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About finite solvable groups with exactly four p-regular
conjugacy classes
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Abstract. Let G be a finite solvable group and p a prime # 2. The purpose of this
note is to give the structure of finite solvable groups with exactly four p-regular conjugacy
classes.
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1. Introduction

In , [6] and Ninomiya describes the groups with exactly three
p-regular classes. If F' is a splitting field for G of characteristic p then, as
well-known by Brauer, the number of non-isomorphic simple F'G modules is
equal to the number of p-regulare classes. Throughout this paper G' denotes
a finite group and p a prime # 2. The purpose of this note is to give the
structure of finite solvable groups with exactly four p-regular classes. With
A x B we denote the semidirect product of a normal subgroup B with
a subgroup A. All other notations are standard and can be found, for

example, in [3].

Main Theorem Let G be a solvable group with exactly four p-regular
conjugacy classes, Op(G) =1 and p # 2. Then one of the following cases
occurs :
A) If G is not p-nilpotent then G = Sy and p = 3.
B) If G is p-nilpotent then G is one of the following types
1.  The group G is one of the p'-groups
a) G is the cyclic group Z4 of order 4.
b) G =Zyx Zs.
c) G is the alternating group A4 of degree 4, p # 3.
d) G is the dihedral group of order 10, p # 5.
2. Op(G) is elementary abelian of order 2" and one of the following
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statements for Oy (G) and a Sylow p-subgroup P of G holds.

a) Op(G) is a minimal normal subgroup, n =4 and G = Z5 x
Oy (G), p=5.

b) Oy(G) = Z3 x N, where N is elementary abelian of order
p+ 1, p is a Mersenne prime, P is of order p and operates
transitively on N\1.

c) G=(Z, x N)x (Z, x N), where N is elementary abelian
of order p+1, p is a Mersenne prime, and Z, operates tran-
sitively on N\1.

d) Op(G) is a minimal normal subgroup, n = 6 and P is a
Sylow 3-group of GL(6,2), which acts naturally on Oy (G).

Oy (G) = A(n, ) is a Suzuki 2-group of order 22" and 6 acts fized

point freely, G = P x A(n,6), with |P| = p.

G = SL(2,3) x N, where N is an elementary abelian group of

order 25 and SL(2,3) operates transitively on N\1, p = 3.

G = (P x Z3) < N, where P is a cyclic p-group, Zy the cyclic

group of order 2, and (P X Z3) has two orbits on N\1. For the

order | N |=¢%, and | P |= p° we have q* — 1 = 4p°, and if a > 1

then ¢ =5 and a is a prime.

G = Zi5 x N, p =35, N is elementary abelian of order 16 and

Z15 operates as a Singer cycle on N.

Conversly any of these groups has exactly four p-regular classes.

Preliminary results

Lemma 1 IfG is a solvable group with exactly four p-reqular classes then
the number of distinct prime divisors in the order of G is smaller than four.

Proof.

Let G be a counter example and p, r, s, t primes dividing the order

of G. Let H be a {r,s,t}-Hall group. Then H contains only elements of
prime order. This is a contradiction to |2| Theorem 3. ]

Lemma 2

([4] 2.7 Lemma p. 424). Suppose that g™ — 1 = ¥, where q,r

are primes and m,v are positive integers. Then either

a)
b)

c)

g=2andv=1 or
r=2and m=1 or
q" =9 and r¥ = 8.
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Lemma 3 Let M be a set, on which G operates transitively and N a
normal subgroup of G. Then all orbits of N on M have the same length.

Proof. Let A;, A; be two orbits of N on M and a; € A; , a; € Aj.
Then there is ¢ € G with a;g = a;. We show z — zg is a bijection from
A; on Aj. Obviously there is n € N with x = a;n. Therefore we have
rg = a;ng = a;gg ‘ng = a;nd = a;ng for ny € N <G and so zg € A;.
Clearly £ — zg~! is the converse morphism. []

Lemma 4 Let R be a Sylow r-subgroup of a solvable group G. If all
elements of R\1 are conjugate in G then R is abelian.

Proof. Let G be a minimal counterexample and M be a minimal normal
subgroup of G. If M is r-group then M = R. This is a contradiction. Hence
M is a r'-group. Now RM /M is a Sylow r-subgroup of G/M. Obviously
G/M is a counterexample of smaller order. []

Lemma 5 Let G be a solvable group with exactly two p-regular conjugacy
classes in Oy (G) and Op(G) = 1. Then the Sylow p-subgroup P is cyclic
and the p-length of G is 1.

Proof.  Op(G) is a minimal normal subgroup and therefore abelian. More-
over G/Oy(G) operates transitively on O, (G)\1. By the or-
bits of Oy (G)\1 under O,(G/Op(G)) = Opp(G)/Op(G) have the same
length. This length is obviously different from 1. By [4] 3.4. Lemma p. 268
Opp(G) /Oy (G) is cyclic. Hence the p-length of G is 1, which is seen by the
constrained property. []

Lemma 6 Let G be a solvable group with exactly four p-regulare conju-
gacy classes and Op(G) = 1. Then the p-length of G is 1.

Proof. Let G be a counter example. By Oy (G) contains three
conjugacy classes. Let q(# p) be a prime divisor of the order of G and Q a
Sylow g-subgroup of G. Now we have two cases. L]

1. Let Oy (G) be a g-group.

If 3 distinct primes p, q,r divides the order of G then there is exactly
one conjugacy class with elements of order r. Let R be a Sylow r-subgroup
and 1 # ¢ € R. Lemma 4 implies that R is abelian. Then by the Lemma
of Burnside all elements of order r in R are conjugated under N = Ng(R).
The number of elements is obviously | N : Cy(z) |= p* for a suitable natural
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number v. Moreover RQ is a Frobenius group. Therefore the order of R is
r. Hence we have p” + 1 = r, which contradicts Lemma 2.

Therefore the order of G is divisible by the primes p,q only. We set
| Q@ |= ¢® and | Oy(G) |= ¢% Obviously Oy (G) contains Z(Q) and
¢ = 1+ p° + ¢'p’ for suitable s,i and t. Moreover all p’ -elements outside
O, (G) are conjugated. Hence G/Op,(G) contains exactly two p' -classes.
Consequently ¢°~¢ — 1 is a p-power. By ¢ %—1=pandq=2,
i.e. Gis a {2, p}-group and the order of O5(G) is 2.

1.1. First let O2(G) be a non-minimal normal subgroup and 1 # N <
O2(G) a G-normal subgroup. Let the order of N be 2°. Then all elements
of N\1 are conjugated. Hence 1+ p® = 2° or 2° = 2ipt + 1. Obviously the
second case is impossible. By we have p = 2° — 1 and s = 1.
The equation 2¢ = 1 + p + 2%t forces i = ¢, t = 1 and d = 2c. By
VI1.6.5 Lemma S. 690 C;(O2(G)/®(02(G))) < O2(G) holds. Therefore a
Sylow p-subgroup P has a faithful representation on O2(G)/®(O2(G)) and is
consequently isomorphic to a subgroup of GL(n,2) with 1 < n < 2¢. Clearly
| GL(n,2) |= (2" —1)(2" — 2)...(2" — 2" 1) and ¢|m if p = (26— 1)|(2™ - 1).
Hence the order of P is smaller than p® and the p-length of G is one.

1.2. Now let O9(G) be now a minimal normal subgroup of G. Then it
is the unique minimal normal subgroup of G. Therefore any homomorphic
image of G has at most 2-length one, but G has 2-length two. By [3] VI 6.9
Hilfssatz S. 693 O2(G) has a complement M = G/O2(G) in G. Obviously
M contains exactly two p-regular conjugacy classes, namely the 1-class and
a class with elements of order two. Hence all 2-elements outside Oz(G) have
order 2 and so a Sylow 2-subgroup @ of G has exponent two. Then @ is
abelian and therefore the 2-length of G is one. Since O,(G) = 1, this case
is impossible.

2. Let the order of Oy (G) be divisible by exactly two distinct primes.
Then we have a minimal normal subgroup N and a subgroup U, such that
UN = Oy(G) and UNN = 1. By the Frattini argument Ng(U)Op(G) =
G. Since Oy (G) is a Frobenius group, we have Nop,(G)(U) = U. Hence
Ng(U)/U =2 G/0y(G) and Ng(U) operates transitively on U\1. By Lemma,
3 all orbits of U\1 under O,(Ng(U)/U) = Opp(G)/Op (G) have the same
length. By 3.4 Lemma p. 268 Opp(G)/Op(G) is cyclic. It follows
Ir(G) = 1.

Remark. In a similar way we can show, that [,(G) = 1 if G has at most
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four p-regular conjugacy classes.

Lemma 7 Let p,q be distinct primes and a,c be natural numbers such
thata >1,p# 2 and q* — 1 = 4p°. Then ¢ =5 and a is a prime.

Proof. Obviously ¢ is odd. We consider the equation modulo 8. Now
it is easy to see that a is odd. Let @ = ¢ - j with a prime 5 and 7 > 1.
We have ¢ — 1 = (¢* — D@D + ..+ ¢ +1) with ¢¢ — 1 = 4p* and
pb = ¢UY 4 .+ ¢ + 1 for certain natural numbers k,I. Then p' =
(4p* + 1)1 4 .+ (4pF + 1)+ 1 = AP*)? + j(j — 1)2p* + j for a natural
number A. It is easy to see that only £k = 0, ¢ = 5 and ¢« = 1 is possible.

[

Remark. Some arguments of this proof are taken from the proof of Lemma
4.3 in [6]. We conjecture that furthermore holds ¢ = 1.

3. Proof of the Main Theorem

In the proof we consider several cases. Let p,q and, if necessary, r
be the primes dividing the order of G, and P, Q, R the Sylow subgroups,
respectively.

1. Let Oy (G) only contain two classes.

Let the order of O, (G) be a power of g, say ¢%. First we will show
that all p’-elements have prime power order. Suppose there is an element
of order gr in G. Then we have outside of O, (G) only p'-elements of order
gr and r. In particular then Oy (G) = Q. By H=RxPisa
q’-Hall group of G. Hence Ng(R) = Cg(R). Since all elements of R\1 are
conjugate in G, the order of R is two and r = 2 by Burnside. Let R =< a >.
Since G has elements of order ¢2, there is u € Oy(G)\1, which commutes
with a. Therefore Cg(u) > RQ and further | G : Cg(u) | is a p-power.
Since all nontrivial elements of O, (G) are conjugate, we get pt =q%—1 for
a suitable t. Now by we have the contradiction p = 2 or ¢ = 2.

By P is cyclic. Set G = G/O,/(G). Then Cx(P) < P, and so
G /O,(G) is isomorphically contained in Aut(P). Hence G/O,(G) is cyclic,
and then it is a r-group or a g-group.

1.1. Let G/Op,(G) be a r-group.

Let H be a p’-Hall group. Then H is a Frobenius group and R is cyclic.
Since R = G/Op,(G) contains exactly three conjugacy classes, | R |= 3.
On the other hand R operates fixed point freely on P and Q@ = Oy (G).



254 G. Tiedt

Therefore R operates fixed point freely on Oy,(G). By the Theorem of
Thompson O,,(G) is nilpotent. This is a contradiction.

1.2. Let G/Opp(G) be a g-group.

Let Q be a Sylow g-subgroup and z € Z(Q). By the Lemma of Hall
and Higman [3] 6.5 Lemma S. 690 = € O, (G). If ¢ is the order of O, (G),
we have ¢ — 1 = p and ¢ = 2 in view of Lemma 2. By Lemma 5 P is
cyclic of order p. Outside O, (G) there are exactly two p'-classes and at
most three consequently in T' := G/PO,(G). Hence T/Z(T) contain at
most two classes. Therefore | T/Z(T) |< 2 and | Z(T) |< 2. Consequently |
T |= 2 and G is an abnilpotent group with index system (2%, p, 2). Moreover
p = 2%—1 so that p is a Mersenne prime and d a prime. By [8] 4.2 Theorem,
2| d. Hence d =2 and G = S;. Obviously Sy satisfy our assumptions.

2. Let Oy (G) only contain three classes.

Obviously there are exactly two p-regulare conjugacy classes in
G/Oy,(G). By G /Op,(G) has order 2.

2.1. Let Oy(G) be a g-group and the order of G divisible by three
distinct primes.

Then | R |= 2 and R operates non-trivially on P. Now let < a >= R
and az an involution with z € P. By 45.1 D =< a,az > is a dihedral
group and also a Frobenius group. By the Lemma of Hall and Higman D
operates faithfully on O, (G). But then there is an involution of D, which
centralizes an element 1 # v € Oy (G). Hence we have an element of order
2q. This is a contradiction.

2.2. Let Oy(G) be a g-group and the order of G divisible by two
distinct primes.

We set | G : Ng(Q) |= p* and | O, (G) |= 2. Then there are p* | Q |
—(p* — 1) | Oy(G) | p-regular elements in G. Hence in the unique class
outside O, (G) there are exactly p*(| Q | — | Oy (G) |) = p'2? elements. On
the other hand Cg(z) 2< z,Z(Q) > for x € Q\Op(G).Because Z(Q) N
O, (G) # 1, we have | Cg(z) |> 4.Therefore the 2-power dividing | G :
Cq(z) | is at most 2¢=1. This is a contradiction to | G : Cg(x) |= p'29.

2.3. Let the order of Oy (G) be divisible by two distinct primes.

Then O, (G) is a Frobenius group. Let Q1 be the kernel and its order
q%, and let R; be the complement and its order 7. If r = 2 =| G/Opp(G) |,
the Sylow p-subgroup P operates trivially on R;. Hence G/PQ1 contains at
most three conjugacy classes, but its order is four. This is a contradiction.
Therefore ¢ = 2 =| G/Opp(G) |. Now Q; is the unique minimal normal
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subgroup of G. Consequently any homomorph image of G has 2-length one,
but the 2-length of G is two. By [3] VI 6.9 Hilfssatz S.693 Q1 has a comple-
ment in G. Hence any non-trivial 2-element has order two. Consequently
the Sylow 2-subgroup of G is abelian. This is a contradiction to l3(G) = 2,

3. Let G be p-nilpotent.

3.1. Let the order of a certain element of O, (G) be divisible by r and
q.

Let N be a minimal normal subgroup of G. Then N is a Sylow sub-
group. It may be assumed that N = Q. Therefore O, (G) = RQ for an
elementary abelian Sylow r-subgroup R. If O,(G) # 1 then O,(G) = R and
Oy (G) is abelian. Hence, if Op(G) is not abelian, R operate faithfully on
Q and PR operates transitvely on Q\1. If R operates irreducibly on @, by
the Lemma of Schur R is cyclic and thus the stabalizer of any element of
Q\1 in R is 1. Assume R operates reducibly on Q. By all orbits
of Q\1 have the same length. By [4] Theorem 3.1 b p. 266 the stabalizer of
any element of Q\1 in R is 1. Hence, if Oy(G) is not abelian, Oy (G) is a
Frobenius group in contradiction to the assumption 3.1. Therefore Oy (G)
is abelian. Obviously @ and R are normal subgroups of G. Let ¢° and rd
denote their orders, respectively. Moreover we choose non-trivial elements
z€Qandy€ R. Then | G: Ca(z) |=p% | G: Cg(y) |= p* and therefore
q¢ — 1 =p%, rd — 1 = pb. This is a contradiction to p # 2.

3.2. Let the order of all elements of Oy (G) be a prime power and
Oy (G) not a g-group.

By Oy (G) is a Frobenius group or a 3-step group. In the second
case we have a principal series Oy (G) > N1 > Ny > 1, where Oy (G)/N:
and N, are 2-groups and Nj/Ns is a g-group. Obviously N3 is the unique
minimal normal subgroup of G and l3(G) = 2. Therefore any homomorphic
image of G has at most 2-length one. By [3] VI 6.9 Hilfssatz S.693 N, has a
complement in G. Hence all elements of R\1 are of order 2. Consequently
R is abelian contradictly, l2(G) = 2.

Now let Oy (G) = QR be a Frobenius group with complement @) and
kernel R. Then Q is cyclic or a quaternion group. In the second case
the order of Q is 8. Moreover G/R contains exactly three p-regular conju-
gacy classes. Let zR € G/R be an element of order four. Then | G/R :
Ce/r(zR) |= 2p® = 6 and hence p = 3. Obviously the representation o of
P x Q = G/R on R is irreducible. Its degree is a, if | R |= r®. By Clifford
o |g decomposes into irreducible parts of the same degree. The faithful
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irreducible representation of a quaternion group has degree two or four (see
@ Hilfssatz 11). Therefore the degree a is even, say a = 2c. Since P x Q
operates transitively on R\1, 398 = 7% — 1 = (r¢ — 1)(r® + 1). It is easy to
see that this equation has the unique solution r = 5,¢ = 1,d = 1. Since P
operates faithfully on R and GL(2,5) has the order 480, the order of P is
3. This is case B4) of the Main Theorem.

Now let @) be cyclic. Then G/R contains two or three p-regulare con-
jugacy classes. In the first case because of p # 2, | Q |= 2 and so Q inverts
all elements of R. Hence R is abelian and PQ has two orbits in R\1. This
implies 7™ — 1 = 2p® + 2p® for certain positive integers n, a, b. Obviously R
is a minimal normal subgroup. Assume first a # b. Then P is not cyclic
and irreducible on R. By [4] VIII 3.3 Lemma p. 268 we have a direct prod-
uct R = R; ® Ry ® ... ® Ry, where P permutes the R;’s transitivelly. Now
the elements 71, rl_l, r17g, (T172) 7L, Tirers, (T1rar3) L, .1y € R; belong to
distinct conjugacy classes. This is a contradiction.

Now let a = b. By [4] 3.4 Lemma p. 268 P is cyclic of order p®. These
are case B5) and B1d) of the Main Theorem.

If G/R contains exactly three p-regulare conjugacy classes, we have
q—1 = 2p® for a natural number b. Then R is an elementary abelian 2-group.
Moreover P() permutes the set of non-identity elements of R transitively.
Let F' be the Fitting subgroup of PQ. Then each Sylow subgroup of F is
normal in PQ and permutes the set of non-identity elements of R in orbits of
equal length by Lemma 3. By [4] 3.4 Lemma p. 268 the Sylow subgroups and
hence F' are cyclic. Let pZqg be the order of F and |R|-1=2"—-1=p%.
In view of the proof of 3.5 Theorem p. 269 in we have 2" — 1 | pgn.
Therefore n = p*~% and ifc—d>1,2" — 1 = (2P — 1)t = p°q. By Fermat’s
Theorem ¢ = 2P — 1 = 2p® + 1 and thus p® = 2°~1 — 1. By we
have b = 1 and therefore p = 3 and ¢ = 7. Hence 3°7 = 2" — 1 and n is
even. This is a contradiction. Consequently ¢ = d. Then F' = PQ since
PQ) operate faithfully. Hence Q is a group of order three. Therefore n is
even and as a consequence P = Z5 or P = 1. These are case B6) and Blc)
of the Main Theorem.

3.3.1. Let Oy (G) be a non-abelian g-group Q.

Either Z(Q) or Q/Z(Q) contains exactly two conjugacy classes. There-
fore ¢ = 1+ p° and ¢ = 2,e = 0 or e = 1 by Lemma 2. Hence Z(Q)
contain exactly two conjugacy classes and | Z(Q) |= 1+ p or 2, with a
Mersenne prime p. If @, := Q/Z(Q) has three classes @1 is non-abelian
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because of 20 # 1+ p® + pb. Therefore | Q1 |=| Z(Q:) | +2°p* and
| Z(Q1) |= 1+ p or 2. It is easy to see that also | Q1/Z(Q1) |=1+p
or 2. Let UrZ(Q,) := preimage(Z(Q1)) in G. We consider two cases.

a) Let|Z(Q1)|=2.

Hence | Q1/Z(Q1) |= 1+p, because @ is not abelian. Moreover ()1 has
elements of order 4. Since Qi contains exactly three classes, all elements
of Q1\Z(Q1) are conjugated. Therefore @Q; has exactly one involution.
Hence Q; is the quaternion group of order 8 and p = 3. Moreover we
have outside UrZ(Q1) exactly | Q | — | UrZ(Q1) |= 2p | Z(Q) | elements.
Therefore | Cg(z) |= 1+ p =4 for z € Q\UrZ(Q1). On the other hand
Z(Q)N < x >=1 and z is of order 4. This is a contradiction.

b) Let | Z(Q1) |=1+p.

If | Q1 : Z(Q1) |= 2, then we have outside UrZ(Q1) exactly (1 +
p) | Z(Q) | conjugate elements. On the other hand | Cg(z) |> 4 for
z € Q\UrZ(Q,). This is a contradiction. Therefore | @, : Z(Q1) |= 1 + p.
Now we have in G/Z(Q) outside Z(Q1) exactly (1+p)p conjugate elements.
But | Co, (z) |[> 1+ p for z € Q1\Z(Q1) is a contradiction.

Therefore Q1 contains exactly two classes and is elementary abelian.
Hence ®(Q) < Z(Q) and since Z(Q) is minimal, ®(Q) = Z(Q). Therefore
Z(Q)\1 is the set of involutions of @, which are all conjugate in G. By [3] 11
3.19 Satz S.275 we see that | A(Q) | divides 227(2" —1)(2" —2)...(2" — 2" 1)
and the Sylow p-subgroup has order p. Let | Q |= 22" = 1+p+2nlp4+2nip
be the equation of the partition of Q into G-classes. Therefore Q is a Suzuki
2-group of type A(n,0) (see: VIII 7). In view of this equation and the
centralizer of an element of order 4 in A(n,0) it is easy to see that 6 acts
fixed point freely. Moreover it is clear that conversely groups of the type
B3) of the Main Theorem have exactly four p-regulare classes.

3.3.2 Let Op(G) be a abelian g-group Q.

Since | Q |=¢" = 1+p° + p? + p€ for suitable a, b and ¢, it follows ¢ = 2.
If ®(Q) > 1 then ®(Q) and Q/®(Q) have order 2 or 1 + p and contain
exactly two conjugacy classes. By [3] III 3.19 Satz S.275 | Q/®(Q) |= 2 and
P=1or|Q/®Q)|=1+pand| P |=p. If P=1 we have case Bla).
Now letP be cyclic of order p. Hence the numbers a,b,c are 0 or 1. It is
easy to check that a = 0, b=c=1and | Q |= 2(1 + p). Because Q has
more then one involution, we have exactly one conjugacy class of elements
of order 4. On the other hand a cyclic group of order 4 has two elements
of order 4. Therefore there is a even number of elements of order 4 in Q.
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This is a contradiction. Hence ®(Q) = 1 and Q is elementary abelian.
If @Q is irreducible and P is not cyclic, by VIII 3.3 Lemma p. 268 we
have a direct product Q = Q1 ® Q2 ® ... ® Qp, where P permutes the Q;’s.
Now the elements g1, q192, q19293, ...qi € Q; belong to distinct conjugacy
classes. Hence p = 3 and the number of elements in the class of ¢; is
3(] Q1 | —1) = 3%. Therefore | Q1 |= 4 and the order of Q is 64. According
to the partition of @) into G-classes we have the equation 64 = 1+9+27+27.
Moreover P is a subgroup of GL(6,2). The only 3-subgroups of GL(6,2)
with this property are the Sylow 3-subgroups. This is case B2.d) If Q is
irreducible and P is cyclic, the stabilizer of any non-identity element of Q
is 1. Hence 2" — 1 = 3p® and therefore n is even, p® = 5, ) has order 16.
This is case B2.a) of the Main Theorem.
If @ is reducible, one easily checks that the cases B1.b)-B1.d) occur.
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