Classification of exotic circles of $\boldsymbol{P} \boldsymbol{L}_{+}\left(\boldsymbol{S}^{1}\right)$

Hiroyuki Minakawa

(Received August 30, 1996; Revised February 28, 1997)

Abstract

Let G be a subgroup of the group Homeo ${ }_{+}\left(S^{1}\right)$ of orientation preserving homeomorphisms of the circle. An exotic circle of G is a subgroup of G which is topologically conjugate to $S O(2)$ but not conjugate to $S O(2)$ in G. The existence of an exotic circle shows us the fact that the subgroup G is far from being a Lie group. We previously proved that the group $P L_{+}\left(S^{1}\right)$ of orientation preserving piecewise linear homeomorphisms of the circle has exotic circles. We give a more explicit construction of exotic circles of $P L_{+}\left(S^{1}\right)$ and classify all exotic circles up to $P L$ conjugacy.

Key words: topological circle, exotic circle, $P L_{+}\left(S^{1}\right)$, topologically conjugate, $P L$ conjugate, total derivative, half total derivative.

Introduction

Let G be a Lie group and M an oriented manifold of class $C^{k}(1 \leq k \leq$ $\infty)$. Let Diff ${ }_{+}^{k}(M)$ denote the group of all C^{k} diffeomorphisms of M. A topological action is a continuous map $\varphi: G \times M \rightarrow M$ such that

1) $\varphi_{e}(x)=x$,
2) $\varphi_{g h}(x)=\varphi_{g}\left(\varphi_{h}(x)\right)$.
where e is the unit of G and $\varphi_{g}(x)=\varphi(g, x)$. D. Montgomery and L. Zippin proved the following theorem ([4]).

Theorem 0.1 Let φ be a topological action. If every φ_{g} belongs to Diff ${ }_{+}^{k}(M)$ then φ is a map of class C^{k}.

In the case where $G=M=S^{1}$, this theorem implies the following corollary.

Corollary 0.2 If every $h \circ R_{x} \circ h^{-1}$ is contained in Diff ${ }_{+}^{k}\left(S^{1}\right)$, then h belongs to Diff ${ }_{+}^{k}\left(S^{1}\right)$. Here, $R_{x}: S^{1} \rightarrow S^{1}$ is the rotation of S^{1} by x, i.e., $R_{x}(y)=x+y$.

Indeed, for $\varphi(x, y)=h \circ R_{x} \circ h^{-1}(y) . \varphi: S^{1} \times S^{1} \rightarrow S^{1}$ is a topological action with $\varphi_{x} \in \operatorname{Diff}_{+}^{k}\left(S^{1}\right)$. Then φ is of class C^{k} by Theorem 0.1. Fix

1991 Mathematics Subject Classification : 58E40 Group actions, 58F03 One dimensional dynamics.
a point y_{0} and define the C^{k} diffeomorphism ϕ of S^{1} by $\phi(x)=\varphi\left(x, y_{0}\right)$. Then we can easily see $\phi^{-1} \circ \varphi_{x} \circ \phi=R_{x}$. So $\phi^{-1} \circ h=R_{z}$ for some $z \in S^{1}$. This implies h belongs to Diff ${ }_{+}^{k}\left(S^{1}\right)$.

Let $S O(2)=\left\{R_{x} \mid x \in S^{1}\right\}$ be the group of all rotations of S^{1}. Corollary 0.2 says that Diff ${ }_{+}^{k}\left(S^{1}\right)$ has no exotic circle in the following sense.

Let G be a subgroup of $\mathrm{Homeo}_{+}\left(S^{1}\right)$.
Definition 0.3 1) A subgroup $S \subset \operatorname{Homeo}_{+}\left(S^{1}\right)$ is called a topological circle if $S=h \circ S O(2) \circ h^{-1}$ for some $h \in \operatorname{Homeo}_{+}\left(S^{1}\right)$.
2) A topological circle $S \subset G$ is an exotic circle of G if h does not belong to G.

Contrary to this phenomenon, we proved that $P L_{+}\left(S^{1}\right)$ has exotic circles in [5]. This fact gives one of the reasons why the topological group $P L_{+}\left(S^{1}\right)$ is very far from being a Lie group.

In this paper, we give a more explicit construction of exotic circles of $P L_{+}\left(S^{1}\right)$ and a perfect classification of all exotic circles up to $P L$ conjugacy.

1. Piecewise linear homeomorphisms of \boldsymbol{S}^{1}

Let $\operatorname{Homeo}_{+}^{\sim}\left(S^{1}\right)$ be the group of all orientation preserving homeomorphisms of \mathbf{R} which commutes with the translation T_{1}. Here $T_{b}(x)=x+b$ $(x, b \in \mathbf{R})$ is the translation by b. Every $F \in \operatorname{Homeo}_{+}^{\sim}\left(S^{1}\right)$ induces a homeomorphism $f: S^{1} \rightarrow S^{1}\left(S^{1}=\mathbf{R} / \mathbf{Z}\right)$. So we define

$$
p: \operatorname{Homeo}_{+}^{\sim}\left(S^{1}\right) \rightarrow \text { Homeo }_{+}\left(S^{1}\right)
$$

by $p(F)=f$. Conversely for any $f \in \operatorname{Homeo}_{+}\left(S^{1}\right)$, there exists a $\tilde{f} \in$ Homeo $_{+}^{\sim}\left(S^{1}\right)$ such that $p(\tilde{f})=f$. Such \tilde{f} is called a lift of f. We can easily check that

$$
p^{-1}(f)=\left\{T_{n} \circ \tilde{f} \mid n \in \mathbf{Z}\right\}
$$

Let $P L_{+}^{\sim}\left(S^{1}\right)$ be the group of $\operatorname{Homeo}_{+}^{\sim}\left(S^{1}\right)$ defined as follows. $F \in$ Homeo $_{+}^{\sim}\left(S^{1}\right)$ belongs to $P L_{+}^{\sim}\left(S^{1}\right)$ if F is piecewise linear and bending points of F have no accumulation points in \mathbf{R}. Then we define $P L_{+}\left(S^{1}\right)=$ $p\left(P L_{+}^{\sim}\left(S^{1}\right)\right)$.

Let $\pi: \mathbf{R} \rightarrow S^{1}=\mathbf{R} / \mathbf{Z}$ denote the quotient map. A point $\tilde{x} \in \mathbf{R}$ with $\pi(\tilde{x})=x$ is called a lift of x. We may use the notation $\pi(\tilde{x})=[\tilde{x}]$.

An important construction of $P L$ homeomorphisms of S^{1} is given by
$P L$ interval exchange maps. A pair of maps (f, g) is called an interval exchange map of $[a, a+1]$ if there exist $x, y \in(a, a+1)$ such that both $f:[a, x] \rightarrow[y, a+1]$ and $g:[x, a+1] \rightarrow[a, y]$ are homeomorphisms with $f(a)=y, g(x)=a$. Moreover if f and g are both piecewise linear or affine, (f, g) is respectively called a $P L$ or an affine interval exchange map of $[a, a+1]$. We identify $[a, a+1] / a \sim a+1$ with S^{1} by the inclusion map $[a, a+1] \rightarrow \mathbf{R}$. Then every interval exchange map (f, g) induces a homeomorphism F of $[a, a+1] / a \sim a+1$, so of S^{1}. We can easily check that if (f, g) is $P L$, then F is contained in $P L_{+}\left(S^{1}\right)$.

2. Examples

First we define intervals $I_{A}\left(A \in \mathbf{R}_{+}-\{1\}\right)$ by

$$
I_{A}=\left\{\begin{array}{lll}
{[1 /(A-1), A /(A-1)]} & \text { if } A>1, \\
{[A /(A-1), 1 /(A-1)]} & \text { if } & 0<A<1 .
\end{array}\right.
$$

Let $h_{A}: S^{1} \rightarrow S^{1}(A>1)$ be the orientation preserving piecewise C^{ω} diffeomorphism whose lift \tilde{h}_{A} is defined by $\tilde{h}_{A}\left|I_{A}=h\right| I_{A}, h \mid I_{A}: I_{A} \rightarrow[0,1]$, $h(x)=\log ((A-1) x) / \log A$. Let $\underline{h}: S^{1} \rightarrow S^{1}$ be the orientation reversing homeomorphism defined by $\underline{h}(x)=-x$. Here the homeomorphism h_{A} is well-defined, because the length of the interval I_{A} is equal to 1 and $h \mid I_{A}:[1 /(A-1), A /(A-1)] \rightarrow[0,1]$ is an orientation preserving homeomorphism. Then we define, for any $A>1$,

$$
S_{A}=h_{A}^{-1} \circ S O(2) \circ h_{A} \quad S_{A^{-1}}=\underline{h} \circ S_{A} \circ \underline{h} .
$$

We can easily check that $S_{A}(A>1)$ is contained in $P L_{+}\left(S^{1}\right)$, since $h^{-1} \circ$ $T_{a} \circ h=M_{A^{a}}$ holds for any $a \in R$. Here, $T_{a}(x)=x+a$ and $M_{a}(x)=a x$. Indeed, we can explicitly represent any element $h_{A}^{-1} \circ R_{[a]} \circ h_{A}(0<a<1)$ by an affine interval exchange map $\left(r_{(A, a)}, l_{(A, a)}\right)$ of I_{A};

$$
r_{(A, a)}=M_{A^{a}} \mid\left[1 /(A-1), A^{1-a} /(A-1)\right]
$$

and

$$
l_{(A, a)}=M_{A^{a-1}} \mid\left[A^{1-a} /(A-1), A /(A-1)\right] .
$$

Since h_{A} is not contained in $P L_{+}\left(S^{1}\right)$, then every S_{A} is exotic.
Remark. In [1], they studied about the following class of affine interval
exchange maps A^{*}. For any $u, v \in(0,1)$, we define

$$
f_{(u, v)}:[0, v] \rightarrow[u, 1] \text { by } f_{(u, v)}(x)=u+\frac{1-u}{v} x
$$

and

$$
g_{(u, v)}:[v, 1] \rightarrow[0, u] \text { by } g_{(u, v)}(x)=\frac{u}{1-v}(x-v) .
$$

Then A^{*} is the set of all interval exchange maps of form $\left(f_{(u, v)}, g_{(u, v)}\right)(u, v \in$ $(0,1))$. We remark that

$$
A^{*}=\bigcup_{a \in \mathbf{R}_{+}-\{1\}} R_{[1 /(a-1)]}^{-1} \circ S_{a}^{*} \circ R_{[1 /(a-1)]},
$$

where, $S_{a}^{*}=S_{a}-\{\mathrm{id}\}$ (see Lemma 4.9). They proved that every element of A^{*} has an absolutely continuous invariant probability measure in their paper. By the constructions of S_{a}, now we can get a very simple proof of this fact. Indeed, for any $f \in S_{a}$, an invariant measure μ for f is equal to

$$
\begin{aligned}
& \left(h_{a}\right)^{*} m \quad \text { if } 1<a \text {, and } \\
& \left(\underline{h} \circ h_{a} \circ \underline{h}\right)^{*} m \quad \text { if } 0<a<1 .
\end{aligned}
$$

Here, m is the Lebesgue measure of S^{1} with $m\left(S^{1}\right)=1$.

3. Total derivative

Let f be any element of $P L_{+}\left(S^{1}\right)$. For any $x \in S^{1}$, we define the right derivative $d_{R} f(x)$ and the left derivative $d_{L} f(x)$ at x by

$$
d_{R} f(x)=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \frac{\tilde{f}(\tilde{x}+\varepsilon)-\tilde{f}(\tilde{x})}{\varepsilon},
$$

and

$$
d_{L} f(x)=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} \frac{\tilde{f}(\tilde{x}-\varepsilon)-\tilde{f}(\tilde{x})}{\varepsilon} .
$$

This is well-defined, because each right-hand side does not depend on the choices of lifts \tilde{f}, \tilde{x}. We put

$$
\Delta_{x} f=\log d_{R} f(x)-\log d_{L} f(x)
$$

For given $f \in P L_{+}\left(S^{1}\right)$, a point x of S^{1} is a bending point of f if $\Delta_{x} f \neq 0$. We denote all the bending points of f by $B P(f)$. It is trivially a finite
set by the definition of $P L_{+}\left(S^{1}\right)$. Since $\Delta_{x} f=0$ except for the points of $B P(f)$, we can define the total derivative $\Delta f(x)$ of f at x by

$$
\Delta f(x)=\sum_{n \in \mathbf{Z}} \Delta_{f^{n}(x)} f=\sum_{y \in O_{f}(x)} \Delta_{y} f .
$$

Here we denote the orbit of f through x by $O_{f}(x)$. That is, $O_{f}(x)=$ $\left\{f^{n}(x) \mid n \in \mathbf{Z}\right\}$.

Lemma 3.1 For any $f, g \in P L_{+}\left(S^{1}\right)$, and $x \in S^{1}$, the following formulas (1), (2) and (3) hold.
(1) $\Delta_{x}(f \circ g)=\Delta_{g(x)} f+\Delta_{x} g$,
(2) $\Delta_{f(x)} f^{-1}=-\Delta_{x} f$,
(3) $\Delta_{g(x)}\left(g \circ f \circ g^{-1}\right)=\Delta_{f(x)} g+\Delta_{x} f-\Delta_{x} g$.

These are shown by the chain rules for d_{R} and d_{L}. The next lemma says that $\Delta f(x)$ is a $P L$ conjugacy invariant.
Lemma 3.2 For any $f, g \in P L_{+}\left(S^{1}\right)$ and $x \in S^{1}$, we have

$$
\Delta\left(g \circ f \circ g^{-1}\right)(g(x))=\Delta f(x) .
$$

Proof. We use the following notations.

$$
\begin{aligned}
& y=g(x), \\
& x_{n}=f^{n}(x) \text {, and } \\
& y_{n}=g\left(x_{n}\right)=\left(g \circ f \circ g^{-1}\right)^{n}(g(x)) .
\end{aligned}
$$

Case 1: \quad Suppose that $\sharp O_{f}(x)=n$ for some $n \in N$. That is, $O_{f}(x)=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}=x\right\}$. Then we have

$$
\begin{aligned}
\Delta\left(g \circ f \circ g^{-1}\right)(g(x)) & =\sum_{i=1}^{n} \Delta_{y_{i}}\left(g \circ f \circ g^{-1}\right) \\
& =\sum_{i=1}^{n}\left(\Delta_{x_{i+1}} g+\Delta_{x_{i}} f-\Delta_{x_{i}} g\right) \\
& =\sum_{i=1}^{n} \Delta_{x_{i}} f \\
& =\Delta f(x) .
\end{aligned}
$$

Case 2: \quad Suppose that $\sharp O_{f}(x)=\infty$. Since both $B P(f)$ and $B P(g)$ are finite sets, there exists an integer M such that $\Delta_{x_{n}} f=\Delta_{x_{n}} g=0$ for any
$|n| \geq M$. This implies that $\Delta_{y_{n}}\left(g \circ f \circ g^{-1}\right)=0$ for any $|n| \geq M+1$. So we have

$$
\begin{aligned}
\Delta\left(g \circ f \circ g^{-1}\right)(g(x)) & =\sum_{i=-M}^{M} \Delta_{y_{i}}\left(g \circ f \circ g^{-1}\right) \\
& =\sum_{i=-M}^{M}\left(\Delta_{x_{i+1}} g+\Delta_{x_{i}} f-\Delta_{x_{i}} g\right) \\
& =\Delta_{x_{M+1}} g+\sum_{i=-M}^{M} \Delta_{x_{i}} f-\Delta_{x_{-M}} g \\
& =\Delta f(x)
\end{aligned}
$$

Lemma 3.3 Let f, g be elements of $P L_{+}\left(S^{1}\right)$ such that $f \circ g=g \circ f$. If $\langle f, g\rangle$ is isomorphic to $\mathbf{Z}+\mathbf{Z}$ and acts on an orbit $\langle f, g\rangle(x)$ freely, then we have that $\Delta\left(f^{m} \circ g^{n}\right)(x)=0$ for any $n, m \in \mathbf{Z}$.

Proof. If $m=n=0$, then it is trivial. Suppose that $m \neq 0$ or $n \neq 0$. Take integers p, q such that $m p+n q=0$ and $(p, q) \neq(0,0)$. Then $\left\langle f^{m} \circ g^{n}, f^{p} \circ g^{q}\right\rangle$ is also isomorphic to $\mathbf{Z}+\mathbf{Z}$ and acts on $\left\langle f^{m} \circ g^{n}, f^{p} \circ g^{q}\right\rangle(x)$ freely. So it suffices to prove that $\Delta f(x)=0$. Since the action of $\langle f, g\rangle$ on its orbit $\langle f, g\rangle(x)$ is free, then $\langle f, g\rangle(x)$ is divided into infinitely many orbits of f. That is,

$$
\langle f, g\rangle(x)=\bigcup_{n \in \mathbf{Z}} O_{f}\left(g^{n}(x)\right) \quad \text { (disjoint union) }
$$

So there exists an integer n such that $O_{f}\left(g^{n}(x)\right) \cap B P(f)=\emptyset$, because $B P(f)$ is a finite set. By Lemma 3.2, we have that

$$
\Delta f(x)=\Delta\left(g^{n} \circ f \circ g^{-n}\right)\left(g^{n}(x)\right)=\Delta f\left(g^{n}(x)\right)=0
$$

The following corollary is very important to characterize the elements of a topological circle of $P L_{+}\left(S^{1}\right)$. Before stating it, we recall the notion of the rotation number. The rotation number $\rho: \operatorname{Homeo}_{+}\left(S^{1}\right) \rightarrow S^{1}$ is a well-known semi-conjugacy invariant which has the following properties ([1], [7], [8]);

1) $\rho\left(R_{a}\right)=a$ for any $a \in S^{1}$.
2) $\quad \rho(f \circ g)=\rho(f)+\rho(g)$ if $f \circ g=g \circ f$.
3) If $\rho(f)=a$, then $R_{a}^{-1} \circ f$ has a fixed point.
4) Suppose that $\rho(f)$ is irrational, that is, $\rho(f) \notin \mathbf{Q} / \mathbf{Z}$. If $\rho(f)=\rho(g)$, then $f^{-1} \circ g$ has a fixed point.
5) If f^{n} has no fixed points for any $n \in \mathbf{Z}-\{0\}$, then $\rho(f)$ is irrational.

Corollary 3.4 Let S be a topological circle of $P L_{+}\left(S^{1}\right)$. Then $\Delta f(x)=0$ for any $f \in S$ and any $x \in S^{1}$.

Proof. If f has a finite orbit, then f must be finite order.

$$
\begin{aligned}
\Delta f(x) & =\sum_{i=0}^{n-1} \Delta_{x_{i}} f \\
& =\Delta_{x} f^{n}=0
\end{aligned}
$$

Here, the integer n is the order of f and $x_{i}=f^{i}(x)$.
Next, if f has no finite orbit, then f has an irrational rotation number $\rho(f)$. Take any $g \in S$ which has no finite orbit and with $\rho(g) \neq \rho(f)$. Then $\langle f, g\rangle$ is isomorphic to $\mathbf{Z}+\mathbf{Z}$ and acts on its orbit $\langle f, g\rangle(x)$ freely for any $x \in S^{1}$. So we have $\Delta f(x)=0$ for any $x \in S^{1}$ by Lemma 3.3.

Remark. It is well known that every element $f \in P L_{+}\left(S^{1}\right)$ of finite order is $P L$ conjugate to $R_{\rho(f)}$.

4. Half total derivative

Definition 4.1 Let f be an element of $P L_{+}\left(S^{1}\right)$. A point $x \in S^{1}$ is called a center of f, if $\sharp O_{f}(x)=\infty$ and there exist a non-negative integer m and a positive integer n such that both $f^{m}(x)$ and $f^{-n}(x)$ are bending points. A symbol $C(f)$ denotes the set of all centers of f.

We can easily see that every $f \in P L_{+}\left(S^{1}\right)$ has at most finite number of centers. We prepare another terminology.

Definition 4.2 An element $f \in P L_{+}\left(S^{1}\right)$ is good if it satisfies the following two conditions.
(1) f has no finite orbit.
(2) $\Delta f(x)=0$ for any $x \in S^{1}$.

Moreover we define $\Delta^{\omega} f(x)=\sum_{i \geq 0} \Delta_{x_{i}} f$, where $x_{i}=f^{i}(x)$.

Lemma 4.3 Let f be a good element of $P L_{+}\left(S^{1}\right)$. Then $\Delta^{\omega} f(x)=0$ for any $x \notin C(f)$.

Proof. \quad Since $x \notin C(f)$, there are two possibilities 1) $f^{m}(x) \notin B P(f)$ for any $m \geq 0$, or 2$) f^{-n}(x) \notin B P(f)$ for any $n \geq 1$. So 1$)$ implies that $\Delta^{\omega} f(x)=0$, since $\Delta_{x_{i}} f=0$ for any integer $i \geq 0$. Next 2) implies that $\Delta^{\omega} f(x)=\Delta f(x)$, since $\Delta_{x_{-i}} f=0$ for any positive integer i. This righthand side is equal to zero, because f is good.

Definition 4.4 Let $f \in P L_{+}\left(S^{1}\right)$ be a good element. We define the half total derivative $\Sigma^{\omega} f$ of f by

$$
\Sigma^{\omega} f=\sum_{x \in S^{1}} \Delta^{\omega} f(x)
$$

In the right-hand side, $\Delta^{\omega} f(x)$ vanishes outside of $C(f)$ by Lemma 3.4. So this is well-defined.

Lemma 4.5 Let f, g be elements of $P L_{+}\left(S^{1}\right)$. Suppose f is good. Then we have that

$$
\Delta^{\omega}\left(g \circ f \circ g^{-1}\right)(g(x))=\Delta^{\omega} f(x)-\Delta_{x} g
$$

The proof of this lemma is almost same as that of the case 2 of Lemma 3.2. So we omit the proof.

Corollary 4.6 Let $f \in P L_{+}\left(S^{1}\right)$ be a good element. Then we have that

$$
\Sigma^{\omega}\left(g \circ f \circ g^{-1}\right)=\Sigma^{\omega} f
$$

for any $g \in P L_{+}\left(S^{1}\right)$.
Proof. There exists a finite subset F of S^{1} such that $\Delta^{\omega}\left(g \circ f \circ g^{-1}\right)(x)=$ $\Delta^{\omega} f=\Delta_{x} g=0$ for any $x \notin F$. Then we have that

$$
\begin{aligned}
\Sigma^{\omega}\left(g \circ f \circ g^{-1}\right) & =\sum_{x \in F} \Delta^{\omega}\left(g \circ f \circ g^{-1}\right)(x) \\
& =\sum_{x \in F}\left(\Delta^{\omega} f(x)-\Delta_{x} g\right) \\
& =\sum_{x \in F} \Delta^{\omega} f(x)-\sum_{x \in F} \Delta_{x} g \\
& =\Sigma^{\omega} f
\end{aligned}
$$

The last equality is due to the fact that $\sum_{x \in B P(g)} \Delta_{x} g=0$ holds for any $g \in P L_{+}\left(S^{1}\right)$.

Lemma 4.7 Let $f \in P L_{+}\left(S^{1}\right)$ be a good element. For any $x_{0} \in S^{1}-$ $C(f)$, there exists a unique element $h \in P L_{+}\left(S^{1}\right)$ such that

1) $h\left(x_{0}\right)=x_{0}$,
2) $\Delta_{x} h=\Delta^{\omega} f(x)$ if $x \neq x_{0}$.

Proof. If $C(f)$ is an empty set, then h must be equal to the identity. Suppose that $C(f)=\left\{x_{1}, \ldots, x_{n}\right\}$ for some positive integer n. We can assume that there exist a set of lifts $\tilde{x}_{0}, \tilde{x}_{1}, \ldots, \tilde{x}_{n}$ such that $\tilde{x}_{0}<\tilde{x}_{1}<$ $\cdots<\tilde{x}_{n}<\tilde{x}_{0}+1$. For any real number λ, we define a step function $H_{\lambda}:\left[\tilde{x}_{0}, \tilde{x}_{0}+1\right) \rightarrow \mathbf{R}$ by

$$
H_{\lambda}(\tilde{y})=\lambda_{i} \quad \text { if } \quad \tilde{y} \in\left[\tilde{x}_{i}, \tilde{x}_{i+1}\right)
$$

Here, $\tilde{x}_{n+1}=\tilde{x}_{0}+1, \lambda_{0}=\lambda$ and $\lambda_{i}=\lambda+\sum_{j=1}^{i} \Delta^{\omega} f\left(x_{i}\right)(n \geq i \geq 1)$. Then we put that

$$
h_{\lambda}(\tilde{y})=\int_{\tilde{x}_{0}}^{\tilde{y}} e^{H_{\lambda}(t)} d t+\tilde{x}_{0}
$$

We can easily see that h_{λ} is piecewise linear and monotone increasing. Furthermore $h_{\lambda}(\tilde{y})>h_{\mu}(\tilde{y})$ for any $\tilde{y} \in\left[\tilde{x}_{0}, \tilde{x}_{0}+1\right)$ if $\lambda>\mu$, because $\lambda_{i}>\mu_{i}$ $(i=0,1, \ldots, n)$ if $\lambda>\mu$. So it follows that the $\operatorname{map} \phi: \mathbf{R} \rightarrow\left(\tilde{x}_{0}, \infty\right)$, $\phi(\lambda)=h_{\lambda}\left(\tilde{x}_{0}+1\right)$ is an orientation preserving homeomorphism. Then there exists a unique real number λ such that $h_{\lambda}\left(\tilde{x}_{0}+1\right)=\tilde{x}_{0}+1$. This h_{λ} induces the element $h \in P L_{+}\left(S^{1}\right)$ which is required.

Lemma 4.8 Let f, h, x_{0} be as in Lemma 4.7. Then we have

1) $B P\left(h \circ f \circ h^{-1}\right) \subset\left\{h\left(x_{0}\right), h \circ f^{-1}\left(x_{0}\right)\right\}$
2) $\Delta_{h\left(x_{0}\right)}\left(h \circ f \circ h^{-1}\right)=\Sigma^{\omega} f$.

Proof. We have that $\Delta_{h(x)}\left(h \circ f \circ h^{-1}\right)=\Delta_{f(x)} h+\Delta_{x} f-\Delta_{x} h$ by Lemma 3.1. If $\{x, f(x)\}$ does not contain x_{0}, then $\Delta_{f(x)} h=\Delta^{\omega} f(f(x))$ and $\Delta_{x} h=$ $\Delta^{\omega} f(x)$ by Lemma 4.72). So we have

$$
\begin{aligned}
\Delta_{h(x)}\left(h \circ f \circ h^{-1}\right) & =\Delta^{\omega} f(f(x))+\Delta_{x} f-\Delta^{\omega} f(x) \\
& =\Delta^{\omega} f(x)-\Delta^{\omega} f(x) \\
& =0
\end{aligned}
$$

This shows 1).

In order to prove 2), we calculate $\Delta_{h\left(x_{0}\right)}\left(h \circ f \circ h^{-1}\right)$. Since x_{0} is not contained in $C(f), \Delta^{\omega} f\left(x_{0}\right)=0$. Moreover $\Delta_{f\left(x_{0}\right)} h=\Delta^{\omega} f\left(f\left(x_{0}\right)\right)$, because $f\left(x_{0}\right) \neq x_{0}$ and $f^{2}\left(x_{0}\right) \neq x_{0}$ by the goodness of f. This implies that

$$
\begin{aligned}
\Delta_{h\left(x_{0}\right)}\left(h \circ f \circ h^{-1}\right) & =\Delta_{f\left(x_{0}\right)} h+\Delta_{x_{0}} f \Delta_{x_{0}} h \\
& =\Delta^{\omega} f\left(x_{0}\right)-\Delta_{x_{0}} h \\
& =-\Delta_{x_{0}} h .
\end{aligned}
$$

Since $B P(h)$ is contained in $C(f) \cup\left\{x_{0}\right\}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, \sum_{i=0}^{n} \Delta_{x_{i}} h=$ $\sum_{x \in S^{1}} \Delta_{x} h=0$. So we have

$$
\begin{aligned}
-\Delta_{x_{0}} h & =\sum_{i=1}^{n} \Delta_{x_{i}} h \\
& =\sum_{i=1}^{n} \Delta^{\omega} f\left(x_{i}\right) \\
& =\sum_{x \in S^{1}} \Delta^{\omega} f(x) \\
& =\Sigma^{\omega} f .
\end{aligned}
$$

Lemma 4.9 Let f, g be elements of $P L_{+}\left(S^{1}\right)$. Suppose there exists a point $z \in S^{1}$ such that

1) $B P(f)=\left\{z, f^{-1}(z)\right\}, f^{-1}(z) \neq z$,
2) $B P(g)=\left\{z, g^{-1}(z)\right\}, g^{-1}(z) \neq z$,
3) $\Delta_{z} f=\Delta_{z} g$.

If $f \circ g^{-1}$ has a fixed point, then $f=g$.
Proof. By the hypothesis 3), we have that

$$
\Delta_{g(z)}\left(f \circ g^{-1}\right)=\Delta_{z} f+\Delta_{g(z)} g^{-1}=\Delta_{z} f-\Delta_{z} g=0 .
$$

Since $B P\left(f \circ g^{-1}\right) \subset g(B P(f)) \cup B P\left(g^{-1}\right)=\left\{g(z), g \circ f^{-1}(z), z\right\}$, it follows that $B P\left(f \circ g^{-1}\right) \subset\left\{z, g \circ f^{-1}(z)\right\}$. If $g \circ f^{-1}(z)=z$, then $f \circ g^{-1}$ can not have any bending points. So it has to be an element of $S O(2)$ with fixed point. That is, $f \circ g^{-1}=i d_{S^{1}}$. In order to complete the proof of this lemma, it suffices to show that $g \circ f^{-1}(z)=z$. Suppose not, then we can see that $f^{-1}(z) \notin B P(g)$. So we have $B P\left(f \circ g^{-1}\right)=\left\{z, g \circ f^{-1}(z)\right\}$. Since $f \circ g^{-1}\left(g \circ f^{-1}(z)\right)=z, f \circ g^{-1}$ can have no fixed point. This is contradiction.

We use the notation $S_{1}=S O(2)$ from now. The following theorem is the goal of this paper.

Theorem 4.10 Let S be a topological circle of $P L_{+}\left(S^{1}\right)$. Then the number $\Sigma^{\omega} f$ does not depend on the choice of $f \in S$ with irrational rotation numbers. Furthermore S is $P L$ conjugate to $S_{A(S)}$ (see Section 2), where $\log A(S)=\Sigma^{\omega} f(\rho(f):$ irrational $)$.

Proof. Take any element $f \in S$ with an irrational rotation number α and fix it. By Corollary 3.4, f is a good element. Fix a point $z \in S^{1}-C(f)$. There exists $h \in P L_{+}\left(S^{1}\right)$ such that

$$
B P\left(h \circ f \circ h^{-1}\right) \subset\left\{h(z), h \circ f^{-1}(z)\right\}
$$

and

$$
\Delta_{h(z)}\left(h \circ f \circ h^{-1}\right)=\Sigma^{\omega} f
$$

by Lemma 4.8 .
Case 1: \quad Suppose that $\Sigma^{\omega} f=0 . h \circ f \circ h^{-1}$ has no bending point, that is, $h \circ f \circ h^{-1}=R_{\alpha}$. So we have

$$
h \circ S \circ h^{-1}=h \circ \overline{\langle f\rangle} \circ h^{-1}=\overline{\left\langle h \circ f \circ h^{-1}\right\rangle}=S O(2)
$$

Here, the overline means taking a closure with respect to C^{0}-topology in Homeo $_{+}\left(S^{1}\right)$.

Case 2: \quad Suppose that $\Sigma^{\omega} f>0$. Put $u=[1 /(A(S)-1)] \in S^{1}, \beta=$ $u-h(z)$ and $f_{1}=R_{\beta} \circ h \circ f \circ\left(R_{\beta} \circ h\right)^{-1}$. Then we have

$$
B P\left(f_{1}\right)=\left\{u, f_{1}^{-1}(u)\right\}
$$

and

$$
\Delta_{u} f_{1}=\Sigma^{\omega} f=\log A(S)
$$

By the construction of $S_{A(S)}$, each element $g \in S_{A(S)}$ has same properties

$$
B P(g)=\left\{u, g^{-1}(u)\right\}
$$

and

$$
\Delta_{u} g=\log A(S) .
$$

If $g \in S_{A(S)}$ has the rotation number α, then g has to be equal to f_{1} by Lemma 4.9, that is, $f_{1} \in S_{A(S)}$. So we have

$$
\begin{aligned}
R_{\beta} \circ h \circ S \circ\left(R_{\beta} \circ h\right)^{-1} & =\overline{\left\langle R_{\beta} \circ h \circ f \circ\left(R_{\beta} \circ h\right)^{-1}\right\rangle} \\
& =\overline{\left\langle f_{1}\right\rangle}=S_{A(S)} .
\end{aligned}
$$

We can easily check that $\Sigma^{\omega} g=\log A(S)$ for any $g \in S_{A(S)}$ with irrational rotation numbers. Since $\Sigma^{\omega} f$ is $P L$ conjugacy invariant, this value does not depend on the choices of $f \in S$ with irrational rotation numbers.

Case 3: Suppose that $\Sigma^{\omega} f<0$. The proof is reduced to the case above by Proposition 4.11 stated below. This completes the proof of this theorem.

Let $\underline{h}: S^{1} \rightarrow S^{1}$ be the orientation reversing homeomorphism defined by $\underline{h}(x)=-x$. We note that $\underline{h}^{2}=\mathrm{id}$.

Proposition 4.11 If S is a topological circle, then $\underline{S}=\underline{h} \circ S \circ \underline{h}^{-1}$ is also a topological circle. Moreover, if S is contained in $P L_{+}\left(S^{1}\right)$, then $\Sigma^{\omega}\left(\underline{h} \circ f \circ \underline{h}^{-1}\right)=-\Sigma^{\omega} f$ for any $f \in S$ with an irrational rotation number.

Proof. There exists an orientation preserving homeomorphism $h: S^{1} \rightarrow$ S^{1} such that $S=h \circ S O(2) \circ h^{-1}$. Since $\underline{h} \circ S O(2) \circ \underline{h}^{-1}=S O(2)$,

$$
\underline{h} \circ S \circ \underline{h^{-1}}=\underline{h} \circ h \circ \underline{h} \circ S O(2) \circ(\underline{h} \circ h \circ \underline{h})^{-1} .
$$

This means that $\underline{h} \circ S \circ \underline{h}^{-1}$ is a topological circle. We can easily check that the last statement in this lemma by the following formulas

$$
\begin{aligned}
& d_{R}\left(\underline{h} \circ f \circ \underline{h}^{-1}\right)(x)=d_{L} f(\underline{h}(x)), \\
& d_{L}\left(\underline{h} \circ f \circ \underline{h}^{-1}\right)(x)=d_{R} f(\underline{h}(x))
\end{aligned}
$$

for any $f \in P L_{+}\left(S^{1}\right)$.

References

[1] Coelho Z., Lopes A. and Da Rocha L.F., Absolutely continuous invariant measures for a class of affine interval exchange maps. Proc. Amer. Math. Soc. vol. 123 no.11, (1995), 3533-3542.
[2] Herman M., Sur la conjugasion differéntiable des difféomorphismes du cercle à des rotations. Inst. Hautes Etudes Sci. Publ. Math. 49 (1979), 5-234.
[3] Herman M., Conjugaison C^{∞} des difféomorphismes du cercle dont le nombre de rotation satisfait une condition arithmétique. C. R. Acad. Sci. Paris 282 (1976),

503-506.
[4] Herman M., Conjugaison C^{∞} difféomorphismes du cercle pour presque tout nombre de rotation. C. R. Acad. Sci. Paris, (1976), 579-582.
[5] Minakawa H., Exotic circles of $P L_{+}\left(S^{1}\right)$. Hokkaido Math. J. vol. 24 (1995), 567573.
[6] Montgomery D. and Zippin L., Topological transformation group. Interscience Tracts in Pure and Applied Math. no.1, (1955).
[7] Plante J., Foliations with measure preserving holonomy. Ann. of Math. 102 (1975), 327-361.
[8] Hector G. and Hirsch U., Introduction to the geometry of foliations Part A. Vieweg, Braunschweig, (1981).

Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060, Japan
E-mail: minakawa@math.sci.hokudai.ac.jp

