulg, f)  (f,9€>(G))

defines a 2-cocycle i on £2°(G). Moreover, we have Dy = D,.

Proof. It is easy to show that /i satisfies conditions (C1)-(C3).

For (C4), note first that fjjg = gf f, where # and § are the twisted
products associated with p and fi, respectively. Hence Dy is exactly the set
of right multiplication operators by the elements of f & Eff(G), which is,
by [Lemma 4.6, the commutant DL of D,. In particular, Dj is self-adjoint.
Thus, from Lemma 4.3, /i satisfies condition (C4).

For (C5), note that, from a direct computation, we have 75 = 75y,
where 7y is the function defined in associated with fi. In view
of Lemma 4.6, we obtain 7jg = n9. So we have 75" = 1jo. ]

For the moment, let us return to such bilinear forms p = pg as appeared
in (see Section 1), namely, bilinear forms that arise from coactions of
finite groups on finite factors. So we consider the situation described in
Section 1: 3 is a coaction of G on a finite factor A with 7 the unique
faithful normal tracial state; pg is the central projection in £}(G) which
determines the inner part of 3; 4 = pg is the bilinear form on Cp, the
commutative Kac algebra dual to R(G)y, ) and so on. As usual, we set

NBZ{SEG:(SS*pﬂng}.

As in Section 3, we identify Cg with £*°(G/Ng). So pg = |Ng|~1é., where
e is the identity of G/Ng. Let m# : G — G/Ng denote the canonical
surjection. From Proposition 3.4, Lemma 3.5 and Theorem 3.6 of , we
find that ug satisfies conditions (C1)—(C3). We show below that condition
(C4) is also satisfied, so that pg belongs to Z2(¢>°(G/Npg)).

Proposition 4.8  The bilinear form pg belongs to Z?(¢>*°(G/Ng)).

Proof.  As remarked, it suffices to prove that pg satisfies conditions (C4)
and (C5). Condition (C5) is satisfied, due to and Lemma 4.6l For
(C4), let f,g be in £°(G/Ng). Recall that |Ng| &y = no (see Lemma 3.12).
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Since fypx = fi+ b, we have

Yo u(be, 6y) 1p(6,-10, 6uw)f(z T2y g(y™")

z,y,z,wEG/Ng

=|Ng| > pg(bz, 6y) fopr (z)f(z 2y Ng(y™)

z,y,2€G/Ng

=|Nsl > 1p(8a, &) (firpx f % 6y)(2)9(y™")

w,yEG/Ng

= |Ng| Y. ua(forp* fx6y, 6,) gy ).

yeG/Ng

We take a section ¢ : G/Ng — G for m again. Then, by the definition of
K3

N,B(fb*,b * ? * 6y> 6y) = Z T(béyow(t)b(fb*7b*f*6y)ow(t)b(t)*)

teG

= 2 b)) (0 ) 25,00 (D)

teG

= Z T(b(t¢(y)—l) (b*) (f*by)om (t)b(t)*)

teG

= 3" (bt (y) 1) (bgox) (t8(y)~b(1)")

teG

= 3" 7(b(t)bgon (té(y) ~M)b(te(y) 1))

teG

The third identity is due to the fact that by, , = c for any c € Rel(3) (see
the proof of Lemma 4.5 of [Y1]). From the above calculation, it follows that

INsl D wa(forp* Fxby, 6,)9(y™)

yeG/Ng

=[Ng| Y S r(b()bsor(tdly) b(td(y) ) gy

ye€G/Ng teG

=3 3 3 (b(®)bser(te(y) " s) - b(t(y)1s)Y)

teG yeG/Ng s€Ng
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= > 7(b()bsor (tu)b(tu)*)g(m(u))

tueG

S (b(t)b o (w)b(u) gt )

tueG

— Z T(bgor (1)b for(u)b(u)*)

ueG
= pg(f, 9)-

Hence (C4) is satisfied. ]

In the remainder of this section, we discuss twisted crossed products
of von Neumann algebras by coactions. The main ingredients of twisted
crossed products by coactions are (1) an action 8 of the commutant Kac
algebra R(G)’ of the group algebra R(G) of a finite group G on a von
Neumann algebra A and (2) a 2-cocycle u in Z2(¢*°(G)). One can think of
B as a coaction of the opposite group of G on A. Thus, if we wish to start
with a coaction of G, then we need to take a 2-cocycle of £*°(G7), where
G? = G has the opposite multiplication. Given a system (A, G, 3, u) as
above, we define the twisted crossed product, denoted by A xg ,R(G)’, to
be the von Neumann algebra generated by 8(A) and C® {1y : f € £3(G)}
with the notation introduced in the present section. In what follows, we
shall deduce fundamental facts on twisted crossed products that will be
needed in the next section. So let us fix such a system (A, G, 3, u). Let
a € A. Then (a) has the form

Bla) =) ®s(a) ® p(s),

seG

where p is the right regular representation of G. This defines a family
{®s}seq of linear maps from A into itself, and determines the G-grading in
A associated with 3. In other words, the family satisfies identities (CA0)—
(CA4) in Section 1.

Lemma 4.9 Leta € A and f € £7(G). Then we have

(1@ T5)B(a) = D B(2:(a)(1® Tras,).

teG

Proof.  This follows from a direct computation, since we already know an

explicit form of T (see identity [4.2)). []
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This lemma shows that the set of elements of the form >~ .~ 8(c(s))(1®
Ts.), where {c(s)}seq C A, forms a o-strongly” dense x-subalgebra of the
twisted crossed product A xg, R(G)'. Following the idea of the proof of
Proposition 1.1 of [Y1], we shall prove that this set in fact coincides with the
twisted crossed product. For this purpose, let wy denote the vector state
defined by the unit vector |G|71/2 -1 € 2(G): wo(T) = |G|~ (T -1 | 1)
(T € LI%(G))). Then E = id4 ® wp is a normal conditional expectation
from A @ L(¢*(G)) onto A~ A ® C. Since A xz, R(G)" is contained in
A ® L(£*(G)), it makes sense to restrict the map E to A xg,, R(G)". We
still denote the restriction by E.

Lemma 4.10 Let X =3 .- 6(c(s))(1®Ts,) be in A xg, R(G)', where
{c(s)}seq € A. Then

Proof.  Note that X = 3 ;. ®s(c(t)) ® p(s)Ts,. It is easy to see that
wo(p(s)Ts,) = |G|7L. Since Y cq Ps(c(t)) = c(t) (see identity (CA3), we
find that E(X) = |G| S eq c(t). l

Lemma 4.11 Let X be as in the preceding lemma. Then we have

() =G| Y. @, 0 B(1®T;_)X)
seG

for anyt € G.

Proof.  Let no be the function defined in Lemma 4.3. Since 6,4, 6, =
> req W(0yr-1, 8,,-1)6, for any u,v € G, it follows that

(6:*6u)ﬁuészz7709u 1- ﬁu )
geG
= Z Uo(gu_lt_l)u(%h—l, Osh—1)0n-
g,heG

Hence, by Lemma 4.9, we obtain

(1®TE)X
=D (18 T)B(c(s)(1® Ts,)

seGG
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= > B JA®Tist,5,)1,6.)
u,s€G

= Y molgu Tt u(8gh-1, 8e-1)B(Bulc(s)))(1 ® Ts,)-
s,u,g,heG

From this, together with Lemma 4.10, it follows that

E(1®T,)X)
— lla Z 1t 1 [J,((Sgh—l, 55h—1)5(q)u(c(3)))
g,he
— |1a > nolgu™ 't )mo(sg™ NB(@y(c(s)))
s,u,g€G
_ |?1f| > (M0 mo)(su™ ™) Bule(s))
s,ueG
1
6] & Pulettu)

The last identity is guranteed by the fact that ng *x 7jg = &, i.e., (63)* = be.
Applying the linear map @, to both sides of the above equality, we conclude
that

B, 0 E(19TL)X) = ﬁfbs(c(ts)) (s,t€G).

Thus we have ®4(c(t))=|G| <I)SoE((1®Tg‘t _)X). Since c(t)= 3" Ps(c(?)),
we obtain the desired identity. L]

Lemma 4.12 We have

A x5, R(G) = { Y B(e(s) (1@ Ts,) : {c(s)}sec C A}.

seqG

Proof. Let us denote by S the set on the right-hand side of the assertion,
which is, as noted, o-strongly™ dense in the twisted crossed product. Sup-
pose that X € A xg, R(G)". Then there is a net {X;} in S that converges
o-strongly* to X. Each X; has the form X; = Y .4 8(c(i,5))(1 ® Ts,).
From Lemma 4.11], we find that

G| Y @0 E(1®T5 _)X)
seG
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=G| ;} 0-s"-lim @, 0 E(1® Ty ) X;)

= o-s*-lim c(i, t).
1

Hence, by setting c(t) = |G| Y ,cq Ps 0 E((1® T‘S*t _)X) € A, we get

X = 0-s*-lim Z B(c(i, $))(1 @ Ts,)
: seG

= > Be(s)(1®Ty,).

sEG
This shows that X belongs to S. L]
Corollary 4.13  FEach element X of A x3 ,R(G)" has a unique expression

X =) Bc(s)1®Ts,)

sEG

for some ¢ = {c(s)}seq C A. In this case, we write X, for X.

Proof. 'The expression being unique immediately follows from Lemma 4.11l.
[

Proposition 4.14  The linear map E is a faithful normal conditional
expectation from the twisted crossed product A xg, R(G)" onto A, where A
is identified with B(A) via (3.

Proof.  Let a € A. With the notation in [Corollary 4.13, we have 8(a) =
X, where ¢ = {c(s) = a}seg. Hence, by Lemma 4.10, F(3(a)) = a. This
shows that E' is a normal conditional expectation. To prove that it is faith-
ful, we have only to note that, with X = X, in the twisted crossed product,
where a = {a(s)}seq C A, we have E(X,X}) = |G|7' ¥ cca(s)a(s)*. The
verification of this identity is left to readers. []

The next objective is to examine the relative commutant of 8(.A) in the
twisted crossed product. For this end, we consider the relative commutant
A° of B(A) in the ordinary crossed product A x3R(G)'. As we noted before
Lemma 4.9, A xg R(G)' can be viewed as the crossed product of A by the
coaction [ of the opposite group of G. Hence, by (see §1), A€ is in
bijective correspondence with the set Rel(() of all elements ¢ = {c(t) }ieq,
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where c(t) € A, satisfying

zc(t) = Z c(8)Pg-14(x) (4.15)
seG
for all z € A, via the map ¢ = {c(t)} € Rel(8) — > ca B(c(s))(1® &) €
A°. In the next lemma, we show that the relative commutant A%* of 3(.A)
in the twisted crossed product also can be identified with Rel(3) by the
correspondence as above.

Lemma 4.16 Let X, = > .. B(c(s))(1 ® Ts,) be in the twisted crossed
product. Then X. lies in the relative commutant A" if and only if c =

{c(s)} belongs to Rel(5).

Proof. Let z € A. With the aid of Lemma 4.9, it can be easily checked
that

Xe-le) = 3 B( 3 cls)m1e(@)) (19 T,

teGG seG

Hence, by [Corollary 4.13, the condition [X., 8(z)] = 0 is equivalent to
identity [4.15). So ¢ = {c(t)} belongs to Rel(3). B

The following corollary is an immediate consequence of [Lemma 4.16).

Corollary 4.17  If the action 3 is outer in the sense of [Y], then B3(.A) has
the trivial relative commutant in the twisted crossed product A %3, R(G)'.

We close this section with the following remark concerning 2-cocycles

on {*(G).

Remark 4.18. If the group G in question is commutative, then a 2-cocycle
on ¢/*(G) can be regarded, through the Fourier transform, as a 2-cocycle
on the group G, the dual of G, in the usual sense. Indeed, if fi is the
Fourier transform of a 2-cocycle pu on £*°(G) (so f is a bilinear form on
the group algebra of G), then, with uo(p, @) = (A(p), A(q)) (p,q € é),
we have that (i) (C1) <= |uo(p, q)| = 1; (ii) (C2) <= po(p, Prolpg, r) =
1o (p, qr)po(q, r); (iil) (C3) <= po(e, p) = po(p, €) = 1 with e the identity
of G; (iv) (C4) <> po(p~L, pa)ro(p, p~1) = wo(p, q); (C5) <= po(p~1, p)
= po(p, p~1). Hence conditions (C4) and (C5) automatically follow from
the other conditions in this case. The author does not know whether (C4)
or (C5) is always redundant in the noncommutative case.
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5. Models for finite group coactions

In and Sections 3—4 of the present paper, we showed that every
coaction 3 of a finite group G on a finite factor A gives rise to a triple (Ng,
1a, vg): (i) a normal subgroup Ng of G which corresponds to the inner part
of 3; (ii) a 2-cocycle g on £*°(G/Ng) so that the associated twisted algebra
t,(G/Ng) is isomorphic to the relative commutant of 3(.A) in the crossed
product A x g R(G); (iii) a function v = g on G x G/Nj3 that determines the
derived coaction ég of G on £ (G/Ng). The goal of this section is to prove
the converse of this statement. More precisely, we shall show that, given
an abstract triple (N, u, v) that satisfies suitable conditions, there exists
a coaction 5 = By, ) of G on the AFD factor of type II; so that (NN,
{1, ¥p) equals the given data (N, y, v). In this sense, coactions By, +)
may be considered as models for coactions of finite groups on the AFD I;
factor.

Throughout this section, we fix a finite group G.

Definition 5.1 Let N be a normal subgroup of G. We define £(G, N)
to be the set of all pairs ¢ = (y, ) in which

(1) pisa 2-cocycle on £°(G/N), i.e., u € Z2({>*(G/N));

(2) ~is a function on G x G/N satisfying conditions (P1)-(P6) and;

(3) ~(s,z) = 0 for all z € G/N and s ¢ GV, where GV is the

centralizer of N in G.
The results established in Sections 3 and 4 tell that, for any coaction

B of G on a finite factor, the pair (g, v3) belongs to £(G, Ng). We write
c(B) = (us, ) in this case.

Lemma 5.2 Let N be a normal subgroup of G. If ¢ = (u, v) belongs to
E(G,N), then so does the pair € = (fi, §) (see Corollary 4.7), where

alf,9) = g, f)  (f,g€*(G/N));
A(s,x) = v(sHz)  (se€@, zeG/N).
Clearly, we have ¢~ = c.

Proof. ~ We have already proven in [Corollary 4.7 that [ is a 2-cocycle on
¢>*°(G/N). It is clear that ¥ satisfies condition (3) of Definition 5.1.

It remains to prove that 7 satisfies (P1)~(P6). Let us denote by § the
twisted product on ¢*°(G/N) associated with . As noted in the proof of
Corollary 4.7, we have ffg =g f,.f for any f,g € £°°(G/N). Fix an element




364 T. Yamanouchi

s € G. For any f € {*(G/N), we set
Q(f)(z) = D lus™ ™ m(u)z ™) f(m(w);

ueG

(@) = Y Alus™ ™ m(u)z ™) f(m(w).
ueG
Recall that, with this notation, « satisfies (P1)-(P6) if and only if {2}
determines a coaction of G on £;°(G/N) which is inner, ie., it satisfies
(1) 93(1)265,6'13 (2) ZsEG Q=id; (3) Qs o Qt——_és,tﬂs§ (4) QS(f*):
Q1 () (5) Q(fi9)=Tsea () 1Q-14(9);  (6) FHdry1=Lseq
Or(s)-112st—1(f). Hence, in order to prove that ¥ satisfies conditions (P1)-
(P6), one only needs to show that {Q;} too satisfies the above identities
(1)—(6) with respect to the product §. But this can be done without diffi-
culty, once we know that Qg = Q,-1. The details are left to readers as an
exercise. ]

In what follows, we fix a normal subgroup N of G and an element
c=(u, ) of E(G,N). Set v =i and ¢ = 4. Thus € = (v, ¢). We take an
outer action a of the commutant Kac algebra R(G)" on the AFD factor R
of type II;. The existence of such an action is guaranteed, thanks to or
to [Y]. As we remarked in the preceding section, o can be regarded as an
outer coaction of the opposite group of G on R. As usual, with p the right
regular representation of G, we write

o(a) = Y 0%(a) @ p(s)  (a€R).
seqG

Thus {®%}scc satisfies identities (CA0)—(CA4). Next we take the unique
central projection gy in R(G)’ so that the reduced Kac algebra R(G)y, is
(isomorphic to) R(G/N)’ (see for the conditions qy satisfies). So we
have gy = p(pn), where py = |N|™! xy. Then the equation

0(a) =a(a)(1®qn) (a€R)

defines an injective *-homomorphism from R into R ® R(G/N)'. In fact,
it is easy to see that 6 is an action of R(G/N)' on R. We write

Ba)= > ®(a)®pen(r) (a€R),
zeG/N

where pg/y of course stands for the right regular representation of G/N.
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With 7 : G — G/N the canonical surjection, we have

> 8¢ (5.3)

w(s)=
for any x € G/N.
Lemma 5.4  With the notation established so far, the action 0 is outer.

Proof.  Suppose that X belongs to the relative commutant of §(R) in
the crossed product R xg R(G/N)'. Since 8 is a coaction of the opposite
group of G, it follows from Proposition 1.1 of that X has the form
X =2 peq/n0(c(z))(1 ® 6;), where {c(z)}zeq/n € R. Moreover,the fact
that X lies in the relative commutant implies that {c(z)} satisfies ac(z) =

> yeG/N c(y)@z_lm(a) for all a € R (cf. (4.13)). Set d(t) = c(n(t)) (¢t € G).
We assert that {d(t)};cc belongs to Rel(a) with the notation in Section 4.
Indeed, if a € R, then, by ,

DAL (s) = D cly) Y ®ua)

s€G yeG/N m(s)=y
= Z C(y)‘bz—lw(t)(a)
y€G/N

= ac(n(t)) = ad(t).
By assumption, d(t) = c¢- 1 for some ¢ € C. Therefore, X =c- 1. ]

Now we consider the twisted crossed product @ = R x4, R(G/N)
associated with 6 and the 2-cocycle v. In view of Corollary 4.15, Q is
a factor. Moreover, since it is an infinite-dimensional subfactor of R ®
L(¢*(G/N)), which is AFD, Q is the AFD factor of type II;, and thus
isomorphic to R. Let 7 be the faithful normal tracial state on R. By
Proposition 4.12, Q has a faithful normal conditional expectation E onto
R. Then it is not difficult to see from the construction of F that T =70 FE
is the unique faithful normal tracial state on Q.

Our objective is to construct a coaction of G on Q. For this, it suffices
to exhibit a family {®;}sce of linear maps from Q into itself satisfying
(CA0)-(CA4). Let X = 3 cq/n0(c(z))(1® T, ) be an arbitrary element
of Q. For each s € G, we define a map ®; by

Z Z gb(us_ltu_l, W(u)x"l)

z€G/N t,ueG
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xO(® (e (1)) (1 © Ts,)- (5.5)

This is clearly a linear transformation on Q. If ¢(z) =1, i.e., X =1 in the
above definition, then, by condition (P1), we have

o, (1) = Z Z ¢(us_1tu_1,w(u)x_l)ét,e(l®T5£)

z€G/N tueG
= > D dlus T w(wa (1@ Ty,)
z€G/N ueG
=bse ¥, (1®Ts,) =bse- 1.
*€G/N

Thus {®s} satisfies (CA1). With X =3 c/n 0(c(2))(1® Ts,) in Q, from
(P2), we obtain

> o (X
seG
Yoo > dlusTHtuTh w(w)aTH)O(RF (c(n () (1@ T,)

xGG/N s,t,ueG

N 2 2 Z 0(®5 (c(m(u))(1 ® Ts,)

z€G/N teG n(u)=x
= Z > 8(@f(c()))(1® Ty,)
z€G/N teG
= Z O(c(z))(1®Ts,) = X.
z€G/N

So {®,} satisfies (CA3). If u,v € G, then, with X as above, condition
implies that

®, 0 d,(X)
Yo Y olguTthgThm(g)rT(sv s m(s)m(g) )

s€G/N s,t,g,heG
x0(®}, 0 7 (c(n(s)))) (1 ® 15, )
Yoo Y blgultg T m(g)a T )(svT s w(s)m(g) )

s€G/N s,t,geG

x0(®3(c(n(5))))(1 @ T, ).
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In the meantime, from [P3), we find that

> dlgu g w(g)zT ) p(sv T s T w(s)m(g) )

geG

=Y dlgsu s g m(g)m(s)a(sv s m(g) )

geG
= Supd(su sl m(s)z ™).

From this, it follows that

P, 0 D, (X)
=bup Y. > d(suTttsT! w(s)z™)O(BT (c(n(s)))) (1 ® Ts,)

s€G/N steG
= Oy v Pu(X).

This shows that {®,} satisfies (CA1). Let X. = 3 cq/n 0(c(z))(1 @ Ts,)
and X4 = Y ,cq/n 0(d(2))(1 ® Ts,) be arbitrary two elements of Q. Then,
with the aid of Lemma 4.7, a simple calculation shows that

X. X, (5.6)
S0 Y ety et )e®)®(d(2) ) (1@ T, ).

z€G/N  y,z,weG/N

Thus we have

(I)T(X Xd)
= Y > olgrthglim(g)a)
z€G/N g,heG
$0( Y eyt ety BRI (A(2)) (1 © T,)
¥,2,wEG/N

= > Y dlgrhghm(g)aTh)

z,y,z,we€G/N s,9,heG
Xy(éywﬂ'(g)“la 6z7r(g)_1)9(q)?(c(y)) ?_lh © q)?u(d(z)))(l ® T5m)
= Y Y dlgrthg  m(g)aTT)

z,y,2€G/N s,9,h€G
Xy(éyﬂ'(s—lh)w(g)“la 6z7r(g)‘1)g(q)?(C(y))q)?—lh(d(z)»(l ® T5z)

= Y > olgrtshgt, w(g)z7)

z,y,2€G/N s,9,h€G
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X V((Syﬂ'(h) Ly Ozn(g)—1 )O(Qg(c(y))q)g(d(z)))(l ® T(Sw)

In the meantime, we want to compute 3 ®,(Xc) ®p-1,(Xg). With

= Y g(suTlts7L m(s)z ) B (c(n(s)))

s,teG

m(g)~

(ue G,z € G/N);
flu,z) = Y ¢(gu™'hg™ !, mw(g)z~")®7 (d(m(g))),

g,heG
equation yields
> Pl 1r(Xa)

peG

= ¥ 9( S VBpuats S )e(py)BL(F(p 71T, 2)))

pEGzeG/N  y,z,weG/N
X (1 X Tgm )

Since ®? o Q5 = by r(n) P, We get

>0y 1(Xa)

peG

=2 2 9( 2. V(ymwat 8a1)

peEGzeG/N  y,2€G/N

x Y Slsp~its™! m(s)z )@ (e(n(9)))

s,teG

x > #lgr~'phg m(g)e @R (d(r(9))) ) (1 ® T,).

g,heG

From condition [P4), one deduces that
Z Z V((Syw(h):c—17 6z:r_1)¢(3p_1t3_17 71'(8).1,‘_1)
p€G y,2€G/N
x¢(gr~'phg~!, w(g)x ")
= Z Z v(by, 62) sh)(h_lp_lth)(sh)_l,ﬂ(sh)w_ly_l)

pEG y,2z€G/N
ch(gr phg Lr(g)e~ 2
=y > v o((sh)p~"(sh) ™, w(sh)z 'y~

p€G y,2€G/N
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x¢(g(r~'th)pg ™!, m(g)a™ 27
1
= Tar12 Z (b(ur_lthu_laW(U)x_l)y(éﬂ(shu)—% 67r(gu) 1)
\N| ueqG
From this, it follows that
> ®p(Xe) Bpe1,(Xa)
peG
Z Z op(ur thu™t (u)z™t)
| wEG/Ng,hstuGG
XV((Sﬂ'(shu)“la 67r(gu)_1)9(¢)? (C(ﬂ-(s)))@%<d(ﬂ-(9))))(l ® Téz)
= Z Z P(urrthu™, w(u)z™t)
z,y,2€G/N h,t,ueG
xy(éyﬂ'(hu)_lv 6m(u)_1)9(@?(c(y))<l>%(d(z)))(1 ® Ts, ).
This shows that ®,(X.Xq) = > cq Pp(Xc)®p-1,(Xa), so that {@sec} sat-
isfies (CA4). Finally, with X. as above, Lemma 4.7 implies that
= Y o X mley el (c(@)) (10 T,) (5.7)
2€G/N  zy€eG/N

where no(z) = Y eq/n V(0s-1ys Oy) (see Lemma 4.3). Hence

Z Z P(ustu™t, w(u)z™h)

2€G/N tueG

<0(@( Y mlrwy = TP(e(x))) (1@ Ts,).

z,yeG/N

Since ®f o @Z = On(t)y Pt We obtain

C

o1 (X)) = Z Z d(ustu™, w(u)z no(r(u)w(t) Tzt)

T
z,2€G/N tueG

x60(2f (c(z)"))(1® Ts,)
Z Z d(ustu™t, w(w)z ™ no(r(ut tv™h))

zeG/N t,u,veG

x0(®F (c(m(v))") (1 ® T, )-
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From identity (P5), it results that

Thus we have
o 1(X)) = Z Z no(z) p(vs~1t=1v=1 w(vt)z~1x)
z,2€G/N tweqG
x0(®7 (c(m(v))"))(1 ® Ts,).

Meanwhile, by applying to ®(X.) in place of X., we get
Oo(Xe) = 3 0( Y mo(zlah)

z€G/N  z,yeG/N

x®0({ Y plusMtu ™t m(w)z™?)

u,teG
x®F (c(m(w)))}) )1 ® T,)
= Z Z no(zy te ™) p(us—Ttu—1, w(u)z—1)
z,y,2€G/N u,teG
<B(®% 0 B (c(r(w)"))(1 0 T5,).
Since @g 0 D = by n(1)-1 Py 1, it follows that

o, (X.)" = Z Z no(zm(t)z™1) p(us—1tu=1, w(u)z1)

z,2€G /N u,teG
XO( @1 (c(m(u))*))(1 ® T, )
= Z Z no(z™ 1) p(us—tu=1, w(ut=1)z—1z1)

z,2€G/N u,teG
x0(D (e(m(u))"))(1 © T, )
= Z Z no(x) d(us= 1t tu=1, 7(ut)z~1x)

z,2€G/N u,teG
x0(®¢(c(m(v)) (1 © Ts,),

which proves that {®,} satisfies (CA2).
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We summarize the discussion in the preceding paragraph in the theorem
that follows.

Theorem 5.8 Let X =3 /N 0(c(z))(1®Ts,) be in the twisted crossed
product Q@ =R xg, R(G/N)'. Then the equation

= > > lusTtu m(u)aTh)

z€G/N tueG
x0(®¢ (c(r(u)(1®Ts,) (s€G)

defines a linear map ®, from Q into itself so that the family {®s}scq sat-
isfies conditions (CAQ)-(CA4). Therefore, the equation

=) 2(X)®As) (X€Q)

seG
in turn defines a coaction 3 of G on the AFD factor Q of type 1.

Our next objective is to compute the inner part Int(3) of the coaction
constructed above. This is, by definition, the same as explicitly describing
the central projection pg(= 2 xeInt(8) x) of £}(G). Eventually, we shall
prove that A(pg) = gn. But we first show that A(pg) > gqn, by proving
directly that the restriction of # to R(G/N) is inner, i.e., implemented by
a certain unitary V in @ ® R(G/N). To do so, we need some auxiliary
results.

We define an operator Vy in @ ® R(G) by

Vy = |N‘ Y 1®Ts, , ®A(s).

seG

Then we have

VnVy = |N|2 Z 1® T, By §16* i ® A(t).
s,teG

In the meantime,

Y bt a1y = O D mo(wn(sT))(Sn(s) 6w )

s€eG s€eGweG/N

- Z Z no(wﬂ—(s_lt))’/(éﬂ(s)z—“6wz—1)6z-

seGweG/N
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From this, it follows that
VNVR}
- 2 Z Z 770 wﬂ- I’ )V(éw(s)z 1, 5wz )6

s,teGw,ze€G/N

Z Z Mo (wy_lﬂ'(t))y(éyz‘l’ 6wz—1)(1 ®Ts, ® A(t))

tGG w,y,2€G/N

Z Z nO(w)V((Syz—l: 6w7r(t)“1yz—1)(1 ®Ts, ® A(t))

tEG w,y,2€G/N

Z Z no(w)y((sﬂ'(t)w‘lw 63})(1 ® T5z ® A(t))

tEG’ w,y,26G/N

|N|Z Z 770 7]0’(1)7'( ) )(1®1®>‘())

teGweG/N

Since ng * 19 = 0 by Lemma 4.6, it results that

VNVN:|N|§:6 N1 @1 A1)
= (1®1®A
‘N|t§v (t))
=1®1Qqn-

Since 1 ® 1 ® gy is a central projection and Q ® R(G) is finite, it follows
that V3V = 1®1® gn. Thus Vy can be considered as a unitary in the
reduced algebra Q ® R(G),, . Moreover, we have

Proposition 5.9  The unitary Vi constructed above satisfies
BX)1®gn) = VI(X ® 1)Vy

for any X € Q. Therefore, the restriction of B to R(G)qy = R(G/N) is
mnner.

Proof. By the discussion preceding this proposition, it suffices to show
that

WhX)= (X 1)Vy (X € Q)
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With ¢c: G/N — R, from [Lemma 4.9, we have

VNﬁ( c)
Z > d(u ~r(u)z)

xeG/NrstueG
x(1eTs,, )9@"‘( c(m(u)))(1 @ Ts,) ® A(s)

~ >, 2. ¢ u™t, w(u)z )

r,s,t,ucG z,yeG/N
X0(®9 0 B (c(m(w)(1 & Ty . a5y 15.) © A5

=N | > > ¢ “Lr(w)a™h)

r,8,t,ucG z€G/N
X 0(07 (c(m()))) (1 @ L5,y t6.) @ AlS)

\ Z Z 1, Oy Dé(us™rtu™! w(u)z™h))

7,8, uEG m,yeG/N
x O(®F (c(m(u))))(1® Ts,) © As)

| Yo D vbapay-ts 62)p(us vty w(u)y Ttz h))

7,5,t,u€G z,yecG/N
x 0(®F (c(m(u))))(1® Ts,) @ A(s)
1

- W Z Z w(rtv_l)’ )
7,8,t,u,v€EG z€G/N
xp(us ity m(uv™Hzh))

x 0(2F (c(m(u))))(1® T, ,,) ® A(s)-

Meanwhile, with the aid of (P6), we obtain

Z Z n(rtv , 0z)p(us trtu™t w(uv™Hz™1))

rt,u€G reG/N

9(‘1’0‘( (m(w))))
= > Y v(brpr-1, 6 2)(uvs rrtotuTh w(u)z™h))

rt,u€G zeG /N
><9(¢?( (m (U’U))))
= Y Y v(bery ba)p(uvsIruTt w(u)z )

mt,u€G z€G/N

m(v)
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x0(®F (c(m(uv))))
=T T we

ru€G zeG/N
X gb(uvs_lru_l, W(u)x_l))G(c(ﬂ(uv)))

=Y (XX X vl

yeG/N 7€G zeG/N w(u)=y
x¢<u<vs—1>ru-1,yw—1>>)e<c<yw<v>>>
- Z V(5y7 67r(sv_1)9(c(y7r(v)))'

yeG/N
Thus
VNB(X. )
N7 5 X vl betar Plelyr)
stGyEG/N
X(1®Ts,,,) © Als)
_ IL 5 Z V(By, 6n(s)z-10(c(yz))(1® Ts,) © A(s)
€Gz,ycG/N
_ li 3 Z V(8yp-1, rn(s)e-10(c(y))(1© Ts,) @ A(s)
€G z,ycG/N
= |—1— Z Z y ﬁ 67r(s) O(C(y))(l ® T‘Sm) ® )\(S)
€G zyeG/N
_‘LZ Z J1®Ts,)1®Ts, ) @ A(s)
€GyeG/N
= (Xc®1)Vn
This completes the proof. U

Corollary 5.10 Let A(pg) be the central projection in R(G) correspond-
ing to the inner part of the coaction 3. Then we have gn < A(pg).

Proof.  This follows from Theorem 1.7 of [Y1]. []
Corollary 5.11  The family b = {b(s)}scc of elements in Q defined by

bs) = (18 T, )
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belongs to Rel(B). Moreover, we have
> b(s)b(st)" = pw(t) - 1
seG

foranyteG.

Proof.  First note that Viy = > .7 b(s) ® A(s)*. Thus the last assertion
is just a restatement of the identity Vy Vi = 1®1® qn. The first assertion
results from the following general fact: []

Lemma 5.12  Let By be a coaction of G on a von Neumann algebra A.
Suppose that {c(s)} is a family of elements in A. Define an operator T =
Y oseq c(8) ®A(s)* in A ® R(G). Then the family {c(s)} belongs to Rel(53o)
of and only of T' satisfies

for all x € A.

Proof.  We write

z) = Z O (z) @ A(s

se€G

With this notation, Rel(f) is, by definition, the set of all families {a(s)}scq
in A satisfying za(t) = >, a(s)q)i(z)_l(x) forall z € A. For z € A, it is
easily verified that

Tho(x) = (D c(s)2 (z) ) ® A(t);

teG seG
(z@1)T = Z ze(t™1) @ A(t).
teG
From these identities, the assertion immediately follows. []

In order to prove that the central projection ¢y really coincides with
A(pg), we need to examine the set Rel(3) in more detail.
As before, for any function d : G/N — R, we write

= > 0d=)(1eTs,) € Q.

ze€G/N
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In addition to this notation, for any function ¢ : G x G/N — R, we set

X(t)= Y 0(c(t,z)(1®Ts,) € Q.

z€G/N

Then, by the definition of Rel(3), the family {X,.(¢)}tcc belongs to Rel(3)
if and only if it satisfies

XaXc(t) = Z Xe(8) g-1(Xa)
seG

for all d : G/N — R. By a direct calculation, the above identity is proven
to be equivalent to

Z V(6mzw_17 6yw‘1) d(:c)fbg(c(t, y))
z,y,2€G/N

= Y Y eutsTvu w(wy ™ Eanuputs Gyut)
s,u,v€EG z,yeG /N
xc(s, )P (d(m(u))) (5.13)

for all w € G/N and d : G/N — R. From this information, we shall
find out an explicit form of the function ¢(-,-). First, let us take d to be
a constant function, say, d(z) = a for some a € R. Then, by (C3), the
left-hand side (LHS) of equals ac(t,w). In the meantime, by (P1)
and (C3), the right-hand side (RHS) of is 3 eq c(vt, wr(v)7H) % (a).
Thus we get

ac(t,w) = Z c(vt, wr(v) )0 (a) (5.14)
veG

For each w € G/N, set cy(t) = c(t™!, wn(t)). From (5.14),

acy(t) = ac(t™t, wr(t))

= Y (st wr(t)m(s) )2 (a)

seG

= Zc(s‘l,wﬂ'(s)) “1,(a)

seG

— ch(s) “14(a).

seG

This shows that {c,(t)}:cc belongs to Rel(a) for each w € G/N. Since o
is outer, there exists a function £, on G/N, depending upon c, such that
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cw(t) = &c(w) - 1 for any ¢ € G. Thus we have
c(t,z) = E(xm(t)) (te G,z € G/N). (5.15)

Returning to (5.13) with this identity, we obtain

Z V(é:vw—l? 6yw—1)§c(y7r(t)) d(CU)

z,y€G/N
= Z Z ¢(Ut5_lvu_l’ﬂ-(u)y_l)y(émﬂ'(v)w_la6yw—1)
5,u,v€G z,yeG/N
x€e(m(s)) By (d(m(u)))
= Z Z o(uts tout w(w)y v (s, w15 Oypp=1)
s,u,v€G z,yeG/N
xEc(zm(v™"s)) @ (d(m(w)))
= Z Z P(uts™tu™l w(w)y (6,1, 6

s,u,veCG z,yeG/N
x€c(2m(s)) 5 (d(m(u)))
=Y Y duts )y (s, Syr)
5,u€G z,yecG/N
X (zm(s)) d(m(u)) (5.16)
for any w € G/N and d : G/N — R. Let a € R. Applying the functional
To on R defined by 74(b) = 7(ab) in equality [5.16), we get

Z V(6gw-1, 6yw’1)§c(y7r(t)) T(ad(w))

z,yeG/N

Z Z d(uts™ w(u)y_l)y(é w15 Oypp=1)

5,u€G z,yeG/N
x&c(zm(s))T(ad(m(u))). (5.17)

Since the set of all functions g on G/N of the form g(z) = 7(ad(z)) for
some a € R and d : G/N — R coincides with £2°(G/N), identity is
equivalent to

Z V(8guw1, Oy1) Ec(ym () f(z)

z,yeG/N

=Y > sutsThum m(uw)y (g1, Sy

s,u€G z,yeG/N

yw~ 1)

xE€e(z7(s)) f(m(u)) (5.18)
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for all f € £2°(G/N). To clarify the meaning of [5.18), we define a map
(s € G) from ¢°(G/N) into itself by

= > ¢lus"uh w(w)a)f(n(uw)  (z € G/N).

ueG

Then {Q,}scg determines a G-grading in £;°(G/N) (recall how we deduced
identities (P1)—(P5)). Hence the equation

=Y AWH®As)  (f€LX(G/N))

seG

defines a coaction § of G on £3°(G/N). By the definition of ®,, we easily see
that ®5(1 ® Tf) = 1® Tq,(y) for any f € £;°(G/N). Hence, the coaction 6
is, in some sense, the restriction of 3 to C® {Ty: f € £°(G/N) }. Having
said this, we go back to (5.18) m First,

z,yeG/N

= {f ﬁv (fc * 5,r(t)—1)}(w).
On the other hand,

RHS of [5.18)
=Y Y outsTlumt w(w)y ) (6t 6y)(w)

s,ueG z,yeG/N

X (€ * % . >< ) f((u))
=3 3 (bt ) (w) (€ * br(e)-1) () Q-1 (F) (v)

s€G z,yeG/N

= Y {(E* br(e)1) o Qe (N} (w).
seG
This means that the family { * 6,(;)-1}tec belongs to Rel(6).

We summarize the results in the preceding paragraph in the proposition
that follows.

Proposition 5.19 Let ¢ : G x G/N — R be an arbitrary R-valued
function. Then the family {X.(t)}tec of elements in Q belongs to Rel(3) if
and only if there exists a function £ on G/N, depending upon c, such that

(i) c(t,z) = E(xm(t)) - 1; (i) the family {€ * 6)-1 }tea lies in Rel(6), i.e.,
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it satisfies
i (50 * 671'(t)“ ) Z(gc * 671'(3 ) ﬁll st—1 (f)
seqd
for all f € £5°(G/N).

We are now in a position to prove, with the help of [Proposition 5.19,
that the projection gy equals A(pg).

Theorem 5.20  The central projection qn coincides with A(pg), the pro-
jection which determines the inner part of 8. Therefore, Int(3) is the set of
all irreducilbe characters x of G such that 6, x = x for all s € N.

Proof. By the definition of the inner part, there exists an R-valued
function ¢ : G x G/N — R such that (i) {X.(t)}:ec belngs to Rel(B);
(i) Yseq Xc(s)Xc(st)® = pg(t) - 1 for all t € G. By [Proposition 5.19,
there is a function £, on G/N so that c(t,z) = &.(zn(t)). Hence we have
Xc(t) =1® Tgc*éw(t)_l. A simple computation shows that equation (ii) is
the same as

Z(gc*é )uu(éc*é (st)— 1) _pﬁ(t)'l' (5'21)

seG

In the meantme, recalling that py = |N ]_1 XN, we have

Z(gc * 67r(st)‘1)*pN(t_1u) = ’Nl Z §c * 67r(sut XN(t_l)

teG teG

- |N| Z 56*6 (sut)~

teN
= (£C * 67r(su)—1)*'

From this, together with (5.21), it follows that

(ps*pn)(w)-1 = pa(t)pn(t~u) - 1

teG

= Z (§C * 67r(s)_1) ]jl/ (£C * 67r(st)—1 )*pN (t_lu)
s,teG

- Z(§C * 6 (s)-1) B (€e * bn(su)-1)" = pp(u) - 1.
seG

Thus pg *x py = pg. This shows that A(pg) < A(pny) = gn. In view of
Corollary 5.10, we conclude that A(pg) = gn. ]
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Our next goal is to describe the 2-cocycle ug and the function g asso-
ciated with (.

We take the family b = {b(s) = |[N|"1(1 ® Ts_, _,)}sec of elements in
@ defined in [Corollary 5.11. By [Corollary 5.11 ané Theorem 5.20, we have
Ssec b(s)b(st)* = pg(t) - 1. We easily see that Y .- b(s) = 1. Hence this
family gives rise to pug (see Section 1):

Nﬁ(fa g) 1= Z bgow(t)bfow(t)b(t)* (fag € EOO(G/N) )
teG

It is readily checked that bpor(t) = 1 ® Thes, 1)1 for any h € ¢>°(G/N).
Thus

us(f, g) -1 |N|tEZG (1.8 Tgus, 1) o6 10885 )
Now we have
ﬁtezc(g*aﬂ(t)_l)u(f*a 0-1) 165 (5)1)
ﬁz S glam(t) flym(t))mo(zm(t))6z 8y 6

teG m,y,zeG/N
= Y gw)fywm(zw)v(b,, 1, 6,,)
z,y,2z,w,z1,02€G /N
XV(6$1:B2_1’ 5zx2_1 )5382

- Z g(w)f(ym_lw)no(zx‘lw)y(éwwl 1, 6ym1 1)
-'L',y,Z,w,.’Bl,(L‘QEG/N

Xl/(5 ~1, 6 —1)53;2

1%, ? Tz,
- Z g(w)f(yx_lw)no(Zx_lw)y(éxfl’ 6y:1:_13:1—1)
z,Y,2z,w,x1,02EG/N
XU(6 o1, Brgmrt) e

T1xy ) Tz
=Y w6, )
z,y,2z,w,x1,02€G/N
XV((Swlm;l, 62332_1 )613233
= Y g flywm(zw)y(E,-1, §,,-1)
y,2,w,r1,22€G/N
XI/((S -1, 6 —1)-1

T1Ty ) T 2x,
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— Z g(w)f(yw)no(zw)u(5$;1, 5yml_1)%(zg;1*1) .1
¥,2,w,1EG/N

= Y. g(w)flyw)(mo* ) (w e (b, 6,-1) - 1
y,w,z1€G/N

= > 9w f(yw)v(bw, Syw) -1

y,wEG/N

The second last equality is due to Lemma 4.6. The computation shows that
we have pg coincides with the originally given 2-cocycle p.

To compute the function vy, we first note that vyg(s,z) = 0 whenever
s & GV by Corollary 3.15. Moreover, by condition (3) of Definition 5.1,
we have v(s,z) = 0 if s ¢ GN. Thus y5(s,z) = (s,z) if s € GV and
x € G/N. It remains to treat the case where s € GV. For this, we need to
describe the element U,(b) in detail. Let s € GV. By definition, we have
U, (b)(t) = Dyq-1(b(t)). With the notation established in the discussion
preceding [Proposition 5.19, we obtain U,(b)(t) = |N|"1(1® T
In the meantime, we have

Qtst—l(éﬂ'(t)—l) = Z (/5(“’53*175—1“—1,W(u)x_l)‘svr(t)—l(W(U))
ueqG

= Z P(uts™ 1t ™t w(w)z™h)

m(uw)=m(t)~?

= Z ¢(hs  hH () e™Y)
heN

= [Nlg(s™,w(t) 271,

tst—l(éw(t)—l))'

The second last equality is due to the fact that {ut : n(u) =7(t)"!} =N
for each t € G. Hence we obtain

V)= Y o(sThat) a1 ®Ty,).

z€G/N

Fom this, with g € G, we have

'Yﬂ(s’ﬁ(g)) -1
= fu,m)p(m(g)) -1
=) U (b)(r)b(rg)*

reG
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=|~1—Z () e )10 Toge )
eqG

zeG/N
= Z ¢(s~Hy 271 ®T6‘”ﬁ6:(g)—1y‘1)
z,yeG/N
= ¢(8_1’ y_lx_l)no(zyw(g))y(5mw_l7 6zw_1)(1 ® T5w)
z,y,z2,weG/N

= > ¢y e Dmo(zyn(g))

z,y,z,weG/N

m(rg)~1

XV(5w_1a 6zz_1w_1)(1 ® T5ww)
= Y (s Ly e no(zaym(g))
z,y,2,wEG/N
XV(6w_17 6zw—1)(1 ® Téww)

= Y olsThy mo(zym(9)v(buts b)) (1® T, )
z,Y,z,wEG/N

= Y o(sThy Dnolzym(9)v (b1, 8up-1) - 1

y7z)weG/N

= > sy mo(zym(9))m(2) - 1

y,2€G/N

= 3 o7y (b xmo)(ym(g)) - 1

yeG/N

= ¢(s™",m(g)) = (s, 7(g)).

This proves that v3 equals the function v which we started with.
We now summarize the results obtained in the preceding discussion in
the next theorem, which is our main theorem of this paper.

Theorem 5.22 Let N be a normal subgroup of G. For any element
= (p, v) in E(G, N), there exists a coaction 3 = B(n ) of G on the AFD
factor of type 11, such that (i) N = Ng; (ii) ¢ = c(8).

6. Some equivalence relation on £(G, N)

In the preceding section, we introduced the set £(G, N) for each normal
subgroup N of G, which, in some sense, provides a “model” for the coactions
of G on the AFD factor of type II;. We saw that each coaction 3 of G
on a finite factor A gives rise to an element c(3) = (ug,vg) in £(G, Ng).
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There is, however, some ambiguity in the notation c(3), since, as
and Lemma 3.17 suggest, both pg and g heavily depend on the choice of
the element b = {b(s)}scc of Rel(B) satisfying f, = pg and Y-, b(s) = 1.
In order to circumvent this situation, we shall introduce an equivalence

relation on £(G, N) in general so that equivalence classes can make sense
as an invariant. The equivalence relation we need is suggested in equation

(3.16) and Lemma 3.17. As before, G is a finite group in what follows.

Definition 6.1 (1) Suppose that p,v are two 2-cocycles on £2°(G), i.e.,
w,v € Z2(#*(G)). We say that u is cohomologous to v, denoted by u ~ v,
if there is a function n on G such that

(i) nPxn=nxnt=06, L.een(s)=1L

(ii) we have

v(fyg) =D w@* f 81, % gxb5-1)n(s)
seG
for any f,g € £%°(G). The function 7 is called a connecting function (be-
tween p and v).
(2) Recall that the bilinear form eg ® g, where ¢ is the counit of
G, was called the trivial 2-cocycle. Any 2-cocycle that is cohomologous to
the trivial one is said to be a coboundary.

It can be readily verified that the relation ~ defined above is an equiv-
alence relation on Z2(¢*°(G)). The definition is of course motivated by the
ordinary group cohomology theory. The author does not know whether
Z%(£*°(G)) can be equipped with a suitable group structure so that the set
of coboundaries forms a normal subgroup in such a way that it generates
the equivalence relation ~ just introduced.

Definition 6.2 Let N be a normal subgroup of G. We say that an
element ¢c; = (p1,71) of £(G,N) is equivalent to another element c; =
(p2,72) if
(1) p; is cohomologous to pg with a function n on G/N a connecting
function between them;
(2) the following identity holds true:

Vz(s,w)=‘%| S Y (usu, w(w)e Y (u))n(zw)

z€G/N ueG

for any f,g € {*(G/N), s € G and w € G/N. In this case, we write
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c1 ~ c3. The function 7 is still called a connecting function.

It is a routine to check that this relation ~ is in fact an equivalence
relation in £(G, N). The equivalence class of an element ¢ of £(G, N) shall
be denoted by [c]. Then, by and Lemma 3.17, the equivalence class
[c(8)] does not depend on the choice of the element b = {b(s)} for any
coaction . We denote the class by A(3). It is then easy to see that A(3)
is a conjugacy invariant for coactions of G.
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