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Equilibrium vector potentials in \mathbb{R}^{3}
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Abstract. In the potential theory it is well known that the notion of equilibrium p0-

tentials for a bounded domain D with smooth boundary surfaces \Sigma in \mathbb{R}^{3} is rested on
the basis of the electric condenser. In this paper we introduce the notion of equilibrium
vector potentials for D based on the electric solenoid. We then find that such vector
potentials are related to harmonic 2-forms on \overline{D} whose normal component with respect
to \Sigma vanishes at any point of \Sigma .

Key words: vector potential, solenoid, harmonic forms, newton kernel, weyls’ orthogonal
decomposition.

Introduction

Let D be an electric condenser with smooth boundary surfaces \Sigma in
\mathbb{R}^{3} . Then D carries the equilibrium charge distribution \rho dS_{x} on \Sigma , where
dS_{x} is the surface area element of \Sigma , which induces the electric field E(x)
in \mathbb{R}^{3}\backslash \Sigma being identically 0 in D :

u(x)= \frac{1}{4\pi}\int_{\Sigma}\frac{\rho(y)}{||x-y||}dS_{y} for x\in \mathbb{R}^{3} ,

E(x)= gradu(x)=\frac{-1}{4\pi}\int_{\Sigma}\rho(y)\frac{x-y}{||x-y||^{3}}dS_{y} for x\in \mathbb{R}^{3}\backslash \Sigma .

The function u(x) is called the equilibrium potential for D . We consider
the total energy \mu=\int_{\mathbb{R}^{3}}||E(x)||^{2}dv_{x} of the electric field E(x) . Now assume
that the condenser D_{t} varies smoothly with real parameter t . Then the total
energy \mu(t) varies with parameter t . In [Yl, \S 2] and [LY, \S 9] , we formed the
variation formula of second order \mu’(t) for \mu(t) with respect to t . We
intend to make the corresponding studies in the magnetic fields’ version. In
this paper, motivated by the electric solenoid (see the beginning of \S 8) we
introduce the notion of equilibrium current density JdS_{x} on \Sigma , the magnetic
field B(x) induced by JdS_{x} and the equilibrium vector potential A(x) , and
study their properties. We consider the total energy \nu=\int_{\mathbb{R}^{3}}||B(x)||^{2}dv_{x} of
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the magnetic field B(x) . In [Y3], we shall construct the variation formula
of second order \nu’(t) for \nu(t) , when the domain D_{t} varies smoothly with
real parameter t .

Let J(x) be a C_{0}^{\infty} vector field in \mathbb{R}^{3} such that div J(x)=0. Then
Jdvx, where dv_{x} denotes the volume element of \mathbb{R}^{3} , is called a volume
current density in \mathbb{R}^{3} . For a 1-cycle \gamma in \mathbb{R}^{3} with \gamma=\partial Q , we put J[\gamma]=

\int_{Q}J(x) nxdSx, where n_{x} and dS_{x} denote the unit outer normal vector
and the surface area element of Q at x , respectively. J[\gamma] is called the total
current of Jdv_{x} through [\gamma] , or through Q . Now let D be a bounded domain
with real analytic smooth boundary surfaces \Sigma , and put D’=\mathbb{R}^{3}\backslash (D\cup\Sigma) .
Let J(x) be a C^{\infty} vector field on \Sigma . If there exists a sequence of volume
current densities \{J_{n}dv_{x}\}_{n} in \mathbb{R}^{3} such that J_{n}dv_{x}arrow JdS_{x} on \Sigma in the sense
of distribution, then we say that JdS_{x} is a surface current density on \Sigma .
For a 1-cycle \gamma in \mathbb{R}^{3}\backslash \Sigma , we put J[ \gamma]=\lim_{narrow\infty}J_{n}[\gamma] , which is called the
total current of JdS_{x} through [\gamma] . We consider the following vector-valued
integrals:

A(x)= \frac{1}{4\pi}\int_{\Sigma}\frac{J(y)}{||x-y||}dS_{y} for x\in \mathbb{R}^{3} ,

B(x)= rotA(x)=\frac{1}{4\pi}\int_{\Sigma}J(y)\cross\frac{x-y}{||x-y||^{3}}dS_{y} for x\in \mathbb{R}^{3}\backslash \Sigma

Following Biot-Savart we say that the surface current density JdS_{x} on \Sigma

induces the magnetic field B(x) in \mathbb{R}^{3}\backslash \Sigma . If a surface current density J_{0}dS_{x}

on \Sigma induces a magnetic field B(x) which is identically 0 in D’ , then J_{0}dS_{x}

is called an equilibrium current density on \Sigma . We say that A(x) for J_{0}dS_{x}

is an equilibrium vector potential for D . Now let \{\gamma_{j}\}_{j=1,\ldots,q} be a base of
the 1-dimensional homology group of D . Then we shall prove

Main Theorem There exist q linearly independent equilibrium current
densities \{J_{i}dS_{x}\}_{i=1,\ldots,q} on \Sigma such that J_{i}[\gamma_{j}]=\delta_{ij}(1\leq j\leq q) (Kronecker ’s
delta). Further, any equilibrium current density on \Sigma can be written by a

linear combination of \{J_{i}dS_{x}\}_{i=1,\ldots,q} .

Let \gamma be a 1-cycle in D . By H. Weyl [Wy], there exists a unique
harmonic 2-form \Omega_{\gamma} on D\cup\Sigma such that \int_{\gamma}\omega=(\omega, *\Omega_{\gamma})_{D} for all C^{\infty} square
integrable closed 1-forms \omega in D. *\Omega_{\gamma} is called the reproducing 1-form for
(D, \gamma) . We write \Omega_{\gamma}=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy on D\cup\Sigma , and consider
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artificially the following vector field B_{\gamma}(x) in \mathbb{R}^{3}\backslash \Sigma :

B_{\gamma}(x)=\{

(\alpha, \beta, \gamma) in D

(0, 0, 0) in D’ .

We put J_{\gamma}(x)=n_{x}\cross(\alpha, \beta, \gamma) on \Sigma . Then the essential part of the proof of
the main theorem is to show the fact that J_{\gamma}dS_{x} is an equilibrium current
density on \Sigma which induces B_{\gamma}(x) as a magnetic field. In \S \S 5\sim 6 we canoni-
cally construct a sequence of volume current densities \{J_{n}dv_{x}\}_{n} in \mathbb{R}^{3} which
converges J_{\gamma}dS_{x} on \Sigma in the sense of distribution. Such a construction of
\{J_{n}dv_{x}\}_{n} is useful not only for the proof of the above fact but also for the
studies in \S \S 7, 8 and Appendix. In \S \S 1\sim 4 we give physical and mathe-
matical preparations for the theorem. In \S 7 we study extremal properties
of equilibrium current densities and equilibrium vector potentials. We then
find that an equilibrium current density induces the magnetic field with min-
imum total magnetic energy among all surface current densities on \Sigma with
given total currents through [\gamma_{j}] (j=1, \ldots, q) , while an equilibrium vector
potential is regarded as a magnetic field induced by a (generalized) volume
current density in \mathbb{R}^{3} with minimum total current energy among all volume
current densities with given total currents through Q_{i}(i=1, \ldots, q) , where Q_{i}

is a 2-chain in D such that \partial Q_{i}\subset\Sigma and Q_{i}\cross\gamma_{j}=\delta_{ij} (j=1, \ldots, q) . In \S 8,
we study examples of (D, \gamma_{i}) such that D is a z-axially symmetric domain
in \mathbb{R}^{3} , and show the explicit formulas for J_{i}dS_{x} in the main theorem and
for its vector potential A_{i} and magnetic field B_{i} . They will be written by
use of functions u(x, z) which satisfy the Stokes-Beltrami partial differential
equations:

\triangle^{\pm}u=\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial z^{2}}\pm\frac{1}{x}\frac{\partial u}{\partial x}=f .

Such equations are classical and have been studied by E. Beltrami [B], A.
Weinstein [Wi], R.P. Gilbert [G], etc.. Our research gives a different view
on those equations. In Appendix, we show the electromagnetic meaning of
the fundamental solutions for \triangle^{\pm}u=0 obtained by A. Weinstein in order
to apply them to our study.

The author would like to thank Professors F. Maitani and T. Ueda for
their suggestions and valuable conversations concerning this work. He also
thanks Professors A. Kaneko and S. Miyatake for their comments especially
about the theory of partial differential equations. He finally appreciates the
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referee for his sharp and kind remarks.
The main results in this paper have been announced in [Y2] .

Contents
1. Surface current densities
2. Statement of the main theorem
3. Correspondences
4. Reproducing 1- form*\Omega_{\gamma}

5. Vector potential A with boundary values 0
6. Key lemma
7. Extremal properties
8. Examples
Appendix. Fundamental solutions for \triangle^{\pm}u=0 .

1. Surface current densities

We use the simple notation: x=(x, y, z)=(x_{1}, x_{2}, x_{3})\in \mathbb{R}^{3} . We recall
some notions in the static electromagnetism. Let J(x)=(f_{1}(x), f_{2}(x), f_{3}(x))

be a vector field in \mathbb{R}^{3} such that

(i) f_{i}(x)\in C_{0}^{\infty}(\mathbb{R}^{3}) , (ii) div J(x)= \sum_{i=1}^{3}\frac{\partial f_{i}}{\partial x_{i}}=0 in \mathbb{R}^{3} .

Then Jdvx, where dv_{x} is a volume element in \mathbb{R}^{3} , is called a volume current
density in \mathbb{R}^{3} . Let \gamma be a 1-cycle in \mathbb{R}^{3} which bounds a 2-chain Q , namely,
\partial Q=\gamma . We set

J[ \gamma]=\int_{Q}J(x)n_{x}dS_{x} , (1.1)

which is called the total current of Jdv_{x} through [\gamma] . We consider the fol-
lowing vector-valued integrals:

A(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{J(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} , (1.1)

B(x)= rotA(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}J(y)\cross\frac{x-y}{||x-y||^{3}}dv_{y} for x\in \mathbb{R}^{3} . (1.3)

Then A(x) is called the vector potential for Jdvx, and B(x) the magnetic

fifield induced by Jdvx.
Let D\subset\subset \mathbb{R}^{3} be a domain bounded by a finite number of real analytic
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smooth closed surfaces \Sigma(=\partial D) . We denote by dS_{x} the surface area ele-
ment of \Sigma . Throughout this paper, we put D’=\mathbb{R}^{3}\backslash \overline{D} , where \overline{D}=D\cup\Sigma .
Let J(x)=(f_{1}(x), f_{2}(x), f_{3}(x)) be a vector field on \Sigma such that
(i’) f_{i}(x)\in C^{\infty}(\Sigma) ,
(ii’) There exists a sequence of volume current densities \{J_{n}dv_{x}\}_{n=1,2},\ldots in

\mathbb{R}^{3} such that J_{n}dv_{x}arrow JdS_{x}(narrow\infty) on \Sigma in the sense of distribution.
Precisely, (ii’) means that \{ Supp J_{n}\}_{n=1,2},\ldots are uniformly bounded in \mathbb{R}^{3}

and \lim_{narrow\infty}\int_{\mathbb{R}^{3}}\psi J_{n}dv_{x}=\int_{\Sigma}\psi JdS_{x} for any \psi\in C_{0}^{\infty}(\mathbb{R}^{3}) . Then JdS_{x} is
called a surface current density on \Sigma . For any 1-cycle \gamma in \mathbb{R}^{3}\backslash \Sigma , we set

J[ \gamma]=\lim_{narrow\infty}J_{n}[\gamma] , (1.4)

which is called the total current of JdS_{x} through [\gamma] . In Corollary 3.1 we
shall represent J[\gamma] by JdS_{x} itself (without using \{J_{n}(x)dv_{x}\}_{n} ). We set

A(x)= \frac{1}{4\pi}\int_{\Sigma}\frac{J(y)}{||x-y||}dS_{y} for x\in \mathbb{R}^{3} , (1.5)

B(x)= rotA(x)=\frac{1}{4\pi}\int_{\Sigma}J(y)\cross\frac{x-y}{||x-y||^{3}}dS_{y} for x\in \mathbb{R}^{3}\backslash \Sigma .

(1.6)

Then A(x) is called the vector potential for JdSx, and B(x) the magnetic
fifield induced by JdSx.

Theorem 1.1 Let J(x)=(f_{1}(x), f_{2}(x), f_{3}(x)) be a C^{\infty} vector fifield on \Sigma .
We put n_{x}\cross J(x)=(g_{1}(x), g_{2}(x), g_{3}(x)) for x\in\Sigma and

b_{J}(x)=g_{1}dx+g_{2}dy+g_{3}dz on \Sigma . (1.7)

Then JdS_{x} is a surface current density on \Sigma , if and on/y if
(1) J(x) is a tangent vector of \Sigma at x ,
(2) b_{J}(x) is a closed 1-form on \Sigma .

To prove this, we shall prepare Lemma 1.1 concerning the signed dis-
tance function R(x) for \Sigma defined as follows: Given x\in \mathbb{R}^{3} sufficiently close
to \Sigma , we find a unique point y=y(x)\in\Sigma such that

x-y=R(x)n_{y} where R(x)\in \mathbb{R} , (1.8)

where n_{y} is the unit outer normal vector of \Sigma at y . Then R(x) is a C^{\omega}

function in a neighborhood U of \Sigma in \mathbb{R}^{3} such that n_{x}=gradR(x) on \Sigma
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and

U\cap D (resp. \Sigma , U\cap D’ ) =\{x\in U|R(x)<(resp. =, >)0\} .

We define a sequence of C^{\infty} functions \{\chi_{n}(R)\}_{n=1,2},\ldots on (-\infty, \infty) such
that

0\leq\chi_{n}(R)\leq 1 , \chi_{n}(R)=\{

1 on (- \infty, -\frac{1}{n}]

0 on [- \frac{1}{2n} , \infty) .
(1.9)

Then, \chi_{n}(R(x)) is a C^{\infty} function in U . We take an integer n_{0} such that

\Gamma_{n}:=\{x\in U|-\frac{1}{n}\leq R(x)\leq-\frac{1}{2n}\}\subset\subset U for all n\geq n_{0} . (1.10)

Thus \Gamma_{n} – \Sigma (n -\infty) and Supp \chi_{n}’(R(x))\subset\Gamma_{n} where \chi_{n}’(R)=\frac{\partial\chi_{n}}{\partial R} . By
putting \chi_{n}’(R(x))\equiv 0 in \mathbb{R}^{3}\backslash \Gamma_{n} , we may consider \chi_{n}’(R(x))\in C_{0}^{\infty}(\mathbb{R}^{3}) .
Similarly, \chi_{n}’(R(x))\in C_{0}^{\infty}(\mathbb{R}^{3}) .

Lemma 1.1 Let f\in C_{0}^{\infty}(\mathbb{R}^{3}) . Then
(1) \chi_{n}’(R(x))f(x)dv_{x} – -f(x)dS_{x}(narrow\infty) on \Sigma in the sense of distri-

bution.
(2) \{\chi_{n}’(R(x))f(x)dv_{x}\}_{n\geq n_{0}} is convergent on \Sigma in the sense of distribu-

tion, if and only if f(x)=0 on \Sigma . In this case, the limit is \frac{\partial f}{\partial n_{x}}dS_{x}

on \Sigma .

Proof. Let x\in\Sigma . By a Euclidean motion of \mathbb{R}^{3} , we assume x=0
and n_{x}=(0,0,1) , so that \Sigma near 0 is of the form: ( =\phi(\xi, \eta) where

ca1ledthemeancurvatureof\Sigma atx.Nowfifix0<<s’ uchthat\phi(\xi, \eta)=O(\xi^{2}+\eta^{2})at(0,0).WeputH(x)=(\frac{\partial^{2}\phi}{<\delta\partial\xi^{2}}+\frac{\partial^{2}\phi}{\partial\eta^{2},1})(0,0),which
is

\Sigma\subset U(\delta):=\{x\in U|-\delta<R(x)<\delta\}\subset\subset U.

We divide U(\delta) into a finite number of disjoint piecewise smooth domains
\{U_{j}\}_{j=1,\ldots,N} such that U( \delta)=\bigcup_{j=1}^{N}\overline{U_{j}} and we can write, under a certain
Euclidean motion T_{j} of \mathbb{R}^{3} ,
(a) U_{j}\cap\Sigma is of the form \zeta=\phi_{j}(\xi, \eta) where (\xi, \eta)\in K_{j} := a domain

bounded by a finite number of piecewise smooth arcs in the (\xi, \eta)-plane
and \phi_{j}(\xi, \eta)=O(\xi^{2}+\eta^{2}) at (0, 0) ,

(b) U_{j}=\{x=(\xi, \eta, \phi_{j}(\xi, \eta))+Rn_{y}|(\xi, \eta, R)\in V_{j}\} , where V_{j}=K_{j}\cross

(-\delta, \delta) and y=y(x)=(\xi, \eta, \phi_{j}(\xi, \eta)) .
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We thus have, for each j(1\leq j\leq N) ,

dv_{x}=| \frac{\partial(x,y,z)}{\partial(\xi,\eta,R)}|d\xi d\eta dR\equiv J_{j}(\xi, \eta, R)d\xi d\eta dR in U_{j} ,

J_{j}(\xi, \eta, O)d\xi d\eta=dS_{x} on \Sigma\cap U_{j} , (1.11)

\frac{\partial J_{j}}{\partial R}(\xi, \eta, 0)d\xi d\eta=H(x)dS_{x} on \Sigma\cap U_{j} .

We only give the proof of (2) of Lemma 1.1, since the proof of (1) is
similar. We first note that Supp \chi_{n}’(R(x))\subset\Gamma_{n}\subset U for n\geq n_{0} . Next let
\psi\in C_{0}^{\infty}(\mathbb{R}^{3}) . Since \chi_{n}’(R(x))=0 in \mathbb{R}^{3}\backslash U(\delta) for sufficiently large n , it
follows that

I_{n} := \int_{\mathbb{R}^{3}}\chi_{n}’(R(x))f(x)\psi(x)dv_{x}

= \sum_{j=1}^{N}\{\int_{K_{j}}(\int_{\frac{-1}{n}}^{\frac{-1}{2n}}\chi_{n}’(R)f\psi J_{j}dR)d\xi d\eta\}

From \chi_{n}’(-1/n)=\chi_{n}’(-1/2n)=\chi_{n}(-1/2n)=0 and \chi_{n}(-1/n)=1 , we
have, by the integration by parts twice,

\int_{\frac{-1}{n}}^{\frac{-1}{2n}}\chi_{n}’(R)f\psi J_{j}dR

= \frac{\partial(f\psi J_{j})}{\partial R}](\xi,\eta,-1/n)+\int_{\frac{-1}{n}}^{\frac{-1}{2n}}\chi_{n}\frac{\partial^{2}(f\psi J_{j})}{\partial R^{2}}dR

arrow\frac{\partial(f\psi J_{j})}{\partial R}](\xi,\eta,0) as narrow\infty .

The last limiting formula follows, since 0\leq\chi_{n}(R)\leq 1 and \partial^{2}(f\psi J_{j})/\partial R^{2}

is bounded in V_{j} . By (1.11), we have

\lim_{narrow\infty}I_{n}=\sum_{j=1}^{N}\{\int_{K_{j}}(\frac{\partial f}{\partial R}\psi J_{j}+f\frac{\partial\psi}{\partial R}J_{j}+f\psi\frac{\partial J_{j}}{\partial R})_{(\xi,\eta,0)}d\xi d\eta\}

= \int_{\Sigma}\{(\frac{\partial f}{\partial n_{x}}+fH)\psi+f\frac{\partial\psi}{\partial n_{x}}\}dS_{x} ,

by which (2) follows. \square

Proof of Theorem 1.1. Assume that JdS_{x} is a surface current density on
\Sigma . We take a sequence of volume current densities \{J_{n}dv_{x}\}_{n}=\{(f_{1n}, f_{2n} ,
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f_{3n})dv_{x}\}_{n} in \mathbb{R}^{3} which converges to JdS_{x} on \Sigma in the sense of distribution.
For any \rho\in C^{\infty}(\mathbb{R}^{3}) and \chi\in C_{0}^{\infty}(\mathbb{R}^{3}) , it holds

\int_{\Sigma}(\sum_{i=1}^{3}f_{i}\frac{\partial(\rho\chi)}{\partial x_{i}})dS_{x}=\lim_{narrow\infty}\int_{\mathbb{R}^{3}}\sum_{i=1}^{3}(f_{in}\frac{\partial(\rho\chi)}{\partial x_{i}})dv_{x} (1.12)

=- \lim_{narrow\infty}\int_{\mathbb{R}^{3}} (div J_{n} ) \rho\chi dv_{x}=0 .

As \rho we take a defining function \psi of D in \mathbb{R}^{3} such that ||grad\psi(x)||=1

on \Sigma . Then (1.12) is reduced to \int_{\Sigma}\chi ( \sum_{i=1}^{3}f_{i}\partial\psi/\partial x_{i})dS_{x}=0 for any
\chi\in C_{0}^{\infty}(\mathbb{R}^{3}) , so that J(x)\perp n_{x} at any x\in\Sigma . (1) is proved. By taking
\chi\equiv 1 in a neighborhood of \Sigma in \mathbb{R}^{3} for (1.12), we obtain

\int_{\Sigma}(\sum_{i=1}^{3}f_{i}\frac{\partial\rho}{\partial x_{i}})dS_{x}=0 for any \rho\in C^{\infty}(\mathbb{R}^{3}) . (1.13)

We note that (2) is a local property and that our argument is invariant
under the Euclidean motions of R^{3} . Let x_{0}\in\Sigma . We may assume x_{0}=0

and n_{0}=(0,0,1) . Thus, \Sigma in a neighborhood V\subset \mathbb{R}^{3} of 0 is of the form:
z=\phi(x, y) for (x, y)\in K:=\{x^{2}+y^{2}<r^{2}\} such that \phi(x, y)=O(x^{2}+y^{2})

at (0, 0) . For any x=(x, y, \phi(x, y))\in V\cap\Sigma , we have, by (1),

dz= \frac{\partial\phi}{\partial x}dx+\frac{\partial\phi}{\partial y}dy , f_{3}=f_{1} \frac{\partial\phi}{\partial x}+f_{2}\frac{\partial\phi}{\partial y} .

Hence, by use of local parameter (x, y) of \Sigma\cap V , the 1-form b_{J}(x) is written
as

b_{J}(x)=[1+( \frac{\partial\phi}{\partial x})^{2}+(\frac{\partial\phi}{\partial y})^{2}]1/2(-f_{2}dx+f_{1}dy) on \Sigma\cap V.

Given any h(x, y)\in C_{0}^{\infty}(K) , we consider a function \rho\in C^{\infty}(\mathbb{R}^{3}) such that
\rho(x, y, z)=h(x, y) in V , and \rho=0 in a neighborhood of \Sigma\backslash (V\cap\Sigma) . Then
(1.13) gives

0= \int_{V\cap\Sigma}(f_{1}\frac{\partial h}{\partial x}+f_{2}\frac{\partial h}{\partial y})dS_{x}=\int_{K}(dh)\wedge b_{J}=-\int_{K}h(db_{J}) ,

so that b_{J}(x) is closed on \Sigma\cap V (2) is proved.
Conversely, let J=(f_{1}, f_{2}, f_{3}) , f_{i}\in C^{\infty}(\Sigma) satisfy (1) and (2). By

(1.7) and (1), we have (1’)(g_{1}, g_{2}, g_{3})\cross\underline{n}_{x}=(f_{1}, f_{2}, f_{3}) for x\in\Sigma . By
(2) we can construct a C^{\infty} closed 1-form b_{J}(x)=\overline{g}_{1}dx+\overline{g}_{2}dy+\overline{g}_{3}dz in a
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neighborhood U_{0}\subset U of \Sigma in \mathbb{R}^{3} such that \overline{b}_{J}(x)=b_{J}(x) as 1-forms on \Sigma ,
namely, (2’)(\overline{g}_{1},\overline{g}_{2},\overline{g}_{3})\cross n_{x}=(g_{1}, g_{2}, gs) \cross n_{x} for x\in\Sigma . We may assume
that U_{0}\supset\Gamma_{n} for sufficiently large n(\geq n_{1}) , where \Gamma_{n} is defined in (1.10).
Using R(x) of (1.8) and \chi_{n}(R) of (1.9), we define

\overline{\chi}_{n}(x)=\{

1 in D\backslash U

\chi_{n}(R(x)) in U

0 in D’\backslash U,
(1.14)

\eta_{n}=*[(d\overline{\chi}_{n}(x))\wedge\overline{b}_{J}(x)]

\equiv f_{1n}dx+f_{2n}dy+f_{3n}dz in \mathbb{R}^{3} .

That is, f_{1n}= \chi_{n}’(R(x))(\overline{g}_{3}\frac{\partial R}{\partial y}-\overline{g}_{2}\frac{\partial R}{\partial z}) etc.. We put

J_{n}dv_{x}= (f_{1n}, f_{2n}, f_{3n})dv_{x} in \mathbb{R}^{3} . (1.15)

Then \overline{\chi}_{n}(x) is a C^{\infty} function in \mathbb{R}^{3} with Supp \overline{\chi}_{n}\subset D , and \eta_{n} is a C^{\infty}

co-closed 1-form in \mathbb{R}^{3} with Supp \eta_{n}\subset\Gamma_{n} . Hence J_{n}dv_{x} is a volume current
density in \mathbb{R}^{3} such that Supp J_{n}arrow\Sigma(narrow\infty) . It suffices for the converse
to prove that \{J_{n}dv_{x}\}_{n} converges to the given JdS_{x} on \Sigma in the sense of
distribution. For any \psi\in C_{0}^{\infty}(\mathbb{R}^{3}) , we have from (1) of Lemma 1.1,

\lim_{narrow\infty}\int_{\mathbb{R}^{3}}\psi f_{1n}dv_{x}=\lim_{narrow\infty}\int_{\mathbb{R}^{3}}\psi\chi_{n}’(R(x))(\overline{g}_{3^{\frac{\partial R}{\partial y}}}-\overline{g}_{2}\frac{\partial R}{\partial z})dv_{x}

= \int_{\Sigma}\psi(\overline{g}_{2}\frac{\partial R}{\partial z}-\overline{g}_{3}\frac{\partial R}{\partial y})dS_{x}

= \int_{\Sigma}\psi f_{1}dS_{x} by (1’) and (2’) .

Similar formulas for i=2,3 hold. Theorem 1.1 is completely proved. \square

Corollary 1.1 Let JdS_{x} be a surface current density on \Sigma . Then there
exists a sequence of volume current densities \{J_{n}dv_{x}\}_{n} in \mathbb{R}^{3} which con-
verges JdS_{x} on \Sigma in the sense of distribution such that, if we denote by
A_{n} or A the vector potential for J_{n}dv_{x} or JdSx, and B_{n} or B the mag-
netic fifield induced by J_{n}dv_{x} or JdSx, respectively, then A_{n}(x)arrow A(x) and
B_{n}(x)arrow B(x) uniformly on any compact set in \mathbb{R}^{3}\backslash \Sigma .

Proof. In the proof of the converse of Theorem 1.1, we considered C^{\infty}

functions \chi_{n}(R) on (-\infty, \infty) with (1.9). We here use \chi_{n}(R) with the addi-
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tional property: There exists an M>0 such that

|\chi_{n}’(R)|\leq nM ,
|\chi_{n}’(R)|\leq n^{2}M for R\in(-\infty, \infty) and n\geq 1 (1.16)

We analogously define J_{n}dv_{x}=(f_{1n}, f_{2n}, f_{3n})dv_{x} by (1.15). Then we can
show that \{J_{n}dv_{x}\}_{n} satisfies Corollary 1.1. In fact, we already proved that
J_{n}dS_{x}arrow JdS_{x}(narrow\infty) on \Sigma in the sense of distribution. Hence A_{n}(x) -

A(x)(narrow\infty) pointwise in \mathbb{R}^{3}\backslash \Sigma . It follows from \int_{\Gamma_{n}}dv_{x}=O(1/n) that
there exists a constant c>0 (independent of n) such that

\int_{\mathbb{R}^{3}}|f_{1n}|dv_{x}=\int_{\Gamma_{n}}|\chi_{n}’(R(x))(\overline{g}_{3}\frac{\partial R}{\partial y}-\overline{g}_{2}\frac{\partial R}{\partial z})|dv_{x}\leq c .

We may assume that c satisfies similar inequality for f_{2n} and f_{3n} . Let
K\subset\subset \mathbb{R}^{3}\backslash \Sigma . If we take a large n_{1} such that m(K)= dist(K, \bigcup_{n=n_{1}}^{\infty}\Gamma_{n})>0 ,
then we have, for any n\geq n_{1} and x\in K ,

||A_{n}(x)||= \frac{1}{4\pi}||\int_{\Gamma n}\frac{(f_{1n}(y),f_{2n}(y),f_{3n}(y))}{||x-y||}dv_{x}||\leq\frac{\sqrt{3}c}{4\pi m(K)} ,

so that \{A_{n}(x)\}_{n} is uniformly bounded in K . Since each component of
A_{n}(x) is a harmonic function in \mathbb{R}^{3}\backslash \Gamma_{n} , \{A_{n}(x)\}_{n} is a normal family in K .
Hence, A_{n}(x) – A(x) uniformly on K, by which B_{n}(x) – B(x) uniformly
on K. \square

The vector field A(x) is continuous in \mathbb{R}^{3} , while B(x) has the following
jump property along \Sigma (cf. [FLS]):

Proposition 1.1 Let JdS_{x} be a surface current density on \Sigma and denote
by B(x) its magnetic fifield in \mathbb{R}^{3}\backslash \Sigma . Then, for any \zeta\in\Sigma , the limits
B^{+}( \zeta)=\lim_{D\ni xarrow\zeta}B(x) and B^{-}( \zeta)=\lim_{D’\ni xarrow\zeta}B(x) exist such that

B^{+}(()-B^{-}(()=n_{\zeta}\cross J(\zeta) .

Proof We may assume that ( =0 and n_{0}=(0,0,1) , so that the tangent
plane of \Sigma at 0 is the (x, y)-plane. If we put J=(f_{1}, f_{2}, f_{3}) on \Sigma , then
Theorem 1.1 implies that J(0)=(f_{1}(0), f_{2}(0), 0) . We consider the Newton
potential u_{i}(x) of f_{i}(x)(i=1,2,3) defined by

u_{i}(x)= \frac{1}{4\pi}\int_{\Sigma}\frac{f_{i}(y)}{||x-y||}dS_{y} for x\in \mathbb{R}^{3} .
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Then the following theorem is well-known:

\lim_{D\ni xarrow 0}\frac{\partial u_{i}}{\partial r}(x)-,\lim_{D\ni xarrow 0}\frac{\partial u_{i}}{\partial r}(x)=\{

0 when r=x , y
f_{i}(0) when r=z .

Hence, by definition (1.6) of B(x) , we see that B^{+}(0) and B^{-}(0) exist such
that B^{+}(0)-B^{-}(0)=(-f_{2}(0), f_{1}(0), 0)=n_{0}\cross J(0) . \square

2. Statement of the main theorem

Let D\subset\subset \mathbb{R}^{3} be a domain bounded by C^{\omega} smooth surfaces \Sigma and put
D’=\mathbb{R}^{3}\backslash \overline{D} . Let \{\gamma_{j}\}_{j=1,\ldots,q} be a 1-dimensional homology base of D . A
surface current density JdS_{x} on \Sigma is called an equilibrium current density
on \Sigma , if the magnetic field B(x) in \mathbb{R}^{3}\backslash \Sigma induced by JdS_{x} is identically 0
in D’ . A(x) defined by (1.5) for such JdS_{x} is called the equilibrium vector
potential for JdSx. Then we shall prove

Main Theorem
(1) For a fifixed i(1\leq i\leq q) , there exists a unique equilibrium current

density J_{i}dS_{x} on \Sigma such that J_{i}[\gamma_{j}]=\delta_{ij}(1\leq j\leq q) .
(2) Any equilibrium current density JdS_{x} on \Sigma is written by a linear com-

bination of \{J_{i}dS_{x}\}_{i=1,\ldots,q} .

We denote by A_{i} and B_{i} the vector potential and the magnetic field
induced by the above J\{dSx . The proof of the main theorem will be given
in \S \S 3\sim 6.

Proposition 2.1 (FLEMING ’s law). For a magnetic fifield B(x) in \mathbb{R}^{3}\backslash \Sigma

induced by an equilibrium current density JdS_{x} on \Sigma , we have J(x)\perp n_{x}

and B^{+}(x)=n_{x}\cross J(x) for x\in\Sigma .

Proof Since B^{-}(x)=0 on \Sigma , this proposition follows by (1) of Theorem
1.1 and Proposition 1.1. \square

3. Correspondences

We regard volume current densities or magnetic fields as co closed 1-
forms or closed 2-forms in \mathbb{R}^{3} (cf. [F1], [H]). In this section we shall show
results concerning C^{\infty}1- or 2-forms in \mathbb{R}^{3} , some of which correspond to
theorems in the theory of Maxwell’s equations in the time independent case
(cf. [FLS]). Given a C^{\infty}1-form \sigma=\sum_{i=1}^{3}f_{i}dx_{i} in \mathbb{R}^{3} , we put ||\sigma||(x)=
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( \sum_{i=1}^{3}f_{i}(x)^{2})^{1/2}\geq 0 and \triangle\sigma=\sum_{i=1}^{3}(\triangle f_{i})dx_{i} . In the case of \sigma such that
\sigma(x)=O(1/||x||^{3}) near \infty , we also put

\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\sigma(y)}{||x-y||}dv_{y}=\sum_{i=1}^{3}(\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{f_{i}(y)}{||x-y||}dv_{y})dx_{i} .

This as well as \triangle\sigma is a C^{\infty}1-form in \mathbb{R}^{3} . We analogously define corre-
sponding ones for any C^{\infty}i-form \sigma_{i}(i=0,1,2,3) . From the property of
the Newton kernel 1/||x-y|| , we see that, for any C_{0}^{\infty}i-form \sigma in \mathbb{R}^{3}.

,

d( \int_{\mathbb{R}^{3}}\frac{\sigma(y)}{||x-y||})dv_{y}=\int_{\mathbb{R}^{3}}\frac{(d\sigma)(y)}{||x-y||}dv_{y} ,

*( \int_{\mathbb{R}^{3}}\frac{\sigma(y)}{||x-y||})dv_{y}=\int_{\mathbb{R}^{3}}\frac{*\sigma(y)}{||x-y||}dv_{y} .

We often use

\triangle(\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\sigma(y)}{||x-y||}dv_{y})=-\sigma(x) (Poisson’s equation),

\triangle\sigma=(-1)^{i}(\delta d-d\delta)\sigma where \delta=*d*

Lemma 3.1 Let \eta=f_{1}dx+f_{2}dy+f_{3}dz be a C_{0}^{\infty}co-closed 1-form in \mathbb{R}^{3} ,
namely, f_{i}\in C_{0}^{\infty}(\mathbb{R}^{3})(i=1,2,3) and \delta\eta=0 . We set

p(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\eta(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} , (3.1)

\omega(x)=dp(x) for x\in \mathbb{R}^{3} . (3.2)

Then
(1) p is a C^{\infty}co-closed 1-form in \mathbb{R}^{3} such that \triangle p=-\eta .
(2) \eta=\delta\omega in \mathbb{R}^{3} .

Proof Assume that \eta is a C_{0}^{\infty}co-closed 1-form in \mathbb{R}^{3} . Then we have
\delta p(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{(\delta\eta)(y)}{||x-y||}dv_{y}=0 . By Poisson’s equation, we have \triangle p=-\eta in
\mathbb{R}^{3} . Thus, (1) is proved. (2) follows by \delta\omega=\delta dp=d\delta p-\triangle p=\eta . \square

When \omega is defined by \eta through (3.1) and (3.2), we say that \eta induces
\omega . By Lemma 3.1, this \omega is a C^{\infty} closed 2-form in \mathbb{R}^{3} which is harmonic
outside the support of \eta and ||\omega||(x)=O(1/||x||^{2}) near \infty . Conversely, we
have



Equilibnum vector potentials in \mathbb{R}^{3} 13

Lemma 3.2 Let \omega be a C^{\infty} closed 2-form in \mathbb{R}^{3} such that
(1) \omega is harmonic outside a compact set in \mathbb{R}^{3} .
(2) ||\omega||(x)=O(1/||x||) near \infty .
Then there exists a unique C_{0}^{\infty}co -closed 1-form \eta in \mathbb{R}^{3} which induces \omega .
Namely, \eta=\delta\omega .

Proof. Uniqueness is clear from (2) of Lemma 3.1. Putting \eta:=\delta\omega , we
shall verify that \eta induces \omega . By (1), \eta is a C_{0}^{\infty} co-closed 1-form in \mathbb{R}^{3} . We
construct p(x) by (3.1) for this \eta(x) . From d\omega=0 , we have

dp(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{(d\delta\omega)(y)}{||x-y||}dv_{y}=\frac{-1}{4\pi}\int_{\mathbb{R}^{3}}\frac{(\triangle_{x}\omega)(y)}{||x-y||}dv_{y}

\equiv\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy .

We write \omega=g_{1}dy\wedge dz+g_{2}dz\wedge dx+g_{3}dx\wedge dy . Since each g_{i}(x) is a
harmonic function outside a compact set, (2) implies (2’)||gradg_{i}(x)||=
O(1/||x||^{2}) near \infty . It follows from Stokes’ formula that

\alpha(x)=\frac{-1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\triangle_{y}g_{1}(x+y)}{||y||}dv_{y}

=g_{1}(x)+ \underline{1}\lim

4\pi rarrow\infty

\{\int_{||y||=r}(g_{1}(x+y)\frac{\partial}{\partial n_{y}}(\frac{1}{||y||})-\frac{1}{||y||}\frac{\partial g_{1}(x+y)}{\partial n_{y}})dS_{y}\}

=g_{1}(x) by (2) and (2’) .

Similarly, \beta=g_{2} and \gamma=g_{3} in \mathbb{R}^{3} , so that dp=\omega . \square

Lemma 3.3 Lei \omega be a C_{0}^{\infty} closed 2-form in \mathbb{R}^{3} and put \eta=\delta\omega in \mathbb{R}^{3} .
If we set, for any x\in \mathbb{R}^{3} ,

p(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\eta(y)}{||x-y||}dv_{y} , \lambda(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\omega(y)}{||x-y||}dv_{y} ,

Then p=\delta\lambda in \mathbb{R}^{3} .

Proof. We note that \lambda(x) is of class C^{\infty} in \mathbb{R}^{3} . We put q:=p-\delta\lambda\in

C_{1}^{\infty}(\mathbb{R}^{3}) . Since \delta p=0 by \delta\eta=0 in \mathbb{R}^{3} , we have \delta q=0 in \mathbb{R}^{3} . On the other
hand, we see that d\lambda=0 by d\omega=0 , and \triangle\lambda=-\omega in \mathbb{R}^{3} . Since Lemma 3.2
is applicable for our \omega with compact support in \mathbb{R}^{3} , we have dp=\omega in \mathbb{R}^{3} .
Thus, dq=dp-d\delta\lambda=\omega+(\triangle-\delta d)\lambda=0 in \mathbb{R}^{3} . Hence, q is a harmonic
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1-form in \mathbb{R}^{3} . Since q(x)=O(1/||x||) near \infty , it follows that q=0 in \mathbb{R}^{3} .
\square

If we use a simple notation N \sigma(x)=(1/4\pi)\int_{\mathbb{R}^{3}}\frac{\sigma(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} ,
then Poisson’s equation says -\triangle N=identity , and Lemma 3.3 with (2) of
Lemma 3.1 gives the following commutative diagram:

p

For j=1,2 , we denote by C_{j}^{\infty}(\mathbb{R}^{3}) or C_{j0}^{\infty}(\mathbb{R}^{3}) the set of C^{\infty} or C_{0}^{\infty} j-forms
in \mathbb{R}^{3} . For f_{i}\in C_{0}^{\infty}(\mathbb{R}^{3})(i=1,2,3) , we consider the following injections:

T_{c} : Jdv_{x}=(f_{1}, f_{2}, f_{3})dv_{x}

T_{p} : A(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{J(y)}{||x-y||}dv_{y}\mapsto p(x)=\frac{x_{1}}{4\pi}\int_{\mathbb{R}^{3}}\frac{dy+\eta(y)}{||x-y||}dv_{y}\in C_{1}^{\infty}(\mathbb{R}^{3})\mapsto\eta=f_{1}d+f_{2}f_{3}dz\in C_{10}^{\infty}(\mathbb{R}^{3}),’\}

T_{m} : B(x)=rotA(x) \mapsto\omega(x)=dp(x)\in C_{2}^{\infty}(\mathbb{R}^{3}) .

(3.4)

Clearly, Jdv_{x} is a volume current density in \mathbb{R}^{3} , iff \eta is a co-closed l-form
in \mathbb{R}^{3} . In that case, B is the magnetic field induced by Jdvx, and \eta induces
\omega .

Let JdS_{x} be any surface current density on \Sigma , and denote by A and B
its vector potential and its magnetic field. We write JdS_{x}=(f_{1}, f_{3}, f_{3})dS_{x} ,
A=(a, b, c) , B=(\alpha, \beta, \gamma) on \Sigma , \mathbb{R}^{3} , \mathbb{R}^{3}\backslash \Sigma , respectively. We consider the
following injections:

S_{c} : JdS_{x} – \eta=f_{1}dx+f_{2}dy+f_{3}dz on \Sigma ,
S_{p} : A \mapsto p=adx+bdy+cdz in \mathbb{R}^{3} ,
S_{m} : B \mapsto\omega=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy in

\mathbb{R}^{3}\backslash \Sigma.\} (3.4)

Thus, p is a continuous 1-form in \mathbb{R}^{3} , and dp=\omega in \mathbb{R}^{3}\backslash \Sigma . The surfaces
\Sigma are regarded as Riemann surfaces with conformal structure induced by
the restriction of the Euclidean metric of \mathbb{R}^{3} . Then b_{J}(x) of (1.7) is equal
to the conjugate differential of \eta on the Riemann surfaces \Sigma , so that \eta is a
co-closed differential on \Sigma .



Equilib7Tum vector potentials in \mathbb{R}^{3} 15

Corollary 3.1 Let JdS_{x} be a surface current density on \Sigma and defifine the
1-form b_{J}(x) on \Sigma by (1.7). Let \gamma be a 1-cycle in \mathbb{R}^{3}\backslash \Sigma bounding a 2-chain
Q in \mathbb{R}^{3} and put \gamma’=Q\cross\Sigma (intersection curves Q\cap\Sigma ). Then we have

J[ \gamma]=\int_{\gamma’}b_{J}(x) .

Proof. For the JdS_{x} on \Sigma we find a sequence of volume current densities
\{J_{n}dv_{x}\}_{n} which satisfies Corollary 1.1. We use A_{n} , A , B_{n} , B defined in that
corollary. By (3.3), we consider \eta_{n} , p_{n} , and \omega_{n} for J_{n}dv_{x} , A_{n} , and B_{n} .
By (3.4), we consider \eta , p , and \omega for JdS_{x} , A , and B . Then \eta_{n} is a C_{0}^{\infty}

co-closed 1-form in \mathbb{R}^{3} such that \eta_{n}=\delta\omega_{n} , and \omega_{n} is a C^{\infty}2-form in \mathbb{R}^{3}

such that \omega_{n}=dp_{n} . Moreover, \omega_{n} is harmonic outside the support of \eta_{n} .
Corollary 1.1 means that \lim_{narrow\infty}p_{n}(x)=p(x) and \lim_{narrow\infty}\omega_{n}(x)=\omega(x)

uniformly on any compact set in \mathbb{R}^{3}\backslash \Sigma . Since Supp \eta_{n}
– \Sigma(narrow\infty) , we

thus have

d*p=0, \omega=dp , and \omega is harmonic in \mathbb{R}^{3}\backslash \Sigma . (3.6)

Let \gamma and Q be given in Corollary 3.1. Since \eta_{n}=\delta\omega_{n} in \mathbb{R}^{3} , it follows that

J[ \gamma]=\lim_{narrow\infty}J_{n}[\gamma]=\lim_{narrow\infty}\int_{Q}*\eta_{n}=\lim_{narrow\infty}\int_{\gamma}*\omega_{n}=\int_{\gamma}*\omega . (3.6)

We simply set D^{+}=D , D^{-}=D’ , and \omega(x)=\omega^{\pm}(x) for x\in D^{\pm} . By
Proposition 1.1 and (1.7), \omega^{\pm}(x) are continuous up to \Sigma and

*\omega^{+}(x)-*\omega^{-}(x)=b_{J}(x) on \Sigma . (3.7)

We separate the intersection curves \gamma’=Q\cap\Sigma into the following sets:
\gamma’=\gamma_{1}’+ . . +\gamma_{N}’ such that
(a) Each \gamma_{k}’ consists of a finite number of disjoint closed curves,
(b) If we denote by Q_{k}(k=0,1, . . , N-1) the subregions of Q bounded

by \gamma_{k}’ , then Q_{k}\supset Q_{k+1} , where \gamma_{0}’=\gamma’ and Q_{0}=Q ,
(c) If Q_{k}\backslash Q_{k+1}\subset D^{\pm} , then Q_{k+1}-Q_{k+2}\subset D^{\mp}

It follows that \gamma_{k}’+\gamma_{k+1}’\sim 0 (k=1, \ldots, N-1) and \gamma_{N}’\sim 0 in D^{+} or D^{-}

Consider the case when \gamma\subset D^{+} Then \gamma\sim\gamma_{1}’ in D^{+} Since d*\omega^{+}=0 in
D_{J}^{+}. we have

J[ \gamma]=\int_{\gamma}*\omega^{+}=\int_{\gamma_{1}’}*\omega^{+}=\int_{\gamma_{1}’}b_{J}+\int_{\gamma_{1}’}*\omega^{-}
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= \int_{\gamma_{1}}, b_{J}- \int_{\gamma_{2}}, *\omega^{-} by d*\omega^{-}=0 and \gamma_{1}’+\gamma_{2}’\sim 0 in D^{-}

By repeating this procedure we obtain

J[ \gamma]=(\sum_{k=1}^{N}\int_{\gamma_{k}’}b_{J})\mp\int_{\gamma_{N}’}*\omega^{\mp}

= \int_{\gamma}, b_{J} by d*\omega^{\mp}=0 and \gamma_{N}’\sim 0 in D^{\mp}

We similarly have the same formula in the case when \gamma\subset D^{-} \square

Corollary 3.2 Let p and \omega be defifined in notation (3.4) through A and B
induced by a surface current density JdS_{x} on \Sigma . Then
(1) p is a co-closed 1-form in \mathbb{R}^{3} and satisfifies \int_{\gamma 1}p=\int_{Q}\omega for any l-cycle

\gamma_{1} and 2-chain Q in \mathbb{R}^{3} such that \partial Q=\gamma_{1} and Q\cap\Sigma is a l-chain.
(2) \omega is a (discontinuous) closed 2-form in \mathbb{R}^{3} .

Proof. Since p is continuous in \mathbb{R}^{3} , formula (3.5) implies the integral
formula in (1) and \int_{\gamma 2}*p=0 for any 2-cycle \gamma_{2} in \mathbb{R}^{3} . So, *p is closed in
\mathbb{R}^{3} by H. Weyl [Wy]. (1) is proved. Since \omega is closed in \mathbb{R}^{3}\backslash \Sigma and since
the normal component of \omega^{+}(x) is equal to that of \omega^{-}(x) on \Sigma by (3.7), we
have \int_{\gamma_{2}}\omega=0 for any 2-cycle \gamma_{2} in \mathbb{R}^{3} such that \gamma_{2}\cap\Sigma is a 1-cycle. So, \omega

is closed in \mathbb{R}^{3} by [Wy]. \square

4. Reproducing 1-form *\Omega_{\gamma}

Let D\subset\subset \mathbb{R}^{3} , \Sigma , \overline{D} and D’ be the same as in \S 2. We usually put
C^{\infty}(\overline{D})=the space of C^{\infty} functions in a neighborhood of \overline{D} and C_{0}^{\infty}(D)=

the space of C^{\infty} functions in D with compact support in D . For i=1,2 ,
we consider the following spaces:

C_{i}^{\infty}(\overline{D})=the space of i-forms of class C^{\infty} in a neighborhood of \overline{D} ,
C_{i0}^{\infty}(D)=the space of i-forms of class C^{\infty} with compact support in D ,
C_{i}^{\omega}(U)=the set of real analytic i-forms in U\subset \mathbb{R}^{3} ,

Z_{i}^{\infty}(\overline{D})=the space of closed i-forms of class C^{\infty} in a neighborhood of \overline{D} ,
L_{i}^{2}(D)=the Hilbert space of square integrable i-forms in D ,
Z_{i}(D)=C1_{i}[Z_{i}^{\infty}(\overline{D})] ,
B_{i}(D)=C1_{i}[dC_{i-1,0}^{\infty}(D)] where C_{0,0}^{\infty}(D)=C_{0}^{\infty}(D) ,
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H_{i}(D)=the space of square integrable harmonic i-forms in D ,

where C1_{i} [ ] means the closure of [ ] in L_{i}^{2}(D) . Weyl’s orthogonal decom-
position theorems [Wy] are

L_{i}^{2}(D)=Z_{i}(D)\dotplus*B_{3-i}(D) , Z_{i}(D)=H_{i}(D)\dotplus B_{i}(D) . (4.1)

Let i=1,2 and \omega_{i}\in C_{i}^{\infty}(U) , where U\supset\supset\Sigma . If all three coefficients of
\omega_{i} vanish identically on \Sigma , we write \omega_{i}=0 on \Sigma . If the restriction \omega_{i}’ of
\omega_{i} to the surfaces \Sigma is 0 as an i-form on \Sigma , we write \omega_{i}=0 along \Sigma . Put
\omega_{1}=adx+bdy+cdz and \omega_{2}=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy . Then it is
clear that \omega_{1}=0 or \omega_{2}=0 along \Sigma , iff the vector (a, b, c) or (\alpha, \beta, \gamma) is a
normal or tangent vector of \Sigma at each x\in\Sigma , respectively.

Proposition 4.1 Let \omega_{i}\in C_{i}^{\infty}(\overline{D})(i=1,2) . Then
(1) If \omega_{2}\in B_{2}(D) , then \omega_{2}=0 along \Sigma .
(2) Assume that \omega_{2}=d\omega_{1} on \overline{D} . Then \omega_{2}=0 along \Sigma , if and on/y if the

restriction \omega_{1}’ of \omega_{1} to the surfaces \Sigma is a closed 1-form on \Sigma .

Proof Let \omega_{2}\in B_{2}(D)\cap C_{2}^{\infty}(\overline{D}) . Then, ( \omega_{2}, *df)_{D}=\int_{\partial D}f\omega_{2} for any
f\in C^{\infty}(\overline{D}) . Thus (4. 1) implies (1). Let \omega_{2}=d\omega_{1} on \overline{D} . For any 1-cycle \gamma

on \Sigma which bounds a 2-chain Q(\subset\Sigma) , it holds \int_{\gamma}\omega_{1}’=\int_{Q}\omega_{2} . This implies
(2). \square

Now let \gamma be a 1-cycle in D . We consider a linear functional L_{\gamma} on
Z_{1}^{\infty}(\overline{D}) :

L_{\gamma} : \omega\mapsto\int_{\gamma}\omega\in \mathbb{R} .

By [Wy], we find an M>0 such that | \int_{\gamma}\omega|\leq M||\omega||_{D} for all \omega\in Z_{1}^{\infty}(\overline{D}) .
There thus exists a unique*\Omega_{\gamma}\in Z_{1}(D) which satisfies

\int_{\gamma}\omega=(\omega, *\Omega_{\gamma})_{D} for any \omega\in Z_{1}^{\infty}(\overline{D}) . (4.2)

We ca11*\Omega_{\gamma} the reproducing 1-form for (D, \gamma) . We note that \Omega_{\gamma}\in H_{2}(D) .
Indeed, for any f\in C_{0}^{\infty}(D) , (4.2) implies that (df, * \Omega_{\gamma})_{D}=\int_{\gamma}df=0 , so
that \Omega_{\gamma}\in Z_{2}(D) from the first formula of (4.1). Hence, \Omega_{\gamma}\in H_{2}(D) .

We need a rather concrete construction of the 2-form \Omega_{\gamma} (due to F.
Maitani). We consider the u-axially symmetric solid torus K:=I\cross A with
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corners in \mathbb{R}^{3} , where

I=\{u\in R|-1<u<1\} ,
A=\{(v, w)\in \mathbb{R}^{2}|1/2<\sqrt{v^{2}+w^{2}}<2\} .

In K , we take the circle C_{0}= {(v , cos \theta , sin \theta ) |0\leq\theta\leq 2\pi } and the
rectangle S_{0}=I\cross\{(v, O)\in A|1/2<v<2\} , so that S_{0}\cross C_{0} (intersection
number)=1. We here construct C^{\infty} functions \chi(u) on \overline{I} and \phi(v, w) on \overline{A}

such that

\chi(u)=\{
0 on [-1, -1/2]
1 on [1/2, 1],

\phi(v, w)=\{
0 on 1/2\leq\sqrt{v^{2}+w^{2}}\leq 2/3

1 on 3/2\leq\sqrt{v^{2}+w^{2}}\leq 2 ,

and put

\sigma_{0}=d\chi(u)\wedge d\phi(v, w)\in Z_{20}^{\infty}(K) .

Proposition 4.2 This 2-form \sigma_{0} in K has the following properties:
(1) ( \omega, *\sigma_{0})_{K}=\int_{C_{0}}\omega for any \omega\in Z_{1}^{\infty}(\overline{K}) .
(2) \int_{S_{0}}\sigma_{0}=1 .

Proof For any \omega\in Z_{1}^{\infty}(\overline{K}) , we have from Stokes’ formula

( \omega, *\sigma_{0})_{K}=\int_{K}d(\chi d\phi\wedge\omega)

= \int_{[(\partial I)xA]\cup[I\cross\partial A]}\chi(u)d\phi(v, w)\wedge\omega=\int_{\{1\}\cross A}d(\phi(v, w)\omega)

= \int_{\{1\}\cross\{\sqrt{v^{2}+w^{2}}=2\}}\omega=\int_{C_{0}}\omega .

Thus, (1) is proved. We similarly have

\int_{S_{0}}\sigma_{0}=\int_{S_{0}}d(\chi d\phi)=\int_{\partial S_{0}}\chi(u)d\phi(v, w)=\int_{1/2}^{2}d\phi(v, 0)=1 .

\square

Now let \gamma be a smooth 1-cycle in D . We take a tubular neighborhood
\overline{K}\underline{of}\gamma in D which admits a C^{\infty} (orientation preserving) transformation
T:K\mapsto K with T(\gamma)=C_{0} . We denote by T\beta\sigma_{0} the pull back of \sigma_{0} by T,
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and put

\overline{\sigma}=\{

T\#\sigma_{0} in \overline{K}

0 in D\backslash \overline{K} .
(4.3)

so that \overline{\sigma}\in Z_{20}^{\infty}(D) . For any \omega\in Z_{1}^{\infty}(\overline{D}) , (1) of Proposition 4.2 implies

( \omega, *\overline{\sigma})_{D}=(\omega, *T\#\sigma_{0})_{\overline{K}}=(T^{-1}\#\omega, *\sigma_{0})_{K}=\int_{C_{0}}T^{-1}\#\omega=\int_{\gamma}\omega .

It follows from the first formula of (4.1) that \Omega_{\gamma} is the orthocomponent of
\overline{\sigma} to H_{2}(D) in the second one of (4.1):

\overline{\sigma}=\Omega_{\gamma}+\tau where \Omega_{\gamma}\in H_{2}(D) and \tau\in B_{2}(D) . (4.4)

Note that \tau\in B_{2}(D)\cap C_{2}^{\infty}(D) and \Omega_{\gamma}+\tau=0 in D\backslash \overline{K} Further we have

Proposition 4.3 \Omega_{\gamma} and \tau in (4.4) is extended onto a neighborhood U of
\Sigma in \mathbb{R}^{3} such that \Omega_{\gamma}\in H_{2}(D)\cap C_{2}^{\omega}(U) and \tau\in B_{2}^{\infty}(D)\cap C_{2}^{\omega}(U) with

(a) \Omega_{\gamma}+\tau=0 in U. (b) \Omega_{\gamma}=\tau=0 along \Sigma .

Proof. For a given x_{0}\in\Sigma , we take a small ball B\subset \mathbb{R}^{3} centered at x_{0}

such that B\cap D\subset D\backslash \overline{K} and B\cap D is simply connected. Then there
exists a single-valued harmonic function u in B\cap D such that *\Omega_{\gamma}=du in
B\cap D . Since \Omega_{\gamma}+\tau=0 in B\cap D and Z_{1}(D)\perp*B_{2}(D) , it holds, for any
f\in C_{0}^{\infty}(B) ,

0=(df, * \tau)_{D}=-(df, du)_{B\cap D}=\lim_{narrow\infty}\int_{L_{n}}f\frac{\partial u}{\partial n_{x}}dS_{x} ,

where L_{n}=\{x\in D\cap B|R(x)=-1/n\} and R(x) is defined by (1.8). Since
L_{n}arrow\Sigma\cap B (n -\infty) and ||du||_{B\cap D}\leq||\Omega_{\gamma}||_{D}<\infty , it follows that u is
of class C^{1} up to \Sigma\cap B and \partial u/\partial n_{x}=0 on \Sigma\cap B . \Sigma being real analytic
in \mathbb{R}^{3} , u is extended harmonic in a neighborhood U(x_{0}) of \Sigma\cap B in B (see
[LM] ) . Thus, \Omega_{\gamma} is harmonic in U(x_{0}) , and \Omega_{\gamma}=0 along \Sigma\cap B . If we
put \tau=-\Omega_{\gamma} in U(x_{0}) , then \Omega_{\gamma} and \tau satisfy (a) and (b) in U(x_{0}) . Since
x_{0}\in\Sigma is arbitrary, Proposition 4.3 follows from the uniqueness theorem
for harmonic functions. \square

Corollary 4.1 For any 2-chain Q in \overline{D} such that \partial Q\subset\partial D , it holds

\int_{Q}\Omega_{\gamma}=Q\cross\gamma .



20 H. Yamaguchi

Proof. Let Q be given as above. For later use we first show that, for any
\tau\in B_{2}(D)\cap C_{2}^{\infty}(U) where U\supset\supset\Sigma ,

\int_{Q}\tau=0 . (4.5)

In fact, take a larger smooth domain \overline{D} in \mathbb{R}^{3} and a 2-chain \overline{Q} in \overline{D} such
that \overline{D}\supset\supset D , D\cap\overline{Q}=Q and \partial\overline{Q}\subset\partial\overline{D} . We put Q= \sum_{i=1}^{n}\overline{Q}_{i} where
\overline{Q}_{i}(1\leq i\leq n) is a 2-cell in \mathbb{R}^{3} . For any x\in \mathbb{R}^{3} , we consider a solid angle
\mu_{i}(x) of \overline{Q}_{i} seen from the point x such that

\mu_{i}(x)=\frac{1}{4\pi}\int_{\overline{Q}_{i}}(\frac{\partial}{\partial n_{y}}\frac{1}{||x-y||})dS_{y} (Gauss integral).

Then \mu_{i}(x) is a bounded harmonic function in \mathbb{R}^{3}-\overline{Q}_{i} and is harmonically
extended beyond \overline{Q}_{i} from both sides such that \mu_{i}(x^{+}\underline{)}-\mu_{i}(x^{-})=1 for any
x\in\overline{Q}_{i} , and d\mu_{i}(x) is a harmonic 1-form in \mathbb{R}^{3}\backslash \partial Q_{i} . If we put \mu(x)=

\sum_{i=1}^{n}\mu_{i}(x) for x\in D , then \mu(x) is a harmonic function in D\backslash Q such that
d\mu(x)\in H_{1}(\overline{D}) and \mu(x^{+})-\mu(x^{-})=1 for any x\in Q . Since B_{2}(D)\perp

*Z_{1}(D) and \tau=0 along \Sigma , we have

0=( \tau, *d\mu)_{D}=\int_{D\backslash Q}d(\mu\tau)=\int_{\Sigma\cup Q^{\pm}}\mu\tau=\int_{Q}\tau .

Thus (4.5) is proved. We next show Corollary 4.1. By (4.4), (4.5) and (2)
of Proposition 4.2, we have

\int_{Q}\Omega_{\gamma}=\int_{Q}\overline{\sigma}=\int_{Q\cap\overline{K}}T\#\sigma_{0}=\int_{T(Q)\cap K}\sigma_{0}

=(T(Q)\cap K)\cross C_{0}=Q\cross\gamma ,

which proves Corollary 4.1. \square

We here consider the subspaces H_{20}(D) of H_{2}(D) and H_{1e}(D) of H_{1}(D) :

H_{20}(D)= {\omega\in H_{2}(D)|\omega is harmonic on \overline{D} and \omega=0 along \Sigma }
H_{1e}(D)= { du\in H_{1}(D)|u is a harmonic function in D }.

Proposition 4.4 Let \{\gamma_{i}\}_{i=1,\ldots,q} be a I -dimensional homology base of D ,
and denote by*\Omega_{i} the reproducing 1-form for (D, \gamma_{i}) . Then
(1) \{\Omega_{i}\}_{i=1,\ldots,q} is a base of H_{20}(D) .
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(2) For each i(1\leq i\leq q) , there exists a unique \omega_{i}\in H_{20}(D) such that

\int_{\gamma_{j}}*\omega_{i}=\delta_{ij}(1\leq j\leq q) .

(3) The orthogonal decomposition H_{2}(D)=H_{20}(D)\dotplus*H_{1e}(D) holds.
(4) If we put \omega_{i}=\sum_{j=1}^{q}c_{ij}\Omega_{j} , then the (q, q) -matrix (c_{ij})_{i,j} is non-singular.

Proof. First we show (a) \{\Omega_{i}\}_{i=1,\ldots,q} are linearly independent in H_{20}(D) .
Indeed, Proposition 4.3 implies \Omega_{i}\in H_{20}(D) . By de Rahm’s theorem there
exists a \sigma_{i}\in Z_{1}^{\infty}(\overline{D}) with \int_{\gamma_{j}}\sigma_{i}=\delta_{ij}(1\leq j\leq q) . Thus (a) follows by (4.2).
Next we show (b) An element \omega\in H_{20}(D) such that *\omega has no periods in
D is 0. In fact, we then find a single-valued harmonic function u on \overline{D}

such that du=*\omega . From \omega\in H_{20}(D) , we have \partial u/\partial n_{x}=0 on \Sigma . Hence
u= const, in D , which proves (6). By (a) and (6), ( \int_{\gamma_{j}}*\Omega_{i})_{i,j} is non-
singular. This fact implies (1)\sim(3) . From (4.2) we have

c_{ij}=(\omega_{i}, \omega_{j})_{D,\square },

,
by which (4) follows.

This proposition is analogue to L.V. Ahlfors [Ah]. Precisely, let R be
a Riemann surface with border \partial R and let \gamma be a 1-cycle in R. He studied
about the reproducing difffferentia1*\Omega_{\gamma} defined by

\int_{\gamma}\omega=(\omega, *\Omega_{\gamma})_{R} for any C^{\infty} closed differential \omega on \overline{R} ,

and has then proved the corresponding results for R to Proposition 4.4.
Further, A. Accola [Ac] showed a geometrical meaning of the norm

||\Omega_{\gamma}||_{R}^{2} in terms of the extremal length of the family of curves C such that
C\sim\gamma (homologous) in R. Modifying his method, we have the following
different kind of geometric result which will be useful in \S 7:

Corollary 4.2 Let D be any bounded domain of \mathbb{R}^{3} with C^{\omega} smooth
boundary surfaces \Sigma . Let \{\gamma_{j}\}_{j=1,\ldots,q} be a 1-dimensional homology base
of D. Then we fifind C^{\omega} smooth 2 dimensional surfaces \{Q_{i}\}_{i=1,\ldots,q} on \overline{D}

such that

Q_{i}\cross\gamma_{j}=\delta_{ij} , \partial Q_{i}\subset\Sigma , Q_{i}\perp\Sigma . (4.6)

Proof. For each i(1\leq i\leq q) , take \omega_{i} in (2) of Proposition 4.4. We
consider the Abel integral u(x)of*\omega_{i} . That is, for any x\in\overline{D} , u(x)= \int_{l}*\omega_{i} ,
where l is an arc on \overline{D} connecting a fixed starting point x_{0} and x . Then u(x)
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is a locally harmonic function on \overline{D} such that \omega_{i}=\frac{\partial u}{\partial n_{x}}dS_{x}=0 at any x\in\Sigma .
By (2) of Proposition 4.4, the period for any 1-cycle in D of u(x) is always
integer. It follows that, for a fixed c\in \mathbb{R} (except for an isolated set), the level
surface Q of u in \overline{D} defined by Q= { x\in\overline{D}|u(x)=c mod \mathbb{Z} } consists of a
finite number of 2-dimensional C^{\omega} disjoint smooth surfaces \theta_{\nu}(\nu=1, \ldots , p)

in \overline{D} such that \partial\theta_{\iota/}\subset\Sigma and \theta_{I/}\perp\Sigma . We divide D \backslash Q=\sum_{k=1}^{m}D_{k} (connected
components). Then \partial D_{k}=\Theta_{k}+\Sigma_{k} where \Sigma_{k}\subset\Sigma and \Theta_{k} consists of a
finite number of+\theta_{\nu} or -\theta_{\iota/} , and u(x) is a single-valued harmonic function
on \overline{D}_{k} with \partial u/\partial n_{x}=0 on \Sigma_{k} and with boundary values

u(x)=\{
c+1+N_{k} on \Theta_{k}’

c+N_{k} on O_{k}’- ,
(4.7)

where N_{k} ia an integer and \ominus_{k}=\ominus_{k}’-\Theta_{k}’ . If we set Q_{i}= \sum_{k=1}^{m}\Theta_{k}’ , then
we see from*\omega_{k}=du in D that, for any 1\leq j\leq q ,

\delta_{ij}=\int_{\gamma_{j}}*\omega_{i}=(*\omega_{i}, *\Omega_{j})_{D} by (4.2)

= \sum_{k=1}^{m}\int_{D_{k}}du\wedge\Omega_{j}=\sum_{k=1}^{m}\int_{\Theta_{k}}, \Omega_{j} by (4.7) and \Omega_{j}=0 along \Sigma

= \int_{Q_{i}}\Omega_{j}=Q_{i}\cross\gamma_{j} by Corollary 4.1.

Consequently, this Q_{i} satisfies all three conditions in Corollary 4.2. \square

We say that \{Q_{i}\}_{i=1,\cdots,q} is a dual base of \{\gamma_{j}\}_{j=1,\cdots,q} .

5. Vector potential A with boundary values 0

We shall show a general property for elements in B_{2}(D) :

Lemma 5.1 Let \tau\in B_{2}^{\infty}(D)\cap C_{2}^{\omega}(U) where \Sigma\subset\subset U\subset \mathbb{R}^{3} . Then we fifind
an e_{0}\in C_{1}^{\infty}(D)\cap C_{1}^{\omega}(U’) where \Sigma\subset\subset U’\subset U such that

(a) \tau=de_{0} in D\cup U’ . (b) e_{0}=0 on \Sigma .

Proo/. We take a tubular neighborhood U_{1}\subset U of \Sigma in \mathbb{R}^{3} . First we
show
(\alpha) There exists an e\in C_{1}^{\infty}(D)\cap C_{1}^{\omega}(U_{1}) such that \tau=de in D\cup U_{1} .
Indeed, since \tau\in B_{2}^{\infty}(D)\cap C_{2}^{\omega}(U_{1}) , \tau belongs to Z_{2}^{\infty}(D\cup U_{1})\cap Z_{2}^{\omega}(U_{1}) and
has no periods along any 2-cycle in D\cup U_{1} . De Rahm’s theorem implies that
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there exists an e_{1}\in C_{1}^{\infty}(D\cup U_{1}) such that \tau=de_{1} in D\cup U_{1} . Analogously,
Cartan’s theorem [C] (de Rahm’s theorem for real analytic category) implies
that there exists a \sigma\in C_{1}^{\omega}(U_{1}) such that \tau=d\sigma in U_{1} . Note that e_{1}-\sigma\in

Z_{1}^{\infty}(U_{1}) . We choose a \mu\in Z_{1}^{\omega}(U_{1}) such that \mu and e_{1}-\sigma have the same
period along each 1-cycle in U_{1} . Thus, we find an f\in C^{\infty}(D\cup U_{1}) such
that df=\mu-(e_{1}-\sigma) in U_{1} . By putting e=e_{1}+df in D\cup U_{1} , we obtain
(\alpha) . By (2) of Proposition 4.1, the restriction e’ of e to the surfaces \Sigma is a
C^{\omega} closed 1-form on \Sigma . Moreover, e’ has the following property (P):

\int_{\gamma} , e’=0 for any 1-cycle \gamma’\subset\Sigma such that \gamma’\sim 0 on D\cup\Sigma .

For, since we can take a 2-chain Q\subset D such that \partial Q=\gamma’ , it follows from
(4.5) that \int_{\gamma}, e’= \int_{Q} de= \int_{Q}\tau=0 . Next we show
(\beta) There exists an \eta\in C_{1}^{\infty}(D)\cap C_{1}^{\omega}(U_{2}) where \Sigma\subset\subset U_{2}\subset U_{1} such that

\tau=d\eta in D\cup U_{2} and the restriction \eta’ of \eta to \Sigma is a C^{\omega} closed l-form
on \Sigma with no periods.

Indeed, for each 1-cycle \gamma_{i}\subset D(1\leq i\leq q) we find a 1-cycle \gamma_{i}’\subset\Sigma such that
\gamma_{i}\sim\gamma_{i}’ on D\cup\Sigma . We put a_{i}= \int_{\gamma_{i}}, e’ Using \omega_{i}\in H_{20}(D) in (2) of Proposition
4.4, we set \eta=e-\sum_{k=1}^{q}a_{k}*\omega_{k} on D\cup\Sigma . Then \eta\in C_{1}^{\infty}(D)\cup C_{1}^{\omega}(U_{2})

where \Sigma\subset\subset U_{2}\subset U_{1} , and \int_{\gamma_{i}}
, \eta’=0(1\leq i\leq q) . Since*\omega_{k}\in H_{1}(D\cup U_{2}) ,

it follows that d\eta=\tau in D\cup U_{2} and \eta’ on \Sigma has property (P) like e’ . Let \gamma’

be any 1-cycle on \Sigma . We find a cycle \delta’=\sum_{i=1}^{q}n_{i}\gamma_{i}’ on \Sigma such that \gamma’\sim\delta’

on D\cup\Sigma . Then \int_{\gamma} , \eta’=\int_{\gamma-\delta}, , \eta’+\sum_{i=1}^{q}n_{i}\int_{\gamma_{i}}, \eta’=0 . Hence, (\beta) holds.
Finally, from (\beta) we find an f(x)\in C^{\omega}(\Sigma) such that df=\eta’ on \Sigma . We
denote by h(x) the outer normal component of \eta at x\in\Sigma . Since \Sigma is real
analytic, h(x)\in C^{\omega}(\Sigma) . Then we can construct an F(x)\in C^{\omega}(U’)\cap C^{\infty}(D)

where \Sigma\subset\subset U’\subset U_{2} such that F=f and \partial F/\partial n_{x}=h on \Sigma . If we put
e_{0}=\eta-dF in D\cup U’ , then e_{0} satisfies (a) and (b) in Lemma 5.1. \square

Theorem 5.1 Let \omega\in H_{20}(D) . Then there exists a unique A \in C_{1}^{\omega}(V)

where \Sigma\subset\subset V\subset \mathbb{R}^{3} such that

(i) dA=\omega in D\cap V, (ii) \delta A =0 in V,
(iii) A =0 on \Sigma .

Proof. ( Uniqueness) Assume that there exists another \overline{A}\in C_{1}^{\omega}(V) satis-
fying (i)\sim(iii) . Then (i) implies that A -

\overline{A} is closed in D\cap V and hence
in V For any x_{0}\in\Sigma , we can find a ball B\subset V centered at x_{0} and an
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f\in C^{\omega}(B) such that A-\overline{A}=df in B . By (ii) we have \triangle f=-\delta df=0 ,
so that f is harmonic in U . Since \underline{(}iii ) implies grad f=0 on \Sigma\cap B , we see
that f=const , in B. Hence A=A in B , or in V

(Existence) By Proposition 4.4 it suffices to prove for \omega=\Omega_{\gamma} defined
in (4.4). By Proposition 4.3, there exists a neighborhood U : \Sigma\subset\subset U such
that \Omega_{\gamma}\in H_{2}(D\cup U) , \tau\in B_{2}^{\infty}(D)\cap C_{2}^{\omega}(U) , \Omega_{\gamma}+\tau=0 in U and \Omega_{\gamma}=\tau=0

along \Sigma . By Lemma 5.1, there exists an e_{0}\in C_{1}^{\infty}(D)\cap C_{1}^{\omega}(U’) where
\Sigma\subset\subset U’\subset U such that \tau=de_{0} in D\cup U’ and e_{0}=0 on \Sigma . For any x_{0}\in\Sigma ,
we take a ball B\subset U’ centered at x_{0} . From \Omega_{\gamma}\in H_{2}(B)\subset Z_{2}^{\omega}(B) , Poisson’s
equation implies that there exists an \alpha\in C_{1}^{\omega}(B) such that d\alpha=\Omega_{\gamma} and
\delta\alpha=0 in B . Since \Omega_{\gamma}+\tau=0 in B , there exists an f\in C^{\omega}(B) such that
\alpha+e_{0}=df in B . Now let S=B\cap\Sigma , which is a C^{\omega} smooth surface in B
such that \partial S\subset\partial B . By solving the Cauchy problem:

\{

\triangle u(x)=0 near S in B

grad u(x)=gradf(x) on S ,
(5.1)

we find a harmonic function u in a neighborhood V(x_{0}) of S in B such that
du=df on S . Put A=\alpha –du in V(x_{0}) . Then, in V(x_{0}) , dA=\Omega_{\gamma} and
\delta A=\delta\alpha-\triangle u=0 , while, on S , A=-e_{0}+df-du=0 . Hence A satisfies
(i)\sim(iii) in V(x_{0}) . Since x_{0}\in\Sigma is arbitrary, it follows from the uniqueness
that we find a neighborhood V of \Sigma in \mathbb{R}^{3} and A\in C_{1}^{\omega}(V) which satisfy (i)
\sim(iii) . \square

A is called the vector potential of \omega with boundary values 0 in V

Lemma 5.2 Let \omega\in H_{20}(D) . Denote by A the vector potential of \omega

with boundary values 0 in V Then there exist a triple \{W, \sigma_{2}, e_{1}\} , where
W with \Sigma\subset\subset W\subset V , \sigma_{2}\in Z_{20}^{\infty}(D) with Supp \sigma_{2}\subset D\backslash W , and e_{1}\in

C_{1}^{\infty}(D)\cap C_{1}^{\omega}(W) , such that, putting \sigma_{2}=0 in W\backslash D , we have

(a) \sigma_{2}=\omega+de_{1} in D\cup W, (b) A+e_{1}=0 in W.

Proof. It suffices to prove for \omega=\Omega_{\gamma} of (4.4). Proposition 4.3 and
Lemma 5.1 imply that there exist U’ with \Sigma\subset\subset U’\subset V,\overline{\sigma}\in C_{20}^{\infty}(D) with
Supp \overline{\sigma}\subset D\backslash U’ . and e_{0}\in C_{1}^{\infty}(D)\cap C_{1}^{\omega}(U’) such that e_{0}=0 on \Sigma and
\overline{\sigma}=\Omega_{\gamma}+de_{0} in D\cup U’ Since \Omega_{\gamma}=dA in V and A=0 on \Sigma , it follows that
A+e_{0} is a C^{\omega} closed 1-form in U’ such that A+e_{0}=0 on \Sigma . Thus, for a
tubular neighborhood W of \Sigma in U’ , there exists a function g\in C^{\omega}(W) such



Equilibnum vector potentials in \mathbb{R}^{3} 25

that A+e_{0}=dg in W We can extend g to a function \overline{g}\in C^{\infty}(D\cup W) . By
putting \sigma_{2}=\overline{\sigma} and e_{1}=e_{0}-d\overline{g} in D\cup W , we obtain Lemma 5.2. \square

In Theorem 5.1 we write A=A_{1}dx+A_{2}dy+A_{3}dz in V. where A_{i}(i=

1,2,3) is necessarily a harmonic function in V We identify the 1-form A
with the vector field ( A_{1} , A_{2} , A3) in V Thus, (ii) and (iii) for A are of the
forms

\sum\frac{\partial A_{i}}{\partial x_{i}}3=0 in V, A_{i}=0 on \Sigma(i=1,2,3) . (5.2)
i=1

For any vector r in \mathbb{R}^{3} with ||r||=1 , we put \frac{\partial A}{\partial r}= ( \frac{\partial A_{1}}{\partial r}, ^{\frac{\partial}{\partial}Z}A r’ \frac{\partial A_{3}}{\partial r}) in V

Lemma 5.3 For any x\in\Sigma , \frac{\partial A}{\partial r}(x) is a tangent vector of \Sigma at x , while
grad A_{i}(x)(i=1,2,3) is a normal vector of \Sigma at x .

Proof. We use the function R(x) of (1.8) defined near \Sigma . By the second
formula of (5.2), we have a C^{\omega} function c_{\iota}(x) such that A_{i}(x)=c_{i}(x)R(x)

in a neighborhood W of \Sigma . Thus, for any direction r , \frac{\partial A_{i}}{\partial r}=c_{\iota}\frac{\partial R}{\partial r} on \Sigma . By
the first one of (5.2), we have \sum_{i=1}^{3}c_{i}\frac{\partial R}{\partial x_{i}}=0 on \Sigma , by which Lemma 5.3
follows. \square

6. Key lemma

The following lemma gives the relation between elements of H_{20}(D) and
magnetic fields induced by equilibrium current densities on \Sigma :

Key Lemma Let \omega\in H_{20}(D) . We write \omega=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy

in D. Defifine the following vector fifield B(x) in \mathbb{R}^{3}\backslash \Sigma :

B(x)=\{
(\alpha, \beta, \gamma) in D

(0, 0, 0) in D’ .
(6.1)

Then there exists a unique surface current density JdS_{x} on \Sigma which induces
B(x) as a magnetic fifield. Precisely, JdS_{x}= \frac{\partial A}{\partial n_{x}}dS_{x} on \Sigma where A is the
vector potential of \omega with boundary values 0.

Proof. Uniqueness is clear from Fleming’s law. To prove existence, let
\omega\in H_{20}(D) and let B(x) be defined by (6.1). By Theorem 5.1, we have the
vector potential A of \omega with boundary values 0 in V where \Sigma\subset\subset V\subset \mathbb{R}^{3} .
We write A=A_{1}dx+A_{2}dy+A_{3}dz in V and consider \frac{\partial A}{\partial n_{x}} at x\in\Sigma . It is
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enough to prove the following claims:

(c_{1}) \frac{\partial A}{\partial n_{x}}dS_{x} is a surface current density on \Sigma .

(c_{2}) \frac{\partial A}{\partial n_{x}}dS_{x} induces the above B(x) as a magnetic field.

Indeed, we apply Lemma 5.2 for the given \omega in Key Lemma to obtain a
triple \{W, \sigma_{2}, e_{1}\} satisfying all conditions in Lemma 5.2. We recall the
functions R(x) in U\supset\supset\Sigma , \chi_{n}(R) on (-\infty, +\infty) , and \overline{\chi}_{n}(x) in \mathbb{R}^{3} defined
by (1.8), (1.9) and (1.14), respectively. We may assume that W=U. We
put

D_{n}=\{x\in D|\overline{\chi}_{n}(x)>0\} , D_{n,1}=\{x\in D|\overline{\chi}_{n}(x)=1\} .

We always consider sufficiently large n such that D_{n,1}\supset D\backslash W By (1.10),
we have \Gamma_{n}\cup D_{n,1}\subset D_{n}\subset\subset D and D_{n,1}\nearrow D (n -\infty) . We set

\overline{\omega}_{n}:=\{

d(-\overline{\chi}_{n}e_{1}) in D

0 in \mathbb{R}^{3}\backslash D

and \overline{\eta}_{n}:=\delta\overline{\omega}_{n} in \mathbb{R}^{3} . (C2)

Then \overline{\omega}_{n}\in Z_{20}^{\infty}(\mathbb{R}^{3}) with Supp \overline{\omega}_{n}\subset D_{n} , and \overline{\eta}_{n}\in*Z_{20}^{\infty}(\mathbb{R}^{3}) . Lemma 3.2
implies that \overline{\eta}_{n} induces \overline{\omega}_{n} . By direct calculation, we have

\overline{\eta}_{n}=-\delta[(d\overline{\chi}_{n})\wedge e_{1}]-*[(d\overline{\chi}_{n})\wedge*de_{1}]-\overline{\chi}_{n}\delta de_{1} in D .

Since \omega\in H_{2}(D) and D_{n,1}\supset Supp\sigma_{2} , it follows from (a) of Lemma 5.2
that

\overline{\chi}_{n}\delta de_{1}=\overline{\chi}_{n}\delta(\sigma_{2}-\omega)=\delta\sigma_{2} in D ,

which is independent of n . We set

\hat{\sigma}:=\{

\sigma_{2} in D

0 in \mathbb{R}^{3}\backslash D

and \hat{\eta}:=\delta\hat{\sigma} in \mathbb{R}^{3}\wedge

Then \hat{\sigma}\in Z_{20}^{\infty}(\mathbb{R}^{3}) with Supp \hat{\sigma}\subset D\backslash W . and \hat{\eta}\in*Z_{20}^{\infty}(\mathbb{R}^{3}) . By Lemma
3.2, \hat{\eta} induces \hat{\sigma} . We put \eta_{n}:=\overline{\eta}_{n}+\hat{\eta} in \mathbb{R}^{3} , namely,

\eta_{n}=\{

-\delta[(d\overline{\chi}_{n})\wedge e_{1}]-*[(d\overline{\chi}_{n})\wedge*de_{1}] in D
0 in \mathbb{R}^{3}\backslash D .

It follows that \eta_{n}\in*Z_{20}^{\infty}(\mathbb{R}^{3}) and Supp \eta_{n}\subset\Gamma_{n}\subset W\cap D . We denote by
\omega_{n} the C^{\infty}2-form in \mathbb{R}^{3} induced by \eta_{n} in the sense of Lemma 3.1. Since
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\omega_{n}=\overline{\omega}_{n}+\hat{\sigma} in \mathbb{R}^{3} , it holds by (a) of Lemma 5.2

\omega_{n}=\{

d(-e_{1})+\sigma_{2}=\omega in D_{n,1}

0 in \mathbb{R}^{3}\backslash D .
(6.8)

In particular, we pointwise have

\overline{\omega}:=\lim_{narrow\infty}\omega_{n}(x)=\{

\omega(x) for x\in D

0 for x\in \mathbb{R}^{3}\backslash D .
(6.4)

By (a) and (b) of Lemma 5.2, we have

\eta_{n}=\{

\delta[(d\overline{\chi}_{n})\wedge A]+*[(d\overline{\chi}_{n})\wedge*dA] in D\cap W

0 in \mathbb{R}^{3}\backslash (D\cap W)

(6.5)

\equiv f_{1n}dx+f_{2n}dy+f_{3n}dz in \mathbb{R}^{s_{\wedge}}

We put \omega_{n}(x):=\alpha_{n}dy\wedge dz+\beta_{n}dz\wedge dx+\gamma_{n}dx\wedge dy for x\in \mathbb{R}^{3} , so that

\alpha_{n}(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{(x_{3}-y_{3})f_{2n}(y)-(x_{2}-y_{2})f_{3n}(y)}{||x-y||^{3}}dv_{y} etc., (6.8)

where x=(x_{1}, x_{2}, x_{3}) and y=(y_{1}, y_{2}, y_{3}) . By (3.3), we put

J_{n}dv_{x} :=T_{c}^{-1}(\eta_{n})=(f_{1n}, f_{2n}, f_{3n})dv_{x} in \mathbb{R}^{3} . (6.7)

Since \eta_{n}\in*Z_{20}^{\infty}(\mathbb{R}^{3}) , J_{n}dv_{x} is a volume current density in \mathbb{R}^{3} . It thus
suffices for claim (c_{1}) to prove

J_{n}dv_{x} arrow\frac{\partial A}{\partial n_{x}}dS_{x}(narrow\infty) on \Sigma in the sense of distribution. (6.8)

In fact, to get the explicit formula of f_{in}(i=1,2,3) , we note that, in W ,

d \overline{\chi}_{n}(x)=\chi_{n}’(R(x))\sum_{i=1}^{3}\frac{\partial R}{\partial x_{i}}dx_{i} ,

d \chi_{n}(\prime R(x))=\chi_{n}’(R(x))\sum_{i=1}^{3}\frac{\partial R}{\partial x_{i}}dx_{i} .

Substituting these for (6.5), we have, in D\cap W.
,

\eta_{n}=\chi_{n}’(R(x))\sum_{i=1}^{3}g_{i}dx_{i}+\chi_{n}’(R(x))\sum_{i=1}^{3}G_{i}dx_{i} ,
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where

g_{1}(x)= \frac{\partial}{\partial y}(\frac{\partial R}{\partial x}A_{2}-\frac{\partial R}{\partial y}A_{1})-\frac{\partial}{\partial z}(\frac{\partial R}{\partial z}A_{1}-\frac{\partial R}{\partial x}A_{3})

+ \frac{\partial R}{\partial y}(\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y})-\frac{\partial R}{\partial z}(\frac{\partial A_{1}}{\partial z}-\frac{\partial A_{3}}{\partial x}) ,

G_{1}(x)= \frac{\partial R}{\partial y}(\frac{\partial R}{\partial x}A_{2}-\frac{\partial R}{\partial y}A_{1})-\frac{\partial R}{\partial z}(\frac{\partial R}{\partial z}A_{1}-\frac{\partial R}{\partial x}A_{3}) ,

and g_{i}(x) , G_{i}(x)(i=2,3) are written cyclically. Hence,

f_{in}(x)=\chi_{n}’(R(x))g_{i}(x)+\chi_{n}’(R(x))G_{i}(x) in D\cap W. (6.9)

From Lemma 5.3 and (5.2), we have, on \Sigma ,

g_{1}(x)= \sum_{i=1}^{3}(\frac{\partial R}{\partial x_{1}}\frac{\partial A_{i}}{\partial x_{i}}+\frac{\partial R}{\partial x_{i}}\frac{\partial A_{i}}{\partial x_{1}}-2\frac{\partial R}{\partial x_{i}}\frac{\partial A_{1}}{\partial x_{i}})=-2\frac{\partial A_{1}}{\partial n_{x}} .

From (1) of Lemma 1.1, \chi_{n}’(R(x))g_{1}(x)dv_{x} – 2 \frac{\partial A_{1}}{\partial n_{x}}dS_{x}(n --\infty) on \Sigma in
the sense of distribution. Again using Lemma 5.3 and (5.2), we have, on \Sigma ,

G_{1}(x)=0 ,

\frac{\partial G_{1}}{\partial n_{x}}=-||gradR||^{2}\frac{\partial A_{1}}{\partial n_{x}}+\frac{\partial R}{\partial x_{1}}\sum_{i=1}^{3}(\frac{\partial R}{\partial x_{i}}\frac{\partial A_{i}}{\partial n_{x}})=-\frac{\partial A_{1}}{\partial n_{x}} .

It follows from (2) of Lemma 1.1 that \chi_{n}’(R(x))G_{1}(x)dv_{x}arrow-\frac{\partial A_{1}}{\partial n_{x}}dS_{x}(narrow

\infty) on \Sigma in the sense of distribution. Therefore, (6.9) implies that f_{1n}dv_{x}arrow

\frac{\partial A}{\partial n_{x}}dS_{x}(narrow\infty) on \Sigma in the sense of distribution. Cyclically we have
similar formulas for i=2,3 . Hence, (c_{1}) is proved.

Next we shall prove (c_{2}) . We put J_{0}dS_{x}= \frac{\partial A}{\partial n_{x}}dS_{x} , and denote by B_{0}(x)

the magnetic field induced by JodSx. By (3.4) we consider

\eta_{0}(x):=S_{c}(J_{0}dS_{x})=\sum_{i=1}^{3}\frac{\partial A_{i}}{\partial n_{x}}dx_{i} on \Sigma ,

\omega_{0}(x) :=S_{m}(B_{0}(x))=\alpha_{0}dy\wedge dz+\beta_{0}dz\wedge dx+\gamma_{0}dx\wedge dy in \mathbb{R}^{3}\backslash \Sigma ,

so that

\alpha_{0}(x)=\frac{1}{4\pi}\int_{\Sigma}\frac{(x_{3}-y_{3})\frac{\partial A_{2}}{\partial n_{y}}-(x_{2}-y_{2})\frac{\partial A_{3}}{\partial n_{y}}}{||x-y||^{3}}dS_{y}

etc.
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For any fixed x\in \mathbb{R}^{3}\backslash \Sigma , limiting formula (6.8), together with (6.6), implies
that \omega_{n}(x)arrow\omega_{0}(x)(n --\infty) . By (6.4), we thus have \omega_{0}(x)=\overline{\omega}(x)

in \mathbb{R}^{3}\backslash \Sigma , or equivalently, B_{0}(x)=B(x) where B(x) is defined by (6.1).
Hence, (c_{2}) holds. Key lemma is completely proved. \square

Converse of Key Lemma Let B be a magnetic fifield induced by an
equilibrium current density on \Sigma . We write B(x)=(\alpha, \beta, \gamma) in D. If we
put \omega:=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy in D , then \omega\in H_{20}(D) .

Proof By (3.5), we proved \omega\in H_{2}(D) . By Proposition 1.1, \omega is continu-
ous up to \Sigma and the normal component of \omega with respect to \Sigma vanishes on
\Sigma . By the same use of [LM] in the proof of Proposition 4.3, we see that \omega

is harmonic beyond \Sigma and \omega=0 along \Sigma , so that \omega\in H_{20}(D) . \square

We extend any \omega\in H_{20}(D) to \overline{\omega}\in H_{2}(\mathbb{R}^{3}\backslash \Sigma) by putting \overline{\omega}=0 in D’ .
and define the following spaces:

\overline{H}_{20}(D)=\{\overline{\omega}\in L_{2}^{2}(\mathbb{R}^{3})|\omega\in H_{20}(D) \} ,
B = the set of all magnetic fields B_{J} induced

by equilibrium current densities JdS_{x} on \Sigma .

By (3.4), we considered the injection S_{m} from the set of magnetic fields
induced by all surface current densities on \Sigma , into H_{2}(\mathbb{R}^{3}\backslash \Sigma) . Key Lemma
and its converse imply that

S_{m} : B \mapsto\overline{H}_{20}(D) is bijective. (6.10)

We here give the final step of

Proof of the main theorem ( Uniqueness in (1)) Let JdS_{x} be an equilib-
rium current density on \Sigma and denote by B its magnetic field in \mathbb{R}^{3}\backslash \Sigma . It is
enough to prove that, if the total current J[\gamma_{j}]=0 for each 1-cycle \gamma_{j}(1\leq

j\leq q) in D , then J(x)=0 on \Sigma . In fact, we put \overline{\omega}=S_{m}(B)\in\overline{H}_{20}(D) .
By (3.6), \int_{\gamma_{j}}*\omega=J[\gamma_{j}]=0(1\leq j\leq q) . It follows from (2) of Proposition
4.4 that \omega=0 in D . Thus, B^{+}(x)=0 for any x\in\Sigma . Since B^{-}(x)=0 on
\Sigma and J(x) is tangential on \Sigma , Proposition 1.1 implies J(x)=0 on \Sigma .

(Existence in (1), and (2)) For any fixed i(1\leq i\leq q) , we obtain, from
(2) of Proposition 4.4, \omega_{i}\in H_{20}(D) with \int_{\gamma_{j}}*\omega_{i}=\delta_{ij}(1\leq j\leq q) . By
(6.10), we have B:=S_{m}^{-1}(\overline{\omega}_{i})\in B . We thus find an equilibrium current
density JdS_{x} on \Sigma which induces B as a magnetic field. Again using (3.6),
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we have J[\gamma_{j}]=\delta_{ij} , so that JdS_{x} on \Sigma is the desired one for the existence in
(1). (2) of the main theorem is clear from (1) and Proposition 4.4. \square

This proof implies that

S_{m}(B_{i})=\overline{\omega}_{i}(1\leq i\leq q) , (6.11)

where B_{i} and \omega_{i} are stated in the main theorem of \S 2 and in (2) of PropO-
sition 4.4,respectively-\cdot For the reproducing 1- form*\Omega_{i} for (D, \gamma_{i}) , we have
a unique B_{i}\in B such that S_{m}(\overline{B}_{i})=\overline{\Omega}_{i} . We put

\overline{A}_{i}= the equilibrium vector potential of \overline{B}_{i} ,
\overline{p}_{i}=S_{p}(\overline{A}_{i})\in C_{1}(\mathbb{R}^{3}) ,

so that d\overline{p}_{i}=\overline{\Omega}_{i} in \mathbb{R}^{3}\backslash \Sigma . Then we have the following result which is
related to how D is embedded in \mathbb{R}^{3} :

Remark 6.1. Let A be an equilibrium vector potential in \mathbb{R}^{3} and put p=
S_{p}(A)\in C_{1}(\mathbb{R}^{3}) . Then the restriction of p on \Sigma is a closed 1-form on \Sigma . In
the case when A=\overline{A}_{i} , namely, p=\overline{p}_{i} , its period of any 1-cycle \delta on \Sigma is
given by

\int_{\delta}\overline{p}_{i}=Q\cross\gamma_{i} ,

where Q is a 2-chain in \mathbb{R}^{3} such that \partial Q=\delta .

Proof. Let \gamma be any small 1-cycle on \Sigma . Then we can take a 2-chain
S\subset D’ such that \partial S=\gamma . Since dp=0 in D’ and p(x) is continuous in
\mathbb{R}^{3} , we have \int_{\gamma}p=\int_{S}dp=0 . Hence p is closed on \Sigma . In the case when
p=p_{i} , let \delta and Q be given as above. We divide Q into two 2-chains
\{Q_{1}, Q_{1}’\} : Q=Q_{1}+Q_{1}’ such that Q_{1}\subset D , Q_{1}’\subset D’., \partial Q_{1}\subset\Sigma and
\partial Q_{1}’\subset\Sigma . Since \overline{\Omega}_{i}=0 in D’ , it follows from Corollary 4.1 and (1) of
Corollary 3.2 that

\int_{\delta}\overline{p}_{i}=\int_{Q}\overline{\Omega}_{i}=\int_{Q_{1}}\Omega_{i}=Q_{1}\cross\gamma_{i}=Q\cross\gamma_{i} .

\square

Let JdS_{x} be a surface current density on \Sigma and denote by A and B its
vector potential and its magnetic field. We put p:=S_{p}(A)\in C_{1}^{\omega}(D\cup D’)

and \omega:=S_{m}(B)\in H_{2}(D\cup D’) . Since \Sigma is of clxs C^{\omega} , we have the C^{\omega}
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extensions p^{+} and p^{-} of p from D and D’ beyond \Sigma , respectively. Hence,
\overline{p}:=p^{+}-p^{-} is of class C^{\omega} in a neighborhood W of \Sigma in \mathbb{R}^{3} . By continuity
of p in \mathbb{R}^{3},\overline{p}=0 on \Sigma . Moreover, (3.5) implies \delta\overline{p}=0 in W Therefore, we
obtain

Remark 6.2. Under these notaions, if JdS_{x} is an equilibrium current den-
sity on \Sigma , then the vector potential A of \omega with boundary values 0 is written
into

A=p-+p- in W.

7. Extremal properties

We need the following approximation condition for the equilibrium cur-
rent densities which is compared with Corollary 1.1 for the surface current
densities.

Lemma 7.1 Let JdS_{x} be an equilibrium current densities on \Sigma and de-
note by A and B the equilibrium vector potential and the magnetic fifield for
JdSx. Then we fifind a sequence of volume current densities \{J_{n}dv_{x}\}_{n} in \mathbb{R}^{3}

converging to JdS_{x} on \Sigma in the sense of distribution such that, denoting by
A_{n} and B_{n} the vector potential and the magnetic fifield for Jndvx, we have
(1) Supp J_{n}\subset D for n\geq 1 and Supp J_{n}arrow\Sigma(narrow\infty) .
(2) B_{n}=B=0 in D’ for n\geq 1 . Given K\subset\subset D , there exists an n_{1} such

that B_{n}=B in K for n\geq n_{1} .
(3) A_{n}(x) – A(x) and B_{n}arrow B(x) uniformly on any compact set in \mathbb{R}^{3}\backslash \Sigma .
(4) There exists an M_{0}>0 such that ||B_{n}(x)||\leq M_{0} for n\geq 1 and x\in \mathbb{R}^{3} .
(5) \lim_{narrow\infty}\int_{\mathbb{R}^{3}}||B_{n}(x)||^{2}dv_{x}=\int_{\mathbb{R}^{3}\backslash \Sigma}||B(x)||^{2}dv_{x} .

Lemma 7.1’ All are same as Lemma 7.1 except that (1) and (2) are
replace by
(1’) Supp J_{n}\subset D’ for n\geq 1 and Supp J_{n}arrow\Sigma(narrow\infty) .
(2’) B_{n}=B in D for n\geq 1 . Given G\supset\supset D , there exists an n_{1} such that

B_{n}=B=0 in \mathbb{R}^{3}\backslash G for n\geq n_{1} .

Proof of Lemma 7.1 Let JdS_{x} , A and B be given as above. By (6.10) we
put \overline{\omega}=S_{m}(B)\in\overline{H}_{20}(D) . From the uniqueness, JdS_{x} is identical with the
one obtained from this \omega in Key Lemma. In that proof we here use C^{\infty} func-
tions \chi_{n}(R) on (-\infty, +\infty) with (1.16). We keep all notations \eta_{n} , \omega_{n},\overline{\eta}_{n} , \cdots
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in the proof of Key Lemma. By (6.7) we again define a sequence of volume
current densities \{J_{n}dv_{x}\}_{n} in \mathbb{R}^{3} , so that it converges to JdS_{x} on \Sigma in the
sense of distribution. Further, we can show that the vector potential A_{n}(x)

and the magnetic field B_{n}(x) for such J_{n}dv_{x} satisfy (1)\sim(5) in Lemma 7.1.
In fact, since \eta_{n}=T_{c}(J_{n}dv_{x}) and \omega_{n}=T_{m}(B_{n}) , (1) and (2) follow from
(6.5) and (6.3), respectively. Since Supp d\overline{\chi}_{n}\subset\Gamma_{n}\subset W\cap D , we have from
(6.9) and (6.2)

J_{n}=\chi_{n}’(R(x))(g_{1}, g_{2}, g_{3})+\chi_{n}’(R(x))(G_{1}, G_{2}, G_{3}) in \Gamma_{n} ,
\omega_{n}(x)=\overline{\omega}_{n}(x)+\hat{\sigma}(x) in \mathbb{R}^{3} ,

where

\overline{\omega}_{n}(x)=\{

(d\overline{\chi}_{n})\wedge A+\overline{\chi}_{n}\omega in W\cap D

-de_{1} in D\backslash W

0 in D’\cup\Sigma .

Since A=G_{i}=0(i=1,2,3) on \Sigma , it follows from (1.16) that there exists
an M_{1}>0 such that ||J_{n}(x)||\leq nM_{1} and ||\overline{\omega}_{n}||(x)\leq M_{1} for all n\geq 1 and
all x\in \mathbb{R}^{3} . The first inequality like Corollary 1.1 implies (3) of Lemma 7.1.
The second one with \hat{\sigma}\in C_{20}^{\infty}(\mathbb{R}^{3}) implies (4). (5) follows from (2) and (4).

\square

Proof of Lemma 7.1’ Instead of \chi_{n}(R) and \underline{\overline{\chi}}_{n}(x) in the above proof, we
take C^{\infty} functions K_{n}(R) on (-\infty, +\infty) and K_{n}(x) in W(\supset\supset\Sigma) such that

0\leq K_{n}(R)\leq 1 , K_{n}(R)=\{
1 on (-\infty, \frac{1}{2n}]

0 on [ \frac{1}{n}, +\infty) ,

|K_{n}’(R)|\leq nM , |K_{n}’(R)|\leq n^{2}M , \overline{K}_{n}(x)=K_{n}(R(x)) ,

where M>0 is a constant independent of n\geq 1 and R\in (-\infty, +\infty) .
Then, by the same argument as Lemma 7.1, we have Lemma 7.1’. \square

Now let Jdv_{x} be a volume current density in \mathbb{R}^{3} and denote by B_{J}(x)

the magnetic field in \mathbb{R}^{3} induced by Jdv_{x} . We put

||B_{J}||_{\mathbb{R}^{3}}^{2}= \int_{\mathbb{R}^{3}}||B_{J}(x)||^{2}dv_{x} ,

which is called the total energy of the magnetic fifield B_{J}(x) . We analogously
define the total energy ||B||_{\mathbb{R}^{3}\backslash \Sigma}^{2} of the magnetic field B(x) induced by a
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surface current density JdS_{x} on \Sigma . We consider

\mathcal{V}=the set of all volume current densities Jdv_{x} in \mathbb{R}^{3} ,

S=the set of all surface current densities JdS_{x} on \Sigma ,
\mathcal{E}=the set of all equilibrium current densities JdS_{x} on \Sigma .

For any fixed i(1\leq i\leq q) , we put

\mathcal{V}_{i}= { Jdv_{x}\in \mathcal{V}1SuppJ\subset D’ and J[\gamma_{j}]=\delta_{ij}(1\leq j\leq q) },
S_{i}=\{JdS_{x}\in S|J[\gamma_{j}]=\delta_{ij}(1\leq j\leq q)\} .

For J_{i}dS_{x}\in S_{i} and B_{i}(x) stated in the main theorem of \S 2 we have

Theorem 7.1 J_{i}dS_{x} and B_{i}(x) have the following extremal properties:
(1) || B_{i}||_{\mathbb{R}^{3}\backslash \Sigma}^{2}=\inf\{||B_{J}||_{\mathbb{R}^{3}}^{2}|Jdv_{x}\in \mathcal{V}_{i}\} .
(2) J_{i}dS_{x} is a unique element in S_{i} minimizing \{||B_{J}||_{\mathbb{R}^{3}\backslash \Sigma}^{2}|JdS_{x}\in S_{i}\} .

Proof. By (6.11), we put \overline{\omega}_{i}=S_{m}(B_{i})\in\overline{H}_{20}(D) . To prove (1), we first
take any Jdv_{x}\in \mathcal{V}_{i} . By (3.3), we put \omega_{J}=T_{m}(B_{J})\in Z_{2}^{\infty}(\mathbb{R}^{3}) . From
Supp J\subset D’ , *\omega_{J}\in H_{1}(\overline{D}) by (3.5). Since \omega_{i}=\sum_{j=1}^{q}c_{ij}\Omega_{j} by (4) of
Proposition 4.4, it follows from (4.2) and (3.5) that

|| \omega_{i}||_{D}^{2}=\sum_{j=1}^{q}c_{ij}(*\omega_{i}, *\Omega_{j})_{D}=c_{\iota i}

= \sum_{j=1}^{q}c_{ij}(*\omega_{J}, *\Omega_{j})_{D}=(*\omega_{J}, *\omega_{i})_{D} ,

so that ||B_{i}||_{\mathbb{R}^{3}\backslash \Sigma}^{2}=||\omega_{i}||_{D}^{2}\leq||\omega_{J}||_{D}^{2}<||\omega_{J}||_{\mathbb{R}^{3}}^{2}=||B_{J}||_{\mathbb{R}^{3}}^{2} . We next ap-
ply Lemma 7.1’ to the case when JdS_{x}=J_{i}dS_{x} on \Sigma to find a sequence
\{J_{n}dv_{x}\}_{n} in \mathcal{V} converging to J_{i}dS_{x} on \Sigma in the sense of distribution which
satisfies (1’)\sim(5) in Lemma 7.1’. By (1’) , we have Supp J_{n}\subset D’ By (2’)
and (3.5), J_{n}[\gamma_{j}]=J_{i}[\gamma_{j}]=\delta_{ij} for all n , so that J_{n}dv_{x}\in \mathcal{V}_{i} . Further, (5)
of Lemma 7.1’ implies \lim_{narrow\infty}||B_{J_{n}}||_{\mathbb{R}^{3}}^{2}=||B_{i}||_{\mathbb{R}^{3}\backslash \Sigma}^{2} . Thus, (1) of Theorem
7.1 is proved. We similarly have (2) of Theorem 7.1. \square

To show the extremal property of equilibrium vector potentials A (see
Theorem 7.2), we generalize the notion of volume current density Jdv_{x} in
\mathbb{R}^{3} . Let J=(f_{1}, f_{2}, f_{3}) be a vector field in \mathbb{R}^{3} with compact support such
that each f_{i} is (not necessarily continuous) bounded and piecewise smooth
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in \mathbb{R}^{3} . Assume that there exists a sequence \{J_{n}dv_{x}\}_{n} in \mathcal{V} such that
(i’) \{||J_{n}(x)||\}_{n} is uniformly bounded in \mathbb{R}^{3} ,
(i\"i) J_{n}dv_{x}arrow Jdv_{x}(narrow\infty) in the sense of distribution.
Then Jdv_{x} is called a generalized volume current density in \mathbb{R}^{3} . We put

A_{J}(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{J(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} ,

B_{J}(x)= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}J(y)\cross\frac{x-y}{||x-y||^{3}}dv_{y} for x\in \mathbb{R}^{3} ,

which are called the vector potential for Jdv_{x} and the magnetic fifield in-
duced by Jdvx. It is clear that A_{J}\in C^{1}(\mathbb{R}^{3}) and B_{J}\in C(\mathbb{R}^{3}) . Moreover,
Lebesgue’s convergence theorem implies

B_{J}(x)=rotA_{J}(x) in \mathbb{R}^{3} , div A_{J}(x)=0 in \mathbb{R}^{3} (7.1)

We define

||Jdv_{x}||_{\mathbb{R}^{3}}^{2}= \int_{\mathbb{R}^{3}}||J(x)||^{2}dv_{x} ,

which is called the total energy of the generalized current density Jdvx. Let
Q be any 2-dimensional smooth surface in \mathbb{R}^{3} such that Q intersects the set
of discontinuous points of J at most along a 1-chain. We then define the
total current J[Q] through Q of Jdv_{x} :

J[Q]= \int_{Q}J(x) n_{x}dS_{x} .

Using \{J_{n}dv_{x}\}_{n} with (i’) and (ii’) , we have

J[Q]= \lim_{narrow\infty}\int_{Q}J_{n}(x) n_{x}dS_{x} , ||Jdv_{x}||_{\mathbb{R}^{3}}= \lim_{narrow\infty}||J_{n}dv_{x}||_{\mathbb{R}^{3}} . (7.2)

Let \{\gamma_{j}\}_{j=1,\ldots,q} be a 1-dimensional homology base of D , and \{Q_{j}\}_{j=1,\cdots,q} its
dual base defined in Corollary 4.2. For each i(1\leq i\leq q) , we define

\mathcal{G}=the set of all generalized volume current densities Jdv_{x} in \mathbb{R}^{3} ,
\mathcal{G}_{i}=\{Jdv_{x}\in \mathcal{G}|\exists\{J_{n}dv_{x}\}_{n} satisfying (i’) , (ii’) , and

Supp J_{n}\subset D and J[Q_{j}]=\delta_{ij}(1\leq j\leq q)\} .

Then we have the following extremal property for equilibrium vector poten-
tials:
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Theorem 7.2 For each i(1\leq i\leq q) , we have
(1) There exists a unique element G_{i}dv_{x} in \mathcal{G}_{i} which minimizes \{||Jdv_{x}||_{\mathbb{R}^{3}}^{2}

|Jdv_{x}\in \mathcal{G}_{i}\} .
(2) Let Jdv_{x}\in \mathcal{G}_{i} . Then Jdv_{x}=G\{dvx , if and only if B_{J}(x) is reduced to

an equilibrium vector potential \hat{A}(x) for a certain \hat{J}dS_{x}\in \mathcal{E} .

To prove this theorem we need two lemmas.

Lemma 7.2 (Recurrence) If JdS_{x}\in \mathcal{E} , then B_{J}dv_{x}\in \mathcal{G} and A_{J}=B_{B_{J}}

in \mathbb{R}^{3} .

Physically speaking, a surface current density JdS_{x} on \Sigma always induces
the magnetic field B_{J} and the vector potential A_{J} . In case when JdS_{x} is
equilibrium, B_{J} makes a generalized volume current density Bjdvx, whose
magnetic field is identical with A_{J} :

A_{J}(x)= rot\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{B_{J}(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} . (7.3)

Proof Let JdS_{x}\in \mathcal{E} . We find a sequence \{J_{n}dv_{x}\}_{n} in \mathcal{V} satisfying
(1)\sim(5) of Lemma 7.1, and use the same notations A_{n} , B_{n} defined in
that lemma. Since div B_{n}(x)=0 in \mathbb{R}^{3} , it follows from (2) and (4) that
\{B_{n}dv_{x}\}_{n}\subset \mathcal{V} such that Supp B_{n}\subset D and B_{n}dv_{x}arrow Bdv_{x}(narrow\infty) in the
sense of distribution, so that B_{J}dv_{x}\in \mathcal{G} . By (3.4), we put \eta=S_{c}(JdS_{x}) on
\Sigma , p=S_{p}(A_{J})\in C_{1}(\mathbb{R}^{3}) and \overline{\omega}=S_{m}(B_{J})\in\overline{H}_{20}(D) . If we define

\lambda(x)=N\omega(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{\overline{\omega}(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} ,

then \lambda(x) is a C^{1}2-form in \mathbb{R}^{3} . It suffices for (7.3) to verify

p(x)=\delta\lambda(x) for x\in \mathbb{R}^{3}- (7.4)

For each n=1,2 , . . ’ we put, by (3.3), \eta_{n}=T_{c}(J_{n}dv_{x}) , p_{n}=T_{p}(A_{n}) and
\omega_{n}=T_{m}(B_{n}) , so that \omega_{n}=dp_{n} and p_{n}(x)=N\eta_{n}(x) for x\in \mathbb{R}^{3} . If we put
\lambda_{n}(x)=N\omega_{n}(x) for x\in \mathbb{R}^{3} , then Lemma 3.3 implies p_{n}=\delta\lambda_{n} in \mathbb{R}^{3} . On
the other hand, (2), (3), and (4) of Lemma 7.1 imply that p_{n}(x)arrow p(x) ,
\lambda_{n}(x) – \lambda(x) , and \delta\lambda_{n}(x)arrow\delta\lambda(x) uniformly on any compact set in \mathbb{R}^{3}\backslash \Sigma .
Therefore, (7.4) is true for x\in \mathbb{R}^{3}\backslash \Sigma . Since both p(x) and \delta\lambda(x) are
continuous in \mathbb{R}^{3} , (7.4) holds for all x\in \mathbb{R}^{3} . \square
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For a given JdS_{x}\in \mathcal{E} , we consider the vector potential \Lambda_{J} for B_{J}dv_{x} :

\Lambda_{J}(x)=\frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{B_{J}(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} , (7.5)

so that A_{J}=rot\Lambda_{J} by Lemma 7.2. For each i(1\leq i\leq q) , we define the
following subspaces of Z_{2}(D) :

— = { \sigma\in Z_{2}^{\infty}(\overline{D})|\sigma=0 along \Sigma } \supset H_{20}(D) ,

–i-= \{\sigma\in---|\int_{Q_{j}}\sigma=\delta_{ij}(1\leq j\leq q)\} .

Lemma 7.3 The 2-form \omega_{i}\in H_{20}(D) defifined in (2) of Proposition 4.4
satisfifies
(1) ( \omega_{i}, \sigma)_{D}=\int_{Q_{i}}\sigma for any \sigma\in--- .
(2) The set H_{20}(D)\cap--i- consists of a unique element, which we denote by

\sigma_{i} . This \sigma_{i} satisfifies ||\sigma-\sigma_{i}||_{D}^{2}=||\sigma||_{D}^{2}-||\sigma_{i}||_{D}^{2} for any \sigma\in--i- .

Proof Since Q_{i}\cross\gamma_{j}=\delta_{ij} and \int_{\gamma_{j}}*\omega_{i}=\delta_{ij} , the 1- form*\omega_{i} in D is exact
in D\backslash Q_{i} . We thus find a harmonic function u_{i} in D\backslash Q_{i} such that*\omega_{i}=du_{i}

and u_{i}(x^{+})-u_{i}(x^{-})=1 for any x\in Q_{i} . Then, for any \sigma\in--- ,

( \omega_{i}, \sigma)_{D}=\int_{D-Q_{i}}du_{i}\wedge\sigma=\int_{\Sigma+Q_{i}^{+}-Q_{l}^{-}}u_{i}\sigma=\int_{Q_{i}}\sigma .

(1) is proved. To prove (2), we put \sigma=\omega_{j}\in H_{20}(D) in (1). Then, (4) of
Proposition 4.4 implies that \int_{Q_{i}}\omega_{j}=c_{ij} . Since (c_{xj})_{i,j} is non-singular and
\{\omega_{j}\}_{j=1,\ldots,q} is a base of H_{20}(D) , H_{20}\cap--i- consists of a unique element, say
\sigma_{i} , of the form \sigma_{i}=\sum_{k=1}^{q}x_{k}\omega_{k} . Using assertion (1) twice, we have, for any
\sigma\in--i- ,

( \sigma_{i}, \sigma)_{D}=\sum_{k=1}^{q}x_{k}(\omega k, \sigma)_{D}=x_{i}=\sum_{k=1}^{q}x_{k}(\omega_{k}, \sigma_{i})_{D}=||\sigma_{i}||_{D}^{2} .

\square

Proof of Theorem 7.2 For each i(1\leq i\leq q) , we take \sigma_{i}\in H_{20}(D) in (2)
of Lemma 7.3 and define G_{i}:=S_{m}^{-1}(\overline{\sigma}_{i})\in B . By Lemma 7.2, G_{i}dv_{x}\in \mathcal{G} .
We also have G_{i}[Q_{j}]=\int_{Q_{j}}\sigma_{i}=\delta_{ij}(1\leq j\leq q) , so that G_{i}dv_{x}\in \mathcal{G}_{i} . For
any Jdv_{x}\in \mathcal{V}\cap \mathcal{G}_{i} with Supp J\subset D , we put \eta=T_{c}(Jdv_{x})\in*Z_{20}^{\infty}(\mathbb{R}^{3}) .
Since \delta_{ij}=J[Q_{j}]=\int_{Q_{j}}*\eta , we have*\eta\in--i- . It follows from (2) of Lemma
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7.3 that

||Jdv_{x}-G_{i}dv_{x}||_{\mathbb{R}^{3}}^{2}=||*\eta-\sigma_{i}||_{D}^{2}=||Jdv_{x}||_{\mathbb{R}^{3}}^{2}-||G_{i}dv_{x}||_{\mathbb{R}^{3}}^{2}(\geq 0) .

This equality, together with (7.2), implies (1) of Theorem 7.2.
To prove (2) of Theorem 7.2, let Jdv_{x}\in \mathcal{G}_{i} . First, assume that Jdv_{x}=

Gidvx. By (6.10), G_{i} is a magnetic field induced by an equilibrium current
density \hat{J_{i}}dS_{x} on \Sigma . If we denote by \overline{\underline{A_{i}}} the equilibrium vector potential
for \hat{J_{i}}dS_{x} , then we have B_{J}=B_{G_{i}}=A_{i} by Lemma 7.2, so that “only if”
part is proved. Next, assume that the magnetic field B_{J} induced by Jdv_{x}

is identical with an equilibrium vector potential \hat{A}(x) for some equilibrium
current density \hat{J}dS_{x} on \Sigma : B_{J}=\hat{A} in \mathbb{R}^{3} . If we denote by \hat{B} the magnetic
field induced by \hat{J}dS_{x} , then we have from Lemma 7.2,

rot \int_{\mathbb{R}^{3}}\frac{J(y)}{||x-y||}dv_{y}=rot\int_{\mathbb{R}^{3}}\frac{\hat{B}(y)}{||x-y||}dv_{y} for x\in \mathbb{R}^{3} . (7.6)

Like (3.3) we let correspond the integral in the left or right hand side to a
1-form p(x) or \hat{p}(x) in \mathbb{R}^{3} , respectively. Then both p(x) and \hat{p}(x) belong to
C_{1}^{1}(\mathbb{R}^{3}) . By (7.6), we have dp=d\hat{p} in \mathbb{R}^{3} . On the other hand, the second
formula of (7.1) implies \delta p=\delta\hat{p}=0 in \mathbb{R}^{3} . Therefore, p-\hat{p} is a harmonic
1-form in \mathbb{R}^{3} . Since p(x),\hat{p}(x)=O(1/||x||) near \infty , we have p=\hat{p} in \mathbb{R}^{3} .
Thus, Poisson’s equation implies that Jdv_{x}=\hat{B}dv_{x} , so \hat{B}[Q_{j}]=J[Q_{j}]=\delta_{ij}

(1\leq j\leq q) . Hence, S_{m}(\hat{B})\in\overline{H}_{20}(D)\cap--i- . It follows from (2) of Lemma
7.3 that S_{m}(\hat{B})=\overline{\sigma}_{i}=S_{m}(G_{i}) , or equivalently, \hat{B}=G_{i} by (6.10). We
thus have Jdv_{x}=Gidvx . \square

By Lemma 7.2, any equilibrium vector potential A(x) satisfies

||A(x)||\leq O(1/||x||^{2}) near x=\infty . (7.7)

We finally make the following two remarks in this section:
(I) Professor L. H\"ormander gave a comment that the main theorem

is so stable that it would permit passage to the limit, and the same result
would then hold also in the non-analytic case. This is true. In fact, let
D be a bounded domain in \mathbb{R}^{3} with C^{\infty} smooth boundary surfaces \Sigma , and
let \{\gamma_{j}\}_{j=1,\ldots,q} be a 1-dimensional homology base of D . We then find a
sequence of bounded domains \{D_{n}\}_{n} with C^{\omega} smooth boundary surfaces
\Sigma_{n} such that, as narrow\infty , D_{n}\nearrow D and \Sigma_{n}arrow\Sigma with their first and second
derivatives. We may assume that \{\gamma_{j}\}_{j=1,\ldots,q} is a 1-dimensional homology
base of each D_{n} . Fix 1 \leq i\leq q . The same reasoning as Proposition
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4.4 implies that there exists a unique \omega\in H_{2}(D) such that \int_{\gamma_{j}}*\omega=\delta_{ij}

(1\leq j\leq q) , \omega is of class C^{\infty} up to \Sigma and the normal component of \omega

vanishes on \Sigma . For each n=1,2 , \ldots , we consider \omega_{n}\in H_{20}(D_{n}) such that
\int_{\gamma_{j}}*\omega_{n}=\delta_{ij} . Then

||\omega_{m}-\omega_{n}||_{D_{n}}^{2}\leq||\omega_{m}||_{D_{m}}^{2}-||\omega_{n}||_{D_{n}}^{2} (n<m\leq\infty) ,

where \omega_{\infty}=\omega and D_{\infty}=D . It follows that \omega(x)=\lim_{n}
-

\infty\omega_{n}(x) uni-
formly on any compact set in D . We put \omega_{n}(x)=\alpha_{n}dy\wedge dz+\beta_{n}dz\wedge dx+

\gamma_{n}dx\wedge dy on D_{n}\cup\Sigma_{n} and \omega(x)=\alpha dy\wedge dz+\beta dz\wedge dx+\gamma dx\wedge dy on D .
By the normal extension, we can continuously extend \omega_{n} and \omega to \overline{\omega_{n}} and
\overline{\omega} in a domain G\supset\supset\overline{D} , respectively, such that \lim_{n}

-

\infty||\overline{\omega_{n}}-\overline{\omega}||_{G}^{2}=0 .
It follows that the vector field (\alpha_{n}, \beta_{n}, \gamma_{n}) converges (\alpha, \beta, \gamma) uniformly on
\overline{D} . Thus we find a sequence of volume current densities \{I_{n}dv_{x}\}_{n=1,2},\ldots in
\mathbb{R}^{3} such that I_{n}dv_{x} – JdS_{x} (n –\infty) on \Sigma in the sense of distribution.
Since formulas (6.11) and (3.6) for each \omega_{n} hold, we conclude that JdS_{x} on
\Sigma is an equilibrium current density on \Sigma such that J[\gamma_{j}]=\delta_{ij} . Therefore,
the existence of (1) in the main theorem for C^{\infty} category is proved. The
uniqueness of (1) and (2) are similarly proved.

(II) We have treated the bounded domain D with C^{\infty} boundary sur-
faces \Sigma so far. We consider the unbounded domain D’(=\mathbb{R}^{3}\backslash \overline{D}) with the
same boundary \Sigma and with \{\infty\} . Since any \omega\in H_{2}(D’) always satisfies
||\omega||(x)=O(1/||x||^{2}) near \infty (which is proved by Kelvin’s transformation),
all arguments for D are available for D’ . So, the results for D similarly hold
for D’ . For example, the main result for D’ is stated as follows:

Theorem Let \{\gamma_{j}\}_{j=1,\ldots,q’} be a 1-dimensional homology base of D’r(1)
For any fifixed i(1\leq i\leq q’) , there exists a unique surface current density
J_{i}dS_{x} on \Sigma such that J_{i}[\gamma_{j}]=\delta_{ij}(1\leq j\leq q’) and the magnetic fifield B_{i}(x)

in \mathbb{R}^{3}\backslash \Sigma induced by J_{i}dS_{x} is identically 0 in D. (2) Any surface current
density JdS_{x} on \Sigma which induces a magnetic fifield B(x) identically 0 in D
is written by a linear combination of \{J_{i}dS_{x}\}_{i=1,\ldots,q’} .

8. Examples

In the textbooks of electromagnetism, we see the description about a
solenoid: For b>a>0 , consider a symmetric torus \Sigma_{0} in \mathbb{R}^{3} given by
(r-b)^{2}+z^{2}=a^{2} , where [r, \theta, z] is the cylindrical coordinates of \mathbb{R}^{3} . We
denote by D_{0} the solid torus bounded by \Sigma_{0} , and put D_{0}’=\mathbb{R}^{3}\backslash (D_{0}\cup\Sigma_{0}) .
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We positively and symmetrically wind a coil L with electric current I around
\Sigma_{0} , n times. Then the solenoid ( =\Sigma_{0} equipped with I) induces the static
magnetic field:

B_{0}(x)=\{
c (- \frac{\sin\theta}{r} , \frac{\cos\theta}{r} , 0) in D_{0}

(0, 0, 0) in D_{0}’ ,

where c=nI/2\pi . This formula holds approximately but not rigorously.
For, B_{0}(x) must be singular only on L , but not on \Sigma_{0} . Let us show that
B_{0}(x) is the magnetic field induced by an equilibrium current density J_{0}dS_{x}

on \Sigma . We use the torus coordinates \{R, \phi, \theta\} as well as cylindrical coordi-
nates [r, \theta, z] :

x=(x, y, z)
=\{R, \phi, \theta\}= ( (b-R cos \phi) cos \theta , (b-R cos \phi) sin \theta , R sin \phi )
=[r, \theta, z]= (r cos \theta , r sin \theta , z ),

where 0\leq R<b and 0\leq\phi , \theta\leq 2\pi . Hence, \Sigma_{0}=\{R=a\} , D_{0}=\{R<a\} ,
dS_{x}=ard\phi d\theta on \Sigma_{0} and dv_{x}=R (b-R cos \phi ) dRd\phi d\theta . We consider

\Omega_{0}=c(\frac{-\sin\theta}{r}dy\wedge dz+\frac{\cos\theta}{r}dz\wedge dx)

It is clear that \Omega_{0}\in H_{20}(D) . So, Key Lemma implies that B_{0}(x) is a
magnetic field induced by the following equilibrium current density J_{0}dS_{x}

on \Sigma :

J_{0}dS_{x}=(B_{0}(x) \cross n_{x})dS_{x}=c(\frac{\cos\theta\sin\phi}{r}, \frac{\sin\theta\sin\phi}{r} , \frac{\cos\phi}{r})dS_{x} .

The equilibrium vector potential A_{0}(x) for J_{0}(x) is then

A_{0}(x)=C \int_{0}^{2\pi}\int_{0}^{2\pi}\frac{(\cos O-\sin\Phi,\sin\Theta\sin\Phi,\cos\Phi)}{||x-y||}d\Phi d\Theta

for x\in \mathbb{R}^{3} ,

where C=nIa/(8\pi^{2}) and y=\{a, \Phi, \Theta\} . To give examples more, we
introduce some notations:

1. We consider the half-plane \Pi defined by

\Pi=\{(r, z)|0<r<+\infty, -\infty<z<+\infty\} ,
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(8.4)

and put \partial\Pi=\{(0, z)|-\infty<z<+\infty\} and \overline{\Pi}=\square \cup\partial\square . It is occasionally
identified \Pi with the half (x, z)-plane \pi_{+} in \mathbb{R}^{3} with x>0 by (r, z)=(x, z) .
Given a set K\subset\pi_{+}(=\Pi) , we consider the z-axially symmetric set <<K>>
in \mathbb{R}^{3} which is obtained by rotating K around the z-axis, namely, <<K>>
= \{ [r, \theta, z]| (r, z)\in K, 0\leq\theta\leq 2\pi\} .

2. Let v=(a, b, c) be a vector field in a domain G of \mathbb{R}^{3}\backslash {the z-axis}.
At any fixed point x=[r, \theta, z]\in G , we choose the orthogonal basis of \mathbb{R}^{3}

: \{e_{r}, e_{\theta}, e_{z}\} (depending on x) such that e_{z}=(0,0,1) , e_{r}= ( \cos\theta , sin \theta , 0),
e_{\theta}=e_{z}\cross e_{r}= ( -\sin \theta , cos \theta , 0), so that

v= (a cos \theta+b sin \theta ) e_{r}+ ( -a sin \theta+b cos \theta ) e_{\theta}+ce_{z}

\equiv\overline{a}e_{r}+\overline{b}e_{\theta}+\overline{c}e_{z} .

We then use the abbreviation: v=\langle\overline{a},\overline{b}, \overline{c}\rangle in G . By simple calculation we
have

div \langle\overline{a},\overline{b}, \overline{c}\rangle=\frac{1}{r}(\frac{\partial(r\overline{a})}{\partial r}+\frac{\partial\overline{b}}{\partial\theta}+\frac{\partial(r\gamma c}{\partial z}) , (8.1)

rot\langle\overline{a},\overline{b}, \gamma c = \{\frac{1}{r}\frac{\partial\overline{c}}{\partial\theta}-\frac{\partial\overline{b}}{\partial z} , \frac{\partial\overline{a}}{\partial z}-\frac{\partial\overline{c}}{\partial r} , \frac{1}{r}(\frac{\partial(r\overline{b})}{\partial r}-\frac{\partial\overline{a}}{\partial\theta})\} .

\langle \overline{a},\overline{b}, \overline{c}\rangle\cross\langle\overline{a}_{1},\overline{b}_{1},\overline{c}_{1}\rangle=\langle\overline{b}\overline{c}_{1}-\overline{b}_{1}\overline{c}, \overline{c}\overline{a}_{1}-\overline{c}_{1}\overline{a}, \overline{a}\overline{b}_{1}-\overline{a}_{1}\overline{b}\rangle . (8.3)

By means of (8.1), the vector field v in G of the form v=\langle 0, f(r, z), 0\rangle or
= \frac{1}{r}\langle g_{1}(\theta), 0, g_{2}(\theta)\rangle is of divergent 0. Therefore, if f(r, z)\in C_{0}^{\infty}(\square ) , then

\langle 0, f(r, z), 0\rangle dv_{x} is a volume current density in \mathbb{R}^{3}- (8.4)

Given a vector potential A=(a, b, c) and a magnetic field B=(\alpha, \beta, \gamma) ,
we considered the injections in (3.3): T_{p}(A)_{-}=p\in C_{1}^{\infty}(\mathbb{R}^{3}) and T_{m}(B)=
\omega\in C_{2}(\mathbb{R}^{3}) . When we denote by A=\langle\overline{a}, b, \overline{c}\rangle and B=\langle\overline{\alpha},\overline{\beta},\overline{\gamma}\rangle , such
definitions are equivalent to

p=\overline{a}dr+r\overline{b}d\theta+\overline{c}dz , *\omega=\overline{\alpha}dr+r\overline{\beta}d\theta+\overline{\gamma}dz . (8.5)

For example, the above \Omega_{0} , B_{0} , J_{0} and A_{0} are written into the forms:

*\Omega_{0}=cd\theta in D_{0} , B_{0}(x)=c\langle 0,1,0\rangle in D_{0} ,

J_{0}= \frac{c}{r} \langle sin \phi , 0, cos \phi\rangle on \Sigma ,
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A_{0}(x)=C \int_{0}^{2\pi}\int_{0}^{2\pi}[mathring]_{\frac{\langle cs\Theta\sin\Phi,0,\cos\Phi\rangle}{||(r,0,z)-\{a,\Phi,\ominus\}||}}d\Phi d\Theta in \mathbb{R}^{3} .

3. We consider the following Stokes-Beltrami operators \triangle^{\pm} in \Pi :

\triangle^{\pm}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}}\pm\frac{1}{r}\frac{\partial}{\partial r} .

Lemma 8.1 Let X be a domain in \Pi and consider the z -axially symmetric
domain G=<<X>>in \mathbb{R}^{3} . Then, we have
(1) (Beltrami) Let f(r, z) be a C^{\infty} function in X Then, f(r, z) is har-

monic as a function in G, if and only if \triangle^{+}f=0 in X1

(2) Assume that X is simply connected. Let \omega be a C^{\infty}1 -form in X of
the form \omega=f(r, z)dr+g(r, z)dz . Then \omega is harmonic as a l-form
in G, if and only if there exists a C^{\infty} function v(r, z) in X such that

(i) \triangle^{-}v(r, z)=0 , (ii) (f, g)= \frac{1}{r}(-\frac{\partial v}{\partial z}, \frac{\partial v}{\partial r})

Proof (1) is clear from the identity \triangle f(\sqrt{x^{2}+y^{2}}, z)=\triangle^{+}f(r, z) . To
prove (2), assume that \omega=f(r, z)dr+g(r, z)dz is harmonic in G . By
d\omega=0 , we have \frac{\partial f}{\partial z}=\frac{\partial g}{\partial r} in G , or equivalently, in X . Since

*dr=rd\theta\wedge dz , *d \theta=\frac{1}{r}dz\wedge dr , *dz=rdr\wedge d\theta , (8.6)

we have *\omega=rfd9\wedge dz+rgdr\wedge d\theta . By d*\omega=0 in G , it follows that
\frac{\partial(rf)}{\partial r}+\frac{\partial(rg)}{\partial z}=0 in X . We thus find C^{\infty} functions u(r, z) and v(r, z) in X
such that

\{

\frac{\partial u}{\partial r}=f

\frac{\partial u}{\partial z}=g ,
\{

\frac{\partial v}{\partial r}=rg

\frac{\partial v}{\partial z}=-rf .

If we eliminate u by differentiations, v satisfies (i) and (ii) in Lemma 8.1.
Conversely, let \omega=f(r, z)dr+g(r, z)dz\in C_{1}^{\infty}(X) satisfy (i) and (ii) of

Lemma 8.1. Then (i) and (ii) imply d\omega=0 and d*\omega=0 in G , respectively.
Hence, \omega is harmonic in G. \square

Similarly, \omega=f(r, z)dr+g(r, z)dz\in C_{1}^{\infty}(G) is harmonic in G , if and
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only if there exists a C^{\infty} function u(r, z) in X such that

(i’) \triangle^{+}u(r, z)=0 , (ii’) (f, g)=( \frac{\partial u}{\partial r} , \frac{\partial u}{\partial z})

These functions u and v satisfy a kind of Cauchy-Riemann equations:

\frac{\partial u}{\partial r}=-\frac{1}{r}\frac{\partial v}{\partial z} , \frac{\partial u}{\partial z}=\frac{1}{r}\frac{\partial v}{\partial r} . (8.7)

In [Wi], u satisfying (i’) is called a z-axially symmetric potential and v
related with u in (8.7) its associated stream function. We shall find that v
satisfying (i) is concerned with a vector potential for the z-axially symmetric
domain.

Lemma 8.2 Let h(r, z) be a bounded continuous function on \overline{\Pi} and of
class C^{2} in \Pi . If h(r, z) satisfifies \triangle^{-}h(r, z)=0 in \Pi and h(r, z)=0 on
\partial\square , then h(r, z)=0 identically on \overline{\Pi} .

\frac{P}{\Pi}.r.oof

. Given\in>0 , we consider the following two functions \phi_{\epsilon}^{\pm}(r, z) on

\phi_{\epsilon}^{\pm}(r, z)=\pm h(r, z)+\epsilon\log\sqrt{(r+1)^{2}+z^{2}} .

It is clear that

\triangle^{-}\phi_{\in}^{\pm}(r, z)\leq 0 on \overline{\Pi} , \phi_{\epsilon}^{\pm}(r, z)\geq 0 on \partial\square ,
lim \phi_{\epsilon}^{\pm}(r, z)\geq 0 .

(r,z)arrow\infty

It follows from the maximum principle that \phi_{\epsilon}^{\pm}(r, z)\geq 0 in \Pi . Hence,
|h(r, z)|\leq\epsilon log \sqrt{(r+1)^{2}+z^{2}} . Letting \epsilon -0, we have h(r, z)=0 in \Pi .

\square

Let K\subset\subset\Pi be a doubly connected domain bounded by two C^{\omega} smooth
closed curves C_{1} and C_{2} such that \partial K=C_{2}-C_{1} . We set K’=\Pi\backslash \overline{K}

where \overline{K}=K\cup\partial K , which consists of the bounded component K_{1}’ such
that \partial K_{1}’=C_{1} and the unbounded one K_{2}’ such that \partial K_{2}’=-C_{2} in \Pi . For
i=1,2 , we define the z-axially symmetric sets in \mathbb{R}^{3} :

D=<<K>> , \Sigma_{i}=<<C_{i}>> , \Sigma=\partial D=\Sigma_{2}-\Sigma_{1} ,

so that D’ consists of a bounded solid torus D_{1}’=<<K_{1}’>> with \partial D_{1}’=\Sigma_{1}

and an unbounded domain D_{2}’=<<K_{2}’>> with \partial D_{2}’=-\Sigma_{2} . We draw a
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closed cycle \gamma_{1}\subset K such that \gamma_{1}\sim C_{2} on \overline{K} , and a z-axially symmetric
circular ring \gamma_{2}=<<p0>>\subset D where p_{0} is a fixed point of K . Then,
\{\gamma_{1}, \gamma_{2}\} forms a 1-dimensional homology base of D . It follows from the
main theorem that, for each i=1,2, there exists a unique equilibrium
current density J_{i}dS_{x} on \Sigma with J_{i}[\gamma_{j}]=\delta_{ij}(j=1,2) . We denote by A_{i}

and B_{i} the equilibrium vector potential and the magnetic field for SidSx. By
(7.5), we have the vector field \Lambda_{J_{i}} in \mathbb{R}^{3} for JidSx, which is simply denoted
by \Lambda_{i} .

Let us give explicit formulas of JidSx, A_{i} , B_{i} , and \Lambda_{i} . For this purpose
we construct the following functions V, W, and U in \Pi :

(1^{o}) We solve the following boundary value problem on \overline{K} :

\triangle^{-}v(r, z)=0 in K, v(r, z)=\{
1 on C_{1}

0 on C_{2} .

Such function v(r, z) uniquely exists. We put

k= \int_{C_{1}}\frac{1}{r}\frac{\partial v}{\partial n_{p}}ds_{p}(<0) , V(r, z)=\{

1/k in K_{1}’

v(r, z)/k on \overline{K}

0 in K_{2}’ ,

where p=(r, z) . Thus, V(r, z) is a piecewise smooth continuous function
with compact support in \Pi . We also find a unique C^{2} function W(r, z) on
\overline{\Pi} which satisfies

\triangle^{-}W(r, z)=-V(r, z) in \Pi (8.8)

and assumes boundary values 0, namely,

W(r, z)=0 on \partial\Pi and lim W(r, z)=0 . (8.8)
(r,z)arrow\infty

(2^{o}) We have a unique function U(r, z)\in C^{1}(\overline{\Pi})\cap C^{2}(\Pi\backslash \partial K) which
satisfies

\triangle^{-}U(r, z)=\{

\frac{-1}{2\pi} on K

0 on K’
(8.10)

and assumes boundary values 0.
The integral representations of the functions W and U will be given in

(A.7) and (A.8). Using these V, W, and U , we obtain
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Expression 1^{O} We have, for any x =[r, \theta,z],

A_{1}(x)=\frac{V(r,z)}{r}\langle 0,1,0\rangle in \mathbb{R}^{3} ,

B_{1}(x)=\{
\frac{1}{r}\langle-\frac{\partial V}{\partial z} , 0, \frac{\partial V}{\partial r}\rangle in D

0 in D’ ,

J_{1}(x)=\frac{1}{r}\frac{\partial V(r,z)}{\partial n_{p}}\langle 0,1,0\rangle on \Sigma ,

\Lambda_{1}(x)=\frac{1}{r}\langle-\frac{\partial W}{\partial z} , 0, \frac{\partial W}{\partial r}\rangle in \mathbb{R}^{3} ,

where \partial/\partial n_{p} is the outer normal derivative at p=(r, z) of \partial K in \Pi .

Expression 2^{O} We have, for any x =[r, \theta,z],

A_{2}(x)=\frac{1}{r}\langle-\frac{\partial U}{\partial z} , 0, \frac{\partial U}{\partial r}\rangle in \mathbb{R}^{3} ,

B_{2}(x)=\{
\frac{1}{2\pi r}\langle 0,1,0\rangle in D

0 in D’ ,

J_{2}(x)=\frac{1}{2\pi r}\langle r’, 0, z’\rangle on \Sigma ,

\Lambda_{2}(x)=\frac{U(r,z)}{r}\langle 0,1,0\rangle in \mathbb{R}^{3} .,

where (r’, z’) is the unit tangent vector of \partial K at (r, z) in \Pi .

Proof For x=[r, \theta, z]\in D , we consider * \Omega(x)=-\frac{1}{r}\frac{\partial V}{\partial z}dr+\frac{1}{r}\frac{\partial V}{\partial r}dz .
Since V(r, z)= const, on C_{i}(i=1,2) , it follows from (2) of Lemma 8.1
that \Omega(x)\in H_{20}(D) . Moreover, \int_{\gamma 1}*\Omega=\int_{C_{2}}\frac{1}{r}\frac{\partial V}{\partial n_{p}}ds_{p}=1 and \int_{\gamma 2}*\Omega=0 ,
because \gamma_{2} is independent of (r, z) . Hence, \Omega=\omega_{1} , which is defined in
(2) of Proposition 4.4. By (6.11), we get B_{1}(x)=S_{m}^{-1}(\overline{\Omega}) . By the second
formula of (8.5), S_{m}^{-1}(\overline{\Omega}) is equal to the right-hand side of B_{1} in Expression
1^{o}- From Fleming’s law: J_{1}(x)=B_{1}^{+}(x)\cross n_{x} for x\in\Sigma_{2}-\Sigma_{1} , we have by
(8.3)

J_{1}(x)=\frac{1}{r}\langle-\frac{\partial V}{\partial z} , 0, \frac{\partial V}{\partial r}\rangle\cross\langle\frac{\partial V}{\partial r} , 0, \frac{\partial V}{\partial z}\rangle/||gradV(r, z)||

= \frac{1}{r}\frac{\partial V(r,z)}{\partial n_{p}}\langle 0,1,0\rangle .
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From the symmetry of \Sigma and J idSx, we see from (1.5) that A_{1}(x) is of
the form A_{1}(x)=\langle 0, F(r, z), 0\rangle for x=[r, \theta, z]\in \mathbb{R}^{3} , where F(r, z)\in
C(\Pi)\cap C^{\omega}(\Pi\backslash \partial K) . Since rot A_{1}(x)=B_{1}(x) in \mathbb{R}^{3}\backslash \Sigma , we have from (8.2),

\langle-\frac{\partial F}{\partial z} , 0, \frac{1}{r}\frac{\partial(rF)}{\partial r}\rangle=\{

\frac{1}{r}\langle-\frac{\partial V}{\partial z} , 0, \frac{\partial V}{\partial r}\rangle in D

0 in D’

It follows that, for i=1,2 ,

rF(r, z)=\{
V(r, z)+const . c_{0} in K
const. c_{i} in K_{i}’ .

We take a point q_{0}\in C_{2} and consider the 1-cycle \delta=<<q_{0}>> on \Sigma_{2} . Then
we can draw a 2-chain Q in D_{2}’ such that \partial Q=\delta . From (3.4) and (8.5),
we have p_{1}:=S_{p}(A_{1})=rF(r, \theta)d\theta\in C_{1}(\mathbb{R}^{3}) . Since V(r, z)=0 on C_{2} , we
have p_{1}(x)=c_{0}d\theta on \Sigma_{2} . It follows from dp_{1}=0 identically in D’ that
2 \pi c_{0}=\int_{\delta}p_{1}=\int_{Q}dp_{1}=0 , so that c_{0}=0 . Because A_{1}(x) is continuous in
\mathbb{R}^{3} , we obtain c_{1}=1/k on C_{1} and c_{2}=0 on C_{2} . Thus, rF=V in all \mathbb{R}^{3} .
namely, A_{1}(x)=\langle 0, V(r, z)/r, 0\rangle in \mathbb{R}^{3} . Expression 1^{O} except for \Lambda_{1}(x) is
proved.

In order to prove Expression 2^{O} , we defifine*\Omega(x)=\frac{d\theta}{2\pi} for x=[r, \theta, z]\in

D . Then it is clear that \Omega(x)\in H_{20}(D) with \int_{\gamma 2}*\Omega=1 and \int_{\gamma 1}*\Omega=0 .
Hence, \Omega=\omega_{2} , which is defined in (2) of Proposition 4.4. It follows from
(6.11) that B_{2}(x)=S_{m}^{-1}(\overline{\Omega}) , which is equal to the right-hand side of B_{2}(x)

in Expression 2^{o} by the second formula of (8.5). From Fleming’s law, we
have J_{2}(x)=B_{2}^{+}(x)\cross n_{p}=\frac{1}{2\pi r}\langle r’, 0, z’\rangle for x\in\Sigma . By use of the symmetry
of \Sigma and J_{2}dS_{x} with respect to the z-axis, we see from (1.5) that A_{2}(x) is
of the form

(1) A_{2}(x)=\langle f(r, z), 0, g(r, z)\rangle for any x=[r, \theta, z]\in \mathbb{R}^{3} .

where f and g belong to C(\overline{\Pi})\cap C^{\omega}(\square \backslash \partial K) . By (8.1) and (8.2), we have

rot A_{2}(x)=\langle 0 , \frac{\partial f}{\partial z}-\frac{\partial g}{\partial r} , 0\rangle ,

div A_{2}(x)=\frac{1}{r}(\frac{\partial(fr)}{\partial r}+\frac{\partial(gr)}{\partial z})
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Since rot A_{2}=B_{2} and div A_{2}=0 in \mathbb{R}^{3}\backslash \Sigma , f and g satisy

(2) \frac{\partial f}{\partial z}-\frac{\partial g}{\partial r}=\{

1/(27rr) in K
0 in K’ ,

(3) \frac{\partial(fr)}{\partial r}+\frac{\partial(gr)}{\partial z}=0 in \Pi\backslash \partial K .

From (7.7) there exists an M>0 such that

(4) \sqrt{f(r,z)^{2}+g(r,z)^{2}}\leq\frac{M}{r^{2}+z^{2}} on \overline{\Pi} .

For a given (r, z)\in\overline{\Pi} , we connects the origin (0, 0) and the point (r, z) by
an arc \ell in \overline{\Pi} , and consider the line integral:

u(r, z)= \int_{\ell}-f(r, z)rdz+g(r, z)r dr.

By (3), u(r, z) is independent of the choice of the arc \ell connecting (0, 0) and
(r, z) on \overline{\Pi} . Therefore, u(r, z)\in C^{1}(\overline{\Pi})\cap C^{\omega}(\Pi\backslash \partial K) and satisfies

(5) \{

\frac{\partial u}{\partial z}=-fr

\frac{\partial u}{\partial r}=gr

in \Pi\backslash \partial K , (6) u=0 on \partial\Pi .

Further, u is bounded in \overline{\Pi} . Indeed, let (r_{0}, z_{0}) be any point in \overline{\Pi} and let
\sqrt{r_{0}^{2}+z_{0}^{2}}=R_{0} . We take, as an arc \ell connecting (0, 0) and (r_{0}, z_{0}) , \ell=\ell_{1}+\ell_{2}

such that \ell_{1}=\{(0, z)|0\leq z\leq R_{0}\} and \ell_{2}=\{(r, z)|r=R_{0} sin \varphi ,
z=R_{0} cos \varphi , 0\leq\varphi\leq\varphi_{0} }, where tan \varphi_{0}=r_{0}/z_{0}(0\leq\varphi_{0}\leq\pi) . Since the
integrand of u vanishes identically on l_{1} and |f|+|g|\leq 2M/R_{0}^{2} on \ell_{2} by
(4), we have |u(r_{0}, z_{0})|=| \int_{\ell_{2}}-f(r, z)rdz+g(r, z)rdr|\leq 2M\pi . Hence, u is
bounded in \overline{\Pi} . By (1) and (5), it is enough for the expression for A_{2}(x) to
prove that u=U in \Pi . To show this, we put h(r, z):=u(r, z)-U(r, z)
on \overline{\Pi} . Hence, h\in C(\overline{\square })\cap C^{1}(\square ) . Eliminating f, g from (2) and (5) by
differentiations, we see that u as well as U satisfies (8.10). Thus, h\in C^{1}(\overline{\Pi})

and \triangle^{-}h=0 in \Pi\backslash \partial K . It easily follows that h is of class C^{2} in all II and
satisfies \triangle^{-}h=0 there. By (6) we have h=0 on \partial\square . Since h is bounded
in \Pi , it follows from Lemma 8.2 that h=0, or equivalently, u=U on \overline{\Pi} .
Expression 2^{o} except for \Lambda_{2}(x) is proved.
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By the same methods as for A_{1}(x) and A_{2}(x) we have the expressions
for \Lambda_{2}(x) and \Lambda_{1}(x) , respectively. \square

The above proofs for A_{i}(x) and \Lambda_{i}(x)(i=1,2) are due to Professor
T. Ueda. Ours will be given in Appendix by use of fundamental solution
for \triangle^{-}

We remark that the constant k defined in (1^{o}) has the following mean-
ing:

k=-2\pi (the total energy of B_{1}(x))^{-1}

Proof. For any f, g\in C^{2}(G) where G\subset\Pi , it holds the following Stokes-
Beltrami formula:

d( \frac{1}{r}f*dg)=\{\frac{1}{r}f(\triangle^{-}g)+\frac{1}{r}(\frac{\partial f}{\partial r}\frac{\partial g}{\partial r}+\frac{\partial f}{\partial z}\frac{\partial g}{\partial z})\}dz\wedge dr , (8.11)

where *dr=-dz and *dz=dr by the orientation of \Pi . From the form of
B_{1}(x) in Expression 1^{o} , we have

|| B_{1}(x)||_{\mathbb{R}^{3}\backslash \Sigma}^{2}=2\pi\int_{K}\frac{1}{r}((\frac{\partial V}{\partial r})^{2}+(\frac{\partial V}{\partial z})^{2}) drdz.

Since \triangle^{-}V=0 in K and V=1/k (resp. 0) on C_{1} (resp. C_{2} ), it follows
from (8.11) that

|| B_{1}(x)||_{\mathbb{R}^{3}\backslash \Sigma}^{2}=2\pi\int_{C_{2}-C_{1}}\frac{1}{r}V\frac{\partial V}{\partial n_{p}}ds_{p}=-\frac{2\pi}{k}\int_{C_{1}}\frac{1}{r}\frac{\partial V}{\partial n_{p}}ds_{p}=-\frac{2\pi}{k} ,

which is the desired formula. \Pi\square
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Appendix

A. Fundamental solutions for \triangle^{\pm}u=0

We briefly recall the works of E. Beltrami [B] and A. Weinstein [Wi]
about fundamental solutions for \triangle^{\pm}u=0 . In this section we use the simple
notations:

p=(r, z)\in\Pi , x=[r, \theta, z]=[p, \theta]\in \mathbb{R}^{3} .
q=(\rho, ()\in\Pi, y=[\rho, O-, _{(]}=[q, \Theta]\in \mathbb{R}^{3}

Considering the uniform charge distribution with magnitude 1/\rho on the z-
axially symmetric circular ring \gamma(q) passing through the point (\rho, 0, \zeta) in
\mathbb{R}^{3} , E. Beltrami made the fundamental solution \mathcal{K} for \triangle^{+}u=0 :

\mathcal{K}(p, q)=\frac{1}{4\pi}\int_{\gamma(q)}\frac{1/\rho}{||(r,0,z)-y||}ds_{y}

= \frac{1}{4\pi}\int_{0}^{2\pi}.\frac{1}{\sqrt{r^{2}+\rho^{2}+(z-\zeta)^{2}-2r\rho\cos\Theta}}dO- in \Pi\cross\Pi ,

where ds_{y} is the arc length of \gamma(q) . A. Weinstein generalized the equations
\triangle^{\pm}u=0 to the following ones for any real number \alpha :

\triangle_{\alpha}^{\pm}u=\frac{\partial^{2}u}{\partial r^{2}}+\frac{\partial^{2}u}{\partial z^{2}}\pm\frac{\alpha}{r}\frac{\partial u}{\partial r}=0

and established the generalized axially symmetric potential theory. It was
not a formal generalization, but some interesting problems were solved by
this theory. By the similar method to E. Beltrami, he found the fundamental
solution \mathcal{K}_{\alpha}^{+} for \triangle_{\alpha}^{+}u=0 :

\mathcal{K}_{\alpha}^{+}(p, q)=S_{\alpha-1}\int_{0}^{\pi}\frac{\sin^{\alpha-1}\Theta}{[r^{2}+\rho^{2}+(z-\rho)^{2}-2r\rho\cos O-]^{\alpha/2}}d\Theta in \Pi\cross\Pi ,

where 1/S_{\alpha-1}= \int_{0}^{\pi}\sin^{\alpha-1}\Theta d\Theta , and showed that \mathcal{K}_{\alpha}^{+}(p, q) has the following
development at pole p=q:

\mathcal{K}_{\alpha}^{+}(p, q)=u_{\alpha}(p, q)\log\frac{1}{\sqrt{(r-\rho)^{2}+(z-\zeta)^{2}}}+v_{\alpha}(p, q) ,

where u_{\alpha} , v_{\alpha} are regular analytic at p=q and u_{\alpha}(q, q)=S_{\alpha-1}/\rho^{\alpha} . By use
of the remarkable identity: r^{\alpha+1}\triangle_{\alpha+2}^{+}f(p)=\triangle_{\alpha}^{-}[r^{\alpha+1}f(p)] for any f(p)\in
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C^{2}(\Pi) , he constructed the fundamental solution \mathcal{K}_{\alpha}^{-} for \triangle_{\alpha}^{-}u=0 :

\mathcal{K}_{\alpha}^{-}(p, q)=\frac{S_{\alpha-1}}{S_{\alpha+1}}r^{\alpha+1}\mathcal{K}_{\alpha+2}^{+}(p, q) in \Pi\cross\Pi .

Now we consider the case \alpha=1 and put

\mathcal{L}(p, q) := \frac{\rho}{2\pi}\frac{S_{0}}{S_{2}}\mathcal{K}_{1}^{-}(p, q)

= \frac{\rho r^{2}}{2\pi}\int_{0}^{\pi}\frac{\sin^{2}\ominus}{[r^{2}+\rho^{2}+(z-\rho)^{2}-2r\rho\cos\Theta]^{3/2}}dO- in \Pi\cross\Pi .

Then \mathcal{L}(p, q) is a C^{\omega} function in \Pi\cross\Pi except for the diagonal set and has
the following properties:

Proposition (A. Weinstein [Wi])
(i) For any fifixed q\in\Pi , \triangle^{-}\mathcal{L}(p, q)=0 for p\in\Pi\backslash \{q\} .
(ii) \mathcal{L}(p, q) has the following development at pole p=q :

\mathcal{L}(p, q)=u(p, q)\log\frac{1}{\sqrt{(r-\rho)^{2}+(z-()^{2}}}+v(p, q) ,

where u , v are regular analytic at p=q, and u(q, q)=1/(2\pi) .
(iii) (Boundary values) For any fifixed q\in\Pi , \mathcal{L}(p, q)=\frac{\partial \mathcal{L}}{\partial n_{p}}(p, q)=0 for

p\in\partial\Pi and \lim_{parrow\infty}\mathcal{L}(p, q)=0 .
(iv) (Symmetry) \frac{\mathcal{L}(p,q)}{r}=\frac{\mathcal{L}(q,p)}{\rho} in \Pi\cross\Pi .
(v) For any f\in C_{0}^{\infty}(\Pi) , \triangle^{-}\{\int_{\Pi}f(q)\mathcal{L}(p, q)d\rho d\zeta\}=-f(p) for p\in\Pi .

Let us show the electomagnetic meaning of \mathcal{L}(p, q) . We first note that
the integration by parts implies the following expression of \mathcal{L} :

\mathcal{L}(p, q)=\frac{r}{4\pi}\int_{0}^{2\pi}\frac{\cos\Theta}{\sqrt{r^{2}+\rho^{2}+(z-\zeta)^{2}-2r\rho\cos\Theta}}d\Theta in \Pi\cross\Pi .

(A. 1)

We fix q\in\Pi and move y=[q, O-](0\leq\Theta\leq 2\pi) in \mathbb{R}^{3} . We then have, for
any x=[p, \theta]\in \mathbb{R}^{3} and any f, g\in C(\square ) ,

\frac{1}{4\pi}\int_{0}^{2\pi}\frac{\langle 0,1,0\rangle_{y}}{||x-y||}d\Theta=\frac{\mathcal{L}(p,q)}{r}\langle 0,1,0\rangle_{x} , (A.I)

\frac{1}{4\pi}\int_{0}^{2\pi}\frac{\langle f(q),0,g(q)\rangle_{y}}{||x-y||}d\Theta=\langle f(q)\frac{\mathcal{L}(p,q)}{r} , 0, g(q)\mathcal{K}(p, q)\rangle_{x} (A.I)
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Further, the integration by parts implies the identities:

\frac{\partial \mathcal{L}(p,q)}{\partial z}=-\frac{\partial \mathcal{L}(p,q)}{\partial\zeta} , \frac{\partial \mathcal{L}(p,q)}{\partial r}=-r\frac{\partial \mathcal{K}(p,q)}{\partial\rho} in \Pi\cross\Pi .

Given any piecewise smooth continuous function f in \Pi with compact sup-
port in II (like the function V defined in (1^{o}) of \S 8), we set

\mathcal{L}_{f}(p)=\frac{1}{4\pi}\int_{\Pi}f(q)\mathcal{L}(p, q)d\rho d\zeta for p\in\Pi .

By the above identities and the integration by parts under property (ii),

\frac{\partial \mathcal{L}_{f}(p)}{\partial z}=\frac{1}{4\pi}\int_{\Pi}\frac{\partial f(q)}{\partial\zeta}\mathcal{L}(p, q)d\rho d\zeta for p\in\Pi ,
(A.4)

\frac{\partial \mathcal{L}_{f}(p)}{\partial r}=\frac{r}{4\pi}\int_{\Pi}\frac{\partial f(q)}{\partial\rho}\mathcal{K}(p, q)d\rho d\zeta for p\in\Pi .

We next recall the magnetic field B_{\gamma}(x) induced by the usual electric current
J_{\gamma}ds_{y} along the ring coil \gamma . Precisely, let q=(\rho, \zeta) be any fixed point in
II and draw the z-axially symmetric circular ring \gamma(q) passing through the
point ( \rho , 0, () in \mathbb{R}^{3} . We consider the electric current J_{\gamma(q)}ds_{y} of magnitude
1/\rho along the ring \gamma(q) such that, for y=[q, \Theta]\in\gamma(q) ,

J_{\gamma(q)}ds_{y}= \frac{1}{\rho} ( -\sin\Theta , cos 0-, 0) ds_{y}=\langle 0,1,0\rangle_{y}d\Theta ,

where ds_{y} is the arc length of \gamma(q) at y . The current J_{\gamma(q)}ds_{x} induces the
vector potential A_{\gamma(q)}(x) and the magnetic field B_{\gamma(q)}(x) for x\in \mathbb{R}^{3}\backslash \gamma(q) .
From (A.2) and (8.2), we have

A_{\gamma(q)}(x)= \frac{1}{4\pi}\int_{\gamma(q)}\frac{J_{\gamma(q)}(y)}{||x-y||}ds_{y}=\frac{\mathcal{L}(p,q)}{r}\langle 0,1,0\rangle_{x} , (A.5)

B_{\gamma(q)}(x)= rotA_{\gamma(q)}(x)=\frac{1}{r}\langle-\frac{\partial \mathcal{L}(p,q)}{\partial z} , 0, \frac{\partial \mathcal{L}(p,q)}{\partial r}\rangle_{x} (A.6)

It follows that

\frac{\mathcal{L}(p,q)}{r} means the magnitude of the vector potential A_{\gamma(q)}(x) .

Our consideration naturally leads us to property (i) for \mathcal{L}(p, q) in the above
proposition as follows: We construct a sequence of volume current densities
\{J_{n}dv_{x}\}_{n} such that J_{n}dv_{x}arrow J_{\gamma(q)}ds_{y} in the sense of distribution and such
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that, if we denote by B_{n}(x) the magnetic field induced by Jndvx, then
B_{n}(x)arrow B_{\gamma(q)}(x) uniformly on any compact set in \mathbb{R}^{3}\backslash \gamma(q) . (For example,
put J_{n}(x)dv_{x}=\langle 0, f_{n}(R), 0\rangle dv_{x} by (8.4), where R=\sqrt{(r-\rho)^{2}+(z-\zeta)^{2}}

for x=[r, \theta, z] , and f_{n}(R)(\geq 0) is a C^{\infty} function on [0, +\infty) with support
[0, 1/n) and with \int_{0}^{1/n}f_{n}(R)RdR=1/\rho.) Since rot B_{n}(x)=0 outside
Supp J_{n} , it follows from (A.6) and (8.2) that \langle 0, 0, 0\rangle= rot B_{\gamma(q)}(x)=

\frac{-1}{r}\langle 0, \triangle^{-}\mathcal{L}(p, q), 0\rangle in \mathbb{R}^{3}\backslash \gamma(q) . Hence, \mathcal{L}(p, q) satisfies (i).
Let us give our proofs of the expressions for A_{i} and \Lambda_{i}(i=1,2) by

use of those for B_{i} and J_{i} in Expression 1^{o} and 2^{o} of \S 8: By property (v)
for \mathcal{L} , the functions W and U of (1^{o}) and (2^{o}) of \S 8, are written into the
following forms:

W(p)= \mathcal{L}_{V}(p)=\int_{\Pi}V(q)\mathcal{L}(p, q)d\rho d\zeta for p\in\Pi , (A.7)

U(p)= \frac{1}{2\pi}\int_{K}\mathcal{L}(p, q)d\rho d\zeta for p\in\Pi . (A.8)

Since dv_{y}=\rho d\rho d\zeta dO- at y\in \mathbb{R}^{3} , we have

B_{1}(y)dv_{y}=\{

\langle-\frac{\partial V}{\partial\zeta} , 0, \frac{\partial V}{\partial\rho}\rangle d\rho d\zeta d\Theta for y\in D

0 for y\in D’

We thus have from definition (7.5)

\Lambda_{1}(x) = \int_{\Pi}\{\frac{1}{4\pi}\int_{0}^{2\pi}\frac{\langle-\frac{\partial V}{\partial\zeta},0,\frac{\partial V}{\partial\rho}\rangle_{y}}{||x-y||}d\Theta\}d\rho d(

= \int_{\Pi}\langle-\frac{1}{r}\frac{\partial V}{\partial\zeta}\mathcal{L}(p, q) , 0, \frac{\partial V}{\partial\rho}\mathcal{K}(p, q)\rangle_{x}d\rho d( by (A.8)

= \frac{1}{r}\langle-\frac{\partial W}{\partial z} , 0, \frac{\partial W}{\partial r}\rangle_{x} by (A.4) and (A.7).

Hence, the expression for \Lambda_{1}(x) is proved. By applying Lemma 7.2 to J_{1}(x) ,
we have from (7.3) and (8.2)

A_{1}(x)=rot\Lambda_{1}(x)=rot\{\frac{1}{r}\langle-\frac{\partial W}{\partial z} , 0, \frac{\partial W}{\partial r}\rangle\}

=- \frac{\triangle^{-}W(p)}{r}\langle 0,1,0\rangle=\frac{V(p)}{r}\langle 0,1,0\rangle by (8.8).

Thus, the expression for A_{1}(x) is proved.
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Since B_{2}(x) in Expression 2^{O} is written into the following form:

B_{2}(y)dv_{y}=\{

\frac{1}{2\pi}(J_{\gamma(q)}ds_{y})d\rho d( for y\in D

0 for y\in D’.,

it follows from definition (7.5) that

\Lambda_{2}(x) = \frac{1}{2\pi}\int_{K}\{\frac{1}{4\pi}\int_{\gamma(q)}\frac{J_{\gamma(q)}(y)}{||x-y||}ds_{y}\}d\rho d\zeta

= \frac{1}{r}\langle 0,1,0\rangle_{x} ( \frac{1}{2\pi}\int_{K}\mathcal{L}(p, q)d\rho d() by (7.5)

= \frac{U(p)}{r}\langle 0,1,0\rangle_{x} by (A.8).

Thus the formula for \Lambda_{2}(x) is proved. For the expression of A_{2}(x) , we apply
Lemma 7.2 to J_{2}(x) and obtain

A_{2}(x)=rot\Lambda_{2}(x)=rot\{\frac{U(p)}{r}\langle 0,1,0\rangle\}=\frac{1}{r}\langle-\frac{\partial U}{\partial z} , 0, \frac{\partial U}{\partial r}\rangle
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