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Symmetry problems for elliptic systems

Robert DALMASSO
(Received March 27, 1995)

Abstract. We consider some overdetermined boundary value problems for elliptic sys-
tems. Using the maximum principle and the technique of moving up planes perpendicular
to a fixed direction we show that if a solution exists, then the domain must be a ball and
the solution radially symmetric.
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1. Introduction

Recently Payne and Schaefer [7] considered several overdetermined
boundary value problems for the biharmonic operator. Among other things
they proved the following theorem.

Theorem A [7]. Let \Omega\subset \mathbb{R}^{2} be a bounded domain with C^{2+\epsilon} boundary
\partial\Omega . Let u be a classical solution of the boundary value problem

\triangle^{2}u=1 in \Omega , (1.1)

u=\triangle u=0 on \partial\Omega . (1.2)

If
\frac{\partial u}{\partial\nu}=c (const.) on \partial\Omega (1.3)

(where \nu denotes the unit outer normal to \partial\Omega ) and \Omega is star-shaped with
respect to the origin, then \Omega is a disk.

Payne and Schaefer conjectured that theorem A holds in \mathbb{R}^{n} with n>2
for more general domains. Our first purpose here is to prove this conjecture.
In fact we shall consider a more general situation than (1.1)-(1.2). We shall
prove the following theorem.

Theorem 1 Let \Omega\subset \mathbb{R}^{n}(n\geq 2) be a bounded domain with C^{2} boundary
\partial\Omega . Let f : \mathbb{R}^{2}

- (0, \infty) and g : \mathbb{R}^{2}
–

\mathbb{R} be two functions satisfying the
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following conditions :
(H_{1}) For each v\in \mathbb{R} , uarrow f(u, v) (resp. uarrow g (u , v )) is nondecreasing

(resp. is nonincreasing);
(H_{2}) For each u\in \mathbb{R} , varrow f(u, v) (resp. varrow g (u , v )) is nonincreasing

(resp. is strictly increasing);
(H3) g(u, 0)=0 for u\in \mathbb{R} .

If (u, v)\in C^{2}(\overline{\Omega})\cross(C^{2}(\Omega)\cap C^{1}(\overline{\Omega})) satisfies the system of differential
equations

\{

\triangle u=g(u, v) in \Omega ,
(1.4)

\triangle v=f(u, v) in \Omega

and the boundary conditions (1.3) and

u=0 on \partial\Omega , (1.5)

v=d (const.)\leq 0 on \partial\Omega , (1.6)

then \Omega is a ball. If \Omega=\{x\in \mathbb{R}^{n};|x-x_{0}|<R\} for some x_{0}\in \mathbb{R}^{n} , then
u(x)=y(|x-x_{0}|) , v(x)=z(|x-x_{0}|) , y’<0 in (0, R] and z’>0 in (0, R] .

Our method of proof is based on the maximum principle and the tech-
nique of moving parallel planes used by Serrin [8] and Gidas, Ni and Niren-
berg [4] for second order equations and by the author [2], [3] for fourth order
equations.

We shall use repeatedly the maximum principle and the Hopf boundary
lemma which we recall. Let D\subset \mathbb{R}^{n} be a domain and let v\in C^{2}(D) satisfy
the differential inequality \triangle v\geq 0 in D .

Maximum Principle (Gilbarg and Trudinger [5] p. 15). If v \leq M in
D and v =M at some point in D, then v \equiv M in D.

Hopf Lemma ([5] p. 33). Let P\in\partial D be such that:
(i) v is continuous at P ;
(ii) v(x)<v(P) for all x\in D ;
(iii) There is a ball B in D with P\in\partial B .
Then the outer normal derivative of v at P , if it exists, satisfies the strict
inequality \partial v(P)/\partial\nu>0 .

Finally we also recall a version of the Hopf lemma which applies to
domains with corners.
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Lemma S (Serrin [8] p. 308). Let D^{\star}\subset \mathbb{R}^{n} be a domain with C^{2} boundary
and let T be a plane containing the normal to \partial D^{\star} at some point Q. Let D
be the portion of D^{\star} lying on some particular side of T

Suppose that w is of class C^{2} in \overline{D} and satisfies
\triangle w\leq 0 in D ,

while also w\geq 0 in D and w=0 at Q. Let \vec{s} denote any direction at Q
which enters D non tangentially. Then either

\frac{\partial w}{\partial\vec{s}}(Q)>0 or \frac{\partial^{2}w}{\partial\vec{s}^{2}}(Q)>0

unless w\equiv 0 in D .

Our paper is organized as follows. In Section 2 we prove theorem 1. In
Section 3 we show that our result can be applied to a somewhat more general
boundary condition than (1.3) as in Serrin’s paper. Finally in Section 4 we
conclude with some remarks and we give a characterization of open balls in
\mathbb{R}^{n} by means of an integral identity.

2. Proof of Theorem 1

As in [8], we use the procedure of moving up planes perpendicular to a
fixed direction and we briefly describe it.

Let \gamma be a unit vector in \mathbb{R}^{n} and let T_{\lambda} denote the hyperplane \gamma.x=\lambda .
For \tilde{\lambda}>0 large the plane T- does not intersect \overline{\Omega} since \Omega is bounded. We
decrease \lambda until T_{\lambda} begins to intersect \overline{\Omega} . From that moment on, the plane
T_{\lambda} cuts off from \Omega an open cap, \Sigma(\lambda) , the part of \Omega on the same side of
T_{\lambda} as T_{\overline{\lambda}} . Let \Sigma’(\lambda) denote the reflection of \Sigma(\lambda) in the plane T_{\lambda} . At the
beginning \Sigma’(\lambda)\subset\Omega and as \lambda decreases \Sigma’(\lambda)\subset\Omega at least until one of the
following occurs :
(i) \Sigma’(\lambda) becomes internally tangent to \partial\Omega at some point P not on T_{\lambda} ;
(ii) T_{\lambda} reaches a position at which it is orthogonal to \partial\Omega at some point

Q\in T_{\lambda}\cap\partial\Omega .
We denote by T_{\lambda_{1}} : \gamma.x=\lambda_{1} the plane T_{\lambda} when it first reaches a position
such that (i) or (ii) holds. Clearly \Sigma’(\lambda_{1})\subset\Omega . Also we define \lambda_{0} to be the
first value of \lambda for which T_{\lambda} intersects \overline{\Omega} , that is

\lambda_{0}=\inf\{\hat{\lambda}<\tilde{\lambda};T_{\lambda}\cap\overline{\Omega}=\emptyset for \hat{\lambda}<\lambda<\tilde{\lambda} }.
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Finally, for \lambda\in[\lambda_{1}, \lambda_{0}) and x\in\Sigma’(\lambda) we define x^{\lambda} to be the reflection of x
in the plane T_{\lambda} .

We first show that \Omega is symmetric about the plane T_{\lambda_{1}} . Since this is
true for an arbitrary direction, \Omega must be simply connected. Then \Omega must
be a ball.

Lemma 1 With the above notations, for all \lambda\in(\lambda_{1}, \lambda_{0}) and for all
x\in\overline{\partial\Sigma(\lambda)\backslash T_{\lambda}} we have

\gamma.\nabla u(x)<0 and \gamma.\nabla v(x)>0 .

Proof Since \triangle v>0 in \Omega and v=d on \partial\Omega the maximum principle implies
that v<d in \Omega and then the Hopf lemma implies that \frac{\partial v}{\partial\nu}>0 on \partial\Omega , hence
\gamma.\nabla v(x)>0 for x\in\overline{\partial\Sigma(\lambda)\backslash T_{\lambda}} with \lambda\in(\lambda_{1}, \lambda_{0}) . We have v<d\leq 0 in \Omega .
Then (H_{2}) and (H3) imply that \triangle u<0 in \Omega . Since u=0 on \partial\Omega , in the
same way we have u>0 in \Omega and \frac{\partial u}{\partial_{IJ}}<0 on \partial\Omega , hence \gamma.\nabla u(x)<0 for
x\in\overline{\partial\Sigma(\lambda)\backslash T_{\lambda}} with \lambda\in(\lambda_{1}, \lambda_{0}) . \square

Let \lambda\in[\lambda_{1}, \lambda_{0}) and define the functions

u_{\lambda}(x)=u(x^{\lambda}) and v_{\lambda}(x)=v(x^{\lambda}) for x\in\Sigma’(\lambda) .

We have

\{

\triangle u_{\lambda}=g(u_{\lambda}, v_{\lambda}) in \Sigma’(\lambda) ,
\triangle v_{\lambda}=f(u_{\lambda}, v_{\lambda}) in \Sigma’(\lambda) ,

with the boundary conditions

u_{\lambda}=u , v_{\lambda}=v on \partial\Sigma’(\lambda)\cap T_{\lambda} ,
u_{\lambda}=0 , v_{\lambda}=d on \partial\Sigma’(\lambda)\backslash T_{\lambda} ,

\frac{\partial u_{\lambda}}{\partial\iota/}=c on \partial\Sigma’(\lambda)\backslash T_{\lambda}

(here \nu denotes the unit outer normal to \partial\Sigma’(\lambda)\backslash T_{\lambda} ). By virtue of lemma
1, there exists \eta>0 such that for \lambda\in ( \max(\lambda_{1}, \lambda_{0}-\eta) , \lambda_{0}) , we have

\{

u_{\lambda}-u<0 in \Sigma’(\lambda) and \gamma.\nabla u<0 in \Sigma(\lambda) ,
v_{\lambda}-v>0 in \Sigma’(\lambda) and \gamma.\nabla v>0 in \Sigma(\lambda) .

(2.1)

Decrease \lambda until a critical value \mu\geq\lambda_{1} is reached, beyond which (2.1) is
no longer true. Then (2.1) holds for \lambda\in(\mu, \lambda_{0}) while for \lambda=\mu we have by
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continuity

\{

u_{\mu}-u\leq 0 in \Sigma’(\mu) and \gamma.\nabla u<0 in \Sigma(\mu) ,
v_{\mu}-v\geq 0 in \Sigma’(\mu) and \gamma.\nabla v>0 in \Sigma(\mu) .

(2.2)

Suppose \mu>\lambda_{1} . (H_{1}) , (H_{2}) and (2.2) imply that \triangle(v_{\mu}-v)\leq 0 in \Sigma’(\mu) .
Since v<d in \Omega , we have v_{\mu}-v\not\equiv 0 in \Sigma’(\mu) . The maximum principle and
the Hopf lemma imply that

v_{\mu}-v>0 in \Sigma’(\mu) and \gamma.\nabla v>0 on T_{\mu}\cap\Omega (2.3)

where the second inequality follows from the fact that \gamma.\nabla(v_{\mu}-v)=-2\gamma.\nabla v

on T_{\mu}\cap\Omega . Now, using (H_{1}) , (H_{2}) , (2.2) and (2.3) we get \triangle(u_{\mu}-u)>0 in
\Sigma’(\mu) . Then the maximum principle and the Hopf lemma imply that

u_{\mu}-u<0 in \Sigma’(\mu) and \gamma.\nabla u<0 on T_{\mu}\cap\Omega (2.4)

where the second inequality follows from the fact that \gamma.\nabla(u_{\mu}-u)=

-2\gamma.\nabla u on T_{\mu}\cap\Omega . (2.2), (2.3) and (2.4) show that (2.1) holds for \lambda=\mu .
Using lemma 1, (2.1) with \lambda=\mu , (2.3) and (2.4) we see that for some

\epsilon>0 such that \mu-\epsilon>\lambda_{1} we have

\gamma.\nabla u<0 in \Sigma(\mu-\epsilon) . (2.5)

and

\gamma.\nabla v>0 in \Sigma(\mu-\epsilon) . (2.6)

Thus our definition of \mu implies that either there is a strictly increasing
sequence (\lambda_{j}) with \lim_{jarrow\infty}\lambda_{j}=\mu(\lambda_{j}\in(\mu-\epsilon, \mu)\forall j) such that for each j
there is a point x_{j}\in\Sigma’(\lambda_{j}) for which

u_{\lambda_{j}}(x_{j})-u(x_{j})\geq 0 \forall j (2.7)

or that there is a strictly increasing sequence (\mu_{j}) with \lim_{jarrow\infty}\mu_{j}=\mu

(\mu_{j}\in(\mu-\epsilon, \mu)\forall j) such that for each j there is a point z_{j}\in\Sigma’(\mu_{j}) for
which

v_{\mu_{j}}(z_{j})-v(z_{j})\leq 0 \forall j . (2.8)

In the situation (2.7), a subsequence which we still call x_{j} will converge
to some point x\in\overline{\Sigma’(\mu)} ; then u_{\mu}(x)-u(x)\geq 0 . Since (2.1) holds for
\lambda=\mu we must have x\in\partial\Sigma’(\mu) ; If x\in\partial\Sigma’(\mu)\backslash T_{\mu} then 0=u_{\mu}(x)<u(x) ,



112 R. Dalmasso

a contradiction. Therefore x\in T_{\mu} . The straight segment joining x_{j} to
its symmetric about T_{\lambda_{j}} belongs to \Omega and by the theorem of the mean it
contains a point y_{j} such that

\gamma.\nabla u(y_{j})\geq 0 .

Since \lim_{jarrow\infty}y_{j}=x , we obtain a contradiction to (2.5).
In the situation (2.8), a subsequence which we still call z_{j} will converge

to some point z\in\overline{\Sigma’(\mu)} ; then v_{\mu}(z)-v(z)\leq 0 . Since (2.1) holds for
\lambda=\mu we must have z\in\partial\Sigma’(\mu) ; If z\in\partial\Sigma’(\mu)\backslash T_{\mu} then d=v_{\mu}(z)>v(z) ,
a contradiction. Therefore z\in T_{\mu} . The straight segment joining z_{j} to
its symmetric about T_{\mu_{j}} belongs to \Omega and by the theorem of the mean it
contains a point t_{j} such that

\gamma.\nabla v(t_{j})\leq 0 .

Since \lim_{jarrow\infty}t_{j}=z , we obtain a contradiction to (2.6).
Thus we have proved that \mu=\lambda_{1} and that (2.1) holds for \lambda\in(\lambda_{1}, \lambda_{0}) .

By continuity we have

\{

u_{\lambda_{1}}-u\leq 0 in \Sigma’(\lambda_{1}) and \gamma.\nabla u<0 in \Sigma(\lambda_{1}) ,
v_{\lambda_{1}}-v\geq 0 in \Sigma’(\lambda_{1}) and \gamma.\nabla v>0 in \Sigma(\lambda_{1}) .

(2.9)

Using (H_{1}) , (H_{2}) and (2.9) we obtain

\triangle(u_{\lambda_{1}}-u)\geq 0 in \Sigma’(\lambda_{1}) . (2.10)

The maximum principle implies that

u_{\lambda_{1}}\equiv u in \Sigma’(\lambda_{1}) (2.11)

or

u_{\lambda_{1}}-u<0 in \Sigma’(\lambda_{1}) . (2.12)

If (2.11) holds then u=0 on \partial\Sigma’(\lambda_{1})\backslash T_{\lambda_{1}} and, since u>0 in \Omega , this
implies that \Sigma’(\lambda_{1}) coincides with that part of \Omega on the same side of T_{\lambda_{1}} as
\Sigma’(\lambda_{1}) ; that is \Omega is symmetric about T_{\lambda_{1}} . Now we show that (2.12) cannot
hold. Indeed suppose first that we are in case (i), that is \Sigma’(\lambda_{1}) is internally
tangent to \partial\Omega at some point P not on T_{\lambda_{1}} . Since (u_{\lambda_{1}}-u)(P)=0 , (2.10),
(2.12) and the Hopf lemma imply that

\frac{\partial}{\partial\nu}(u_{\lambda_{1}}-u)(P)>0 , (2.13)
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and this contradicts the fact that \frac{\partial u_{\lambda_{1}}}{\partial\nu}=\frac{\partial u}{\partial\nu}=c at P . In case (ii) T_{\lambda_{1}} is
orthogonal to \partial\Omega at some point Q . It now follows as in the proof given by
Serrin ([8] p. 307-308) that u_{\lambda_{1}}-u has a zero of order two at Q and lemma
S gives a contradiction.

We have thus proved that \Omega is symmetric about T_{\lambda_{1}} . Therefore, as
we have already seen, we can conclude that \Omega is a ball. Now (2.11) shows
that u is symmetric about T_{\lambda_{1}} . Using the first equation in (1.4), (H_{2}) and
(2.11) we find that v is also symmetric about T_{\lambda_{1}} . Since this is true for an
arbitrary direction we conclude that u and v are radially symmetric. The
other assertions of the theorem follow easily from (2.9) and lemma 1.

3. A different boundary condition

In this section we extend theorem 1 to a more general boundary con-
dition than (1.3). Let H denote the mean curvature of the boundary \partial\Omega ,
chosen so that H is positive when \partial\Omega is convex. We have

Theorem 2 Let \Omega\subset \mathbb{R}^{n}(n\geq 2) be a bounded domain with C^{3} boundary
\partial\Omega . Let f and g be as in theorem 1. If (u, v)\in C^{2}(\overline{\Omega})\cross(C^{2}(\Omega)\cap C^{1}(\overline{\Omega})) sat-
isfies the system of differential equations (1.4) and the boundary conditions
(1.5), (1.6) and

\frac{\partial u}{\partial\nu}=c(H)

where c is a continuously differentia te nonincreasing function of H , then
the conclusions of theorem 1 remain valid.

Proof. Since we use the same arguments as in the proof of theorem 1 we
only mention the modifications in the above discussion. \square

Lemma 1 still holds. Thus in the same way we arrive at the situation
(2.9)-(2.13). In case (i), as in Serrin’s paper ([8] p. 317) we show that

\frac{\partial}{\partial\nu}(u_{\lambda_{1}}-u)(P)=c(H’(P))-c(H(P))\leq 0

where H’(P) is the mean curvature of \partial\Sigma’(\lambda_{1}) at P and this contradicts
(2.13). Now, in case (ii) the arguments given by Serrin ([8] p. 317-318)
imply that u_{\lambda_{1}}-u has a zero of order two at Q and lemma S gives a
contradiction.
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Remark 1. Note that the assumption \partial\Omega\in C^{3} can be weakened (see [8]).

4. Concluding remarks

In this section we first examine the case where condition (1.6) is replaced
by v=d>0 on \partial\Omega . We begin with a theorem obtained in [3] (th\’eor\‘eme
3.1).

Theorem 3 Let \Omega\subset \mathbb{R}^{n}(n\geq 2) be a bounded domain with C^{2} boundary
\partial\Omega . Let f be as in theorem 1. Let u\in C^{4}(\Omega)\cap C^{3}(\overline{\Omega}) satisfy the differential
equation

\triangle^{2}u=f(u, \triangle u) in \Omega ,

and the boundary conditions

u= \frac{\partial u}{\partial\nu}=0 on \partial\Omega ,

\triangle u=d (const.) on \partial\Omega .

If u\geq 0 in \Omega , then \Omega is a ball. If \Omega=\{x\in \mathbb{R}^{n};|x-x_{0}|<R\} for some
x_{0}\in \mathbb{R}^{n} , then u(x)=y(|x-x_{0}|) , y’<0 in (0, R) and (\triangle y)’>0 in (0, R] .

Remark 2. Notice that u\in C^{4}(\overline{\Omega}) in [3], but it is enough to assume that
u\in C^{4}(\Omega)\cap C^{3}(\overline{\Omega}) .

Remark 3. We easily show that d>0 in theorem 3 (see lemma 2.1 in [3]).

Remark 4. Assume that f\equiv 1 , \partial\Omega\in C^{4+\epsilon} and u\in C^{4}(\overline{\Omega}) . Then the
assumption u\geq 0 in \Omega can be removed. Indeed this is just Bennett’s result
[1].

Remark 5. Clearly the above result can be extended to overdetermined
elliptic systems.

Now we shall examine the case where c\neq 0 in (1.3).

Theorem 4 Let \Omega\subset \mathbb{R}^{n}(n\geq 2) be a bounded domain with C^{2} boundary
\partial\Omega . Let f and g be as in theorem 1. Let (u, v)\in C^{2}(\overline{\Omega})\cross(C^{2}(\Omega)\cap C^{1}(\overline{\Omega}))

satisfy the system of differential equations (1.4) and the boundary conditions
(1.5),

\frac{\partial u}{\partial\nu}=c (const.) <0 on \partial\Omega (4.1)
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and

v=d (const.)>0 on \partial\Omega .

If u\geq 0 in \Omega , then \Omega is a ball. If \Omega=\{x\in \mathbb{R}^{n}; |x-x_{0}|<R\} for some
x_{0}\in \mathbb{R}^{n} , then u(x)=y(|x-x_{0}|) , v(x)=z(|x-x_{0}|) , y’<0 in (0, R] and
z’>0 in (0, R] .

Proof. Since we make use of the same arguments as in the proofs of
theorem 1 and theorem 3 (see th\’eor\‘eme 3.1 in [3]), we shall be sketchy.
We first note that lemma 1 holds. Now using the notations of section 2
we arrive at the situation (2.7)-(2.8). In the situation (2.7), in the same
way we have u_{\mu}(x)-u(x)\geq 0 and x\in\partial\Sigma’(\mu) . If x\in\partial\Sigma’(\mu)\backslash T_{\mu} we get
u(x)=-(u_{\mu}-u)(x)\leq 0 . Since u\geq 0 in \Omega , we deduce that u(x)=0. Using
(2.1) with \lambda=\mu , (H_{1}) , (H_{2}) and the Hopf lemma we obtain

\frac{\partial}{\partial\nu}(u_{\mu}-u)(x)>0

(here \nu denotes the unit outer normal to \partial\Sigma’(\mu)\backslash T_{\mu} ). Since \frac{\partial u_{\mu}}{\partial\nu}(x)=c we
deduce that \frac{\partial u}{\partial\nu}(x)<c<0 and we get a contradiction with the fact that
u\geq 0 in \Omega . Therefore x\in T_{\mu} and the proof is the same in this case. Also, in
the situation (2.8) the proof is the same and we arrive at (2.10). (H_{1}) , (H_{2})

and (2.9) imply that \triangle(v_{\lambda_{1}}-v)\leq 0 in \Sigma’(\lambda_{1}) . Then, using the maximum
principle we get

v_{\lambda_{1}}-v\equiv 0 in \Sigma’(\lambda_{1}) (4.2)

or

v_{\lambda_{1}}-v>0 in \Sigma’(\lambda_{1}) . (4.3)

If (4.2) holds then v=d on \partial\Sigma’(\lambda_{1})\backslash T_{\lambda_{1}} and, since v<d in \Omega , this implies
that \Sigma’(\lambda_{1}) coincides with that part of \Omega on the same side of T_{\lambda_{1}} as \Sigma’(\lambda_{1}) ;
that is \Omega is symmetric about T_{\lambda_{1}} . Now assume that (4.3) holds. Then,
using (H_{1})-(H_{3}) , (2.9) and (4.3) we obtain \triangle(u_{\lambda_{1}}-u)>0 in \Sigma’(\lambda_{1}) , from
which we deduce (2.12). We show that (2.12) cannot hold and we get the
conclusion as in the proof of theorem 1. \square

Remark 6. Clearly our method of proof cannot be used to treat the case
where the condition c<0 in (4.1) is replaced by c>0 . On the other
hand theorem 4 can be extended to a somewhat more general condition
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than (4.1). With the notations of section 3, theorem 4 remains valid if we
replace (4. 1) by

\frac{\partial u}{\partial\nu}=c(H) on \partial\Omega

where now c is a continuously differentiable nonincreasing function of H
such that c<0 .

Finally, just as in [1], [6] and [7] we obtain a characterization of open
balls in \mathbb{R}^{n} by means of an integral identity.

Theorem 5 If \Omega\subset \mathbb{R}^{n}(n\geq 2) is a bounded domain with C^{4+\in} boundary
\partial\Omega and

\int_{\Omega}Bdx=c\int_{\partial\Omega}\triangle Bds (4.4)

for some constant c and for every B\in C^{4}(\overline{\Omega}) such that \triangle^{2}B=0 and B=0
on \partial\Omega , then \Omega is a ball.

Proof We shall show that (4.4) is equivalent to the following statement :

\{

u\in C^{4+\epsilon}(\overline{\Omega}) satisfies the differential equation \triangle^{2}u=1 in \Omega

and the boundary conditions (1.3), (1.5) and \triangle u=0 on \partial\Omega .

Then the theorem follows from theorem 1. \square

Suppose that u\in C^{4+\epsilon}(\overline{\Omega}) satisfies the above statement. Let B\in
C^{4}(\overline{\Omega}) be a biharmonic function such that B=0 on \partial\Omega . Then, using
Green’s formula we get

\int_{\Omega}Bdx=\int_{\Omega}B\triangle^{2}udx=\int_{\partial\Omega}\triangle B\frac{\partial u}{\partial\iota/}ds (4.5)

Thus (1.3) implies (4.4).
Now suppose that (4.4) holds. Let u\in C^{4+\epsilon}(\overline{\Omega}) be the solution of

\triangle^{2}u=1 in \Omega satisfying (1.5) and \triangle u=0 on \partial\Omega . Choose B\in C^{4}(\overline{\Omega}) such
that \triangle^{2}B=0 in \Omega , B=0 on \partial\Omega and \triangle B=\frac{\partial u}{\partial\nu}-c on \partial\Omega . Then (4.5)
implies that (1.3) is satisfied.
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