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Remark on fundamental solution for vorticity equation of
two dimensional Navier –Stokes flows
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Abstract. In this paper we treat a perturbed heat equation related to the vorticity
equation for the Navier-Stokes flow in R^{2} . We get estimate for the fundamental solution
of this equation. We note that estimate like ours played the essential role in the paper
by Giga, Miyakawa and Osada [4] where they discussed existence of solution for Navier
Stokes equation in R^{2} with measure as initial vorticity.

Key words: the incompressible Navier-Stokes equations, vorticity equation, fundamental
solution, 2 dimensional flow.

1. Introduction and Results

Consider the incompressible Navier-Stokes equations in two dimen-
sional Euclidean space R^{2} :

(NS) \{

u_{t}-\nu\triangle u+(u, \nabla)u+\nabla p=0 , div u=0 in (0, \infty) \cross R^{2} .

u|_{t=0}=u_{0} in R^{2} .

where u=u(t, x)=(u_{1}(t, x), u_{2}(t, x)) is the velocity vector field, p=
p(t, x) is the pressure, lJ >0 is the kinematic viscosity, u_{t}=\partial u/\partial t , \nabla=

(\partial/\partial x_{1}, \partial/\partial x_{2}) and div u=\partial u_{1}/\partial x_{1}+\partial u_{2}/\partial x_{2} .
For the vorticity \omega(t, x)=rotu(t, x)=\partial u_{1}/\partial x_{2}-\partial u_{2}/\partial x_{1} . we reduce

(NS) to the following equations by the well known Biot-Savart law:

(NSR) \{

\omega_{t}-u\triangle\omega+(u, \nabla)\omega=0 , u(t, x)=K*\omega(t, x)

in (0, \infty) \cross R^{2} .

\omega|_{t=0}=\omega_{0}\equiv rotu_{0} in R^{2} ,
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where the kernel K(x)=x^{\perp}/(2\pi|x|^{2}) with x^{\perp}=(-x_{2}, x_{1}) . The symbol
*means a convolution with respect to space variable x . That is, for two
functions f=f(t, x) and g=g(t, x) which may be independent of time
variable t , we define

f(t)*g(t)= \int_{R^{2}}f(t, x-y) g(t, y)dy .

Here we note that rot (K*f)=f and div (K*f)=0 formally.
Here we summarize notations which we need throughout this paper. A

function or a vector field f=f(t, x) is denoted by f(t) for simplicity. If
f=f(x) , we denote only f . The Banach space L^{p}(R^{2}) represents scalar or
R^{2} valued Lebesgue’s space with exponent p and we use || ||_{p} for its norm.
We say that a vector field f(t, x)=(f_{1}, f_{2}) is in B_{\sigma}^{1,1}((0, T]\cross R^{2}) , if f(t)
and all its derivatives are bounded and continuous in (0, T] \cross R^{2} and f(t)
satisfies div f=0 in (0, T] \cross R^{2}

In [4] Giga, Miyakawa and Osada constructed a global solution to (NS)
when initial vorticity \omega_{0} is a integrable function (i.e. \omega_{0}\in L^{1}(R^{2}) ) or more
generally a finite Radon measure by solving (NSR). Note that no smallness
assumption on \omega_{0} was imposed there and that u_{0} may not be square in-
tegrable even locally. They also proved that their solution is unique when
\omega_{0}\in L^{2}(R^{2}) . However for general finite Radon measure \omega_{0} the uniqueness
of solution seems to be a still open problem. Later their proof was sim-
plified by Kato [5]. A difference proof was given by Ben-Artzi [1] when
\omega_{0}\in L^{1}(R^{2}) . An extention to bounded domain with zero boundary vortic-
ity was given in Miyakawa and Yamada [6].

The method in [4] is based on the delicate estimates from above for the
fundamental solution of the equation:

(RE) \{

\omega_{t}-\iota/\triangle\omega+(u, \nabla)\omega=0 in (0, T] \cross R^{2} .

\omega|_{t=0}=\omega_{0} in R^{2}

with a given coefficient u(t) . To obtain their estimates, they assumed that

div u=0 and ||v(t)||_{1}\leq M_{0}

with M_{0}>0 independent of t , where v(t)=rotu(t) so that u(t)=K*v(t) .
They used the special structure of K in u(t)=K*v(t) to obtain their
estimate. However, it is not clear in what may their constant depend on
M_{0} . The purpose of our paper is to establish similar estimate under the
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assumptions that div u=0 and

\sup_{0\leq t\leq T}\sqrt{t}1||u(t)||_{\infty}\leq M (1.1)

for some positive constant M (instead of ||v(t)||_{1}\leq M_{0} ) with explicit de-
pendence of constants in M . Our main result is

Theorem 1 Assume that the coefficient u\in B_{\sigma}^{1,1}((0, T]\cross R^{2}) satisfies
(1.1). Then the fundamental solution \Gamma_{u}(t, x;s, y) for (RE) satisfies:

\Gamma_{u}(t, x;s, y)\leq\frac{Ce^{K_{1}M^{2}}}{\nu\delta(t-s)} exp (- \frac{K_{2}|x-y|^{2}}{\nu(t-s)})

for 0\leq s<t\leq T and x , y\in R^{2} with a numerical constant C , where the
constants K_{1} and K_{2} are obtained as

K_{1}= \frac{2(1+\delta)}{l\nearrow(\sqrt{N}-2)} and K_{2}= \frac{1}{N(1+\delta)}

for any 0<U , \delta\leq 1 and any N>4 .

Note that one can take K_{2}<1/4 as close as 1/4 which is the constant
appeared in exponent of the standard Gauss kernel. Here and hereafter we
denote by C or C_{j} numerical positive constants (j=0,1, \cdots) . Their value
may differ from one occasion to another.

Similar estimate was given in [4] with assumption ||v(t)||_{1}\leq M_{0} . How-
ever, so just mentioned before K_{1} and K_{2} may depend on M_{0} in [4]. To
show Theorem 1, we essentially use the methods developed by Nash [7] and
prove it along the way in Fabes and Strook [3] (see also [2]) with some
simplification. Although our result applies to the general dimension with
standard modification, we restrict ourselves into two dimensional case.

In [5] Kato obtained the unique global solution \omega(t) of (NSR) which is
smooth for t>0 , \omega(0)=\omega_{0} and satisfeis

||\omega(t)||_{p}\leq C_{1} t^{1-1/p}||\omega_{0}||_{1}

for 1\leq p\leq\infty . By the Calder\’on-Zygmund inequality ||\nabla u||_{r}\leq C_{2}||rotu||_{r}

for 1 <r<\infty and the GagliardO-Nierenberg inequality this estimates
implies (1.1) with u(t)=K*\omega(t) , M=C_{0}||\omega_{0}||_{1} and T=\infty . Our
Theorem 1 yields

Theorem 2 Let \omega(t) be the unique global solution for (NSR) and u(t)=
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K*\omega(t) . Then we obtain

\Gamma_{u}(t, x;s, y)\leq\frac{Ce^{CK_{1}||\omega_{0}||_{1}^{2}}}{\nu\delta(t-s)} exp (- \frac{K_{2}|x-y|^{2}}{\nu(t-s)})

for 0\leq s<t<\infty and x , y\in R^{2} , where K_{1} , K_{2} , U and \delta are in Theorem
1.

2. Proof of Theorem 1

Here we prove Theorem 1 along the way in [3]. Let A=\nu\triangle-(u(t), \nabla)

and A_{\psi}=e^{-\psi}Ae^{\psi} for \psi(x)=\alpha\cdot x (the inner product of vectors \alpha , x\in R^{2} ).
Then we have

Lemma 2.1 Let f be a non negative rapidly decreasing function in R^{2} , p
be a natural number and 0\leq t\leq T Then we obtain

\int_{R^{2}}A_{\psi}f f^{2p-1}dx \leq-\frac{C_{lJ}}{p} \frac{||f||_{2p}^{4p}}{||f||_{p}^{2p}}+q_{p}(t) ||f||_{2p}^{2p} ,

here q_{p}(t)=p_{l}/|\alpha|^{2}+M|\alpha|/\sqrt{t} .

Proof By simple calculus we have

\int_{R^{2}}A_{\psi}ff^{2p-1}dx=7J\int_{R^{2}}e^{-\psi}\triangle(e^{\psi}f) f^{2p-1}dx

- \int_{R^{2}}(u, \nabla)(e^{\psi}f)\cdot e^{-\psi}f^{2p-1}dx

\equiv \mathfrak{l}/\cdot I_{1}-I_{2} .

In I_{1} we use the integral by parts, then we have

I_{1}=- \int_{R^{2}}\nabla(e^{\psi}f) \nabla(e^{-\psi}f^{2p-1})dx

=-(2p-1) \int_{R^{2}}f^{2p-2}|\nabla f|^{2}dx

-2(p-1) \int_{R^{2}}f^{2p-1}\alpha\nabla fdx+|\alpha|^{2}\int_{R^{2}}f^{2p}dx .

If p\geq 2 , we get f^{2p-2}|\nabla f|^{2}=|\nabla(f^{p})|^{2}/p^{2} and

2 (p-1)|f^{2p-1}\alpha\nabla f|\leq 2(p-1)\{|\alpha|f^{p} f^{p-1}|\nabla f|\}
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\leq(p-1) |\alpha|^{2}f^{2p}+(p-1) f^{2p-2}|\nabla f|^{2}

=(p-1) | \alpha|^{2}f^{2p}+\frac{p-1}{p^{2}} |\nabla(f^{p})|^{2}

Thus I_{1} satisfies

I_{1} \leq-\frac{1}{p}\int_{R^{2}}|\nabla(f^{p})|^{2}dx+p|\alpha|^{2}\int_{R^{2}}f^{2p}dx .

Since the case p=1 is trivial, this estimate is valid for p\geq 1 .
For I_{2} we obtain

I_{2}= \int_{R^{2}}e^{\psi}f \{-(u\cdot\alpha)e^{-\psi}f^{2p-1}+(2p-1)f^{2p-2}e^{-\psi}(u, \nabla)f\}dx

=- \int_{R^{2}}(u\alpha)f^{2p}dx+(2p-1)\int_{R^{2}}f^{2p-1}(u, \nabla)fdx

=- \int_{R^{2}}(u\alpha)f^{2p}dx ,

here we use div u=0 . So by the assumption (1.1) we get

|I_{2}| \leq|\int_{R^{2}}(u\cdot\alpha)f^{2p}dx|\leq\frac{M|\alpha|}{\sqrt{t}}\int_{R^{2}}f^{2p}dx

Combining these estimates, we arrive at

\int_{R^{2}}A_{\psi}f f^{2p-1}dx

\leq-\frac{U}{p}\int_{R^{2}}|\nabla(f^{p})|^{2}dx+q_{p}(t)\int_{R^{2}}f^{2p}dx . (2.1)

Furthermore by GagriadO-Nirenberg inequality

||f||_{2}^{2}\leq C||f||_{1} ||\nabla f||_{2}

holds. Replacing f by f^{p} , we get

||f||_{2p}^{2p}\leq C||f||_{p}^{p} ||\nabla(f^{p})||_{2} .

Hence we obtain (see, [7])

|| \nabla(f^{p})||_{2}^{2}=\int_{R^{2}}|\nabla(f^{p})|^{2}dx\geq\frac{1}{C} \frac{||f||_{2p}^{4p}}{||f||_{p}^{2p}}

This and (2.1) prove our lemma. \square
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For a non negative rapidly decreasing function f=f(x) we put

F(t)=F(t, x)=e^{-\psi(x)} \int_{R^{2}}\Gamma_{u}(t, x;0, y)e^{\psi(y)}f(y)dy .

Since \Gamma_{u} is the fundamental solution of (RE), F(t) satisfies

\frac{d}{dt}||F(t)||_{2p}^{2p}=2p\int_{R^{2}}\frac{dF}{dt}(t) (F(t))^{2p-1}dx

=2p \int_{R^{2}}A_{\psi}F(t) (F(t))^{2p-1}dx

for any natural number p. On the other hand, we have

\frac{d}{dt}||F(t)||_{2p}^{2p}=2p||F(t)||_{2p}^{2p-1} \frac{d}{dt}||F(t)||_{2p} .

Thus, by Lemma 2.1, we obtain

\frac{d}{dt}||F(t)||_{2p}\leq-\frac{C_{lJ}}{p} \frac{||F(t)||_{2p}^{2p+1}}{||F(t)||_{p}^{2p}}+q_{p}(t) ||F(t)||_{2p} (2.2)

If p=1 , neglecting the first term in the right hand side of (2.2) and
applying the Gronwall’s inequality, (2.2) implies

||F(t)||_{2} \leq\exp(\int_{0}^{t}q_{1}(s)ds) ||f||_{2}=e^{Q(t)} ||f||_{2} , (2.3)

where we use F(0)=f and we define a new function Q(t)=u|\alpha|^{2}t+

2M|\alpha|\sqrt{t} .
In the case of p\geq 2 , we apply the following lemma on differential

inequality to (2.2).

Lemma 2.2 Assume that g(t)\in L^{1}(0, T) and h(t) on [0, T] hold

\int_{0}^{t}h(s) . exp (2p \int_{0}^{s}g(\theta)d\theta)ds>0

for any t\in[0, T] and a natural number p . If a function u\in C^{1}([0, T])

satisfies

\frac{d}{dt}u(t)\leq-h(t) u^{1+2p}(t)+g(t) u(t)



Vorticity equation of 2 D Navier –Stokes flows 535

for any t\in[0, T] , then we obtain

exp (2p \int_{0}^{t}g(s)ds)

(u(t))^{2p}\leq

2p \int_{0}^{t}h(s) exp (2p \int_{0}^{s}g(\theta)d\theta)ds

for any t\in[0, T] .

Proof. Putting v(t)=u(t) e^{-\int_{0}^{s}g(s)ds} then the differential inequality
for u(t) implies

\frac{d}{dt}(v^{-2p})=-2pv^{-2p-1}(u’-g)e^{-\int_{0}^{t}g(s)ds}

\geq 2pe^{(2p+1)\int_{0}^{t}g(s)ds}u^{-2p-1} hu^{2p+1}e^{-\int_{0}^{t}g(s)ds}

=2ph(t)e^{2p\int_{0}^{t}g(s)ds}

Thus integrating in [0, t] and neglecting 1/u^{2p}(0) , we have

\frac{e^{2p\int_{0}^{t}g(s)ds}}{u^{2p}(t)}\geq 2p\int_{0}^{t}h(s)e^{2p\int_{0}^{s}g(\theta)}d\theta ds .

Hence we get our assertion. \square

Applying Lemma 2.2 to (2.2) with p\geq 2 as u(t)=||F(t)||_{p} and q(t)=
q_{p}(t) , we obtain

||F(t)||_{2p}^{2p} \leq\frac{e^{2pQ_{p}(t)}}{\int_{0}^{t}C\nu||F(s)||_{p}^{-2p}e^{2pQ_{p}(s)}ds}
(2.4)

for t\in[0, T] , where Q_{p}(t) \equiv\int_{0}^{t}q_{p}(s)ds=pl/|\alpha|^{2} t+2M|\alpha| \sqrt{t} . Now we
set

w_{p}(t) \equiv\sup\{s^{(p-2)/(2p)} ||F(s)||_{p}; 0\leq s\leq t\}

and obtain

\int_{0}^{t}C\nu||F(s)||_{p}^{-2p} e^{2pQ_{p}(s)}ds

\geq C_{lJ}(w_{p}(t))^{-2p} \int_{0}^{t}s^{p-2} e^{2pQ_{p}(s)}ds .
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Moreover for \kappa=1-\delta/(p^{2}) with 0<\delta\leq p^{2} , we have

\int_{0}^{t}s^{p-2} e^{2pQ_{p}(s)}ds \geq\int_{\kappa t}^{t}s^{p-2} e^{2pQ_{p}(s)}ds\geq e^{2pQ_{p}(\kappa t)} \int_{\kappa t}^{t}s^{p-2}ds

=e^{2pQ_{p}(\kappa t)} \frac{(1-\kappa^{p-1})t^{p-1}}{p-1} .

Hence from (2.4) it follows that

(t^{((2p)-2)/(2\cdot(2p))} ||F(t)||_{2p})^{2p}

\leq\frac{(p-1)(w_{p}(t))^{2p}}{C_{l/}(1-\kappa^{p-1})}
e^{2p(Q_{p}(t)-Q_{p}(\kappa t))} .

Since 1 -\kappa^{p-1}\geq 1-\kappa=\delta/(p^{2}) , we have 2p(Q_{p}(t)-Q_{p}(\kappa t))\leq 2\delta Q(t) .
Thus we get

(t^{((2p)-2)/(2\cdot(2p))} ||F(t)||_{2p})^{2p} \leq\frac{p^{2}(p-1)(w_{p}(t))^{2p}}{C\nu\delta} e^{2\delta Q(t)}

\leq\frac{p^{3}(w_{p}(t))^{2p}}{C\nu\delta} e^{2\delta Q(t)} .

This arrives at

\frac{w_{2p}(t)}{w_{p}(t)}\leq(\frac{p^{3}}{C_{l},\delta})1/(2p) e^{(\delta/p)Q(t)} (2.5)

for 0\leq t\leq T Here for p=2^{k} we put v_{k}(t)=w_{p}(t) provided that k is a
natural number. Now we use (2.5) inductively to get

\sup_{k\geq 1}v_{k}(t)\leq\sup_{k\geq 1}8^{A_{k}}
(C\nu\delta)^{B_{k}} e^{\delta Q(t)C_{k}}

v_{1}(t)

\leq\frac{C_{1}}{\sqrt{\nu\delta}}e^{\delta Q(t)} v_{1}(t) ,

where A_{k}= \sum_{j=1}^{k}j2^{-(j-1)} , B_{k}= \sum_{j=1}^{k}2^{-(j+1)} , and C_{k}= \sum_{j=1}^{k}2^{-j} .
Since v_{k}(t)= \sup s^{(p-2)/(2p)} ||F(t)||_{p} with p=2^{k} , this estimate and

(2.3) imply that

||F(t)||_{\infty} \leq\frac{C}{\sqrt{\nu\delta t}}e^{(1+\delta)Q(t)} ||f||_{2} (2.6)

for F(t, x)=e^{-\alpha\cdot x} \int_{R^{2}}\Gamma_{u}(t, x;0, y)e^{\alpha\cdot y}f(y)dy .
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Now we prove the estimate in Theorem 1. We define a operator \mathcal{F}_{u}(t) :
L^{2}(R^{2}) – L^{\infty}(R^{2}) by \mathcal{F}_{u}(t)f=F(t, x) . From (2.6) we have

|| \mathcal{F}_{u}(t)f||_{\infty}\leq\frac{C}{\sqrt{\nu\delta t}}e^{(1+\delta)Q(t)} ||f||_{2} .

At the same time, since the fundamental solution which define the adjoint
operator (\mathcal{F}_{u}(t))^{*} : L^{1}(R^{2}) – L^{2}(R^{2}) equals to \Gamma_{(-u)} , then we can see that
(\mathcal{F}_{u}(t))^{*} is operator from L^{2}(R^{2}) to L^{\infty}(R^{2}) . So we also obtain

||( \mathcal{F}_{u}(t))^{*}f||_{\infty}\leq\frac{C}{\sqrt{\nu\delta t}}e^{(1+\delta)Q(t)} ||f||_{2} .

Thus by duality

|| \mathcal{F}_{u}(t)f||_{2}\leq\frac{C}{\sqrt{\nu\delta t}}e^{(1+\delta)Q(t)} ||f||_{1} .

Here, we put v(\cdot)=u(\cdot+t) . Then we have \mathcal{F}_{u}(2t)=\mathcal{F}_{v}(t)\circ \mathcal{F}_{u}(t) . Hence
we obtain

|| \mathcal{F}_{u}(2t)f||_{\infty}\leq\frac{C}{\sqrt{\nu\delta t}}e^{(1+\delta)Q(t)}
|| \mathcal{F}_{v}(t)f||_{2}\leq\frac{C^{2}}{\nu\delta t}e^{2(1+\delta)Q(t)}

||f||_{1} .

In this we put f(y)=\rho_{\Xi}(y-z) for Friedrichs’ mollifier \rho_{\in} and let \inarrow 0 ,
then we get

\Gamma_{u}(2t, x;0, z)\leq\frac{C^{2}}{\nu\delta t}e^{2(1+\delta)Q(t)+\alpha\cdot(x-z)} . (2.7)

In (2.7) we put \alpha=-\mu(x-z)/t for any positive \mu , then we have

2 (1+\delta)Q(t)+\alpha (x-z)
=\{2\nu(1+\delta)\mu^{2}-\mu\} \frac{|x-z|^{2}}{t}+4(1+\delta)M\mu\cdot\frac{|x-z|}{\sqrt{t}} . (2.8)

Furthermore for any positive \epsilon we have

4 (1+\delta)M\mu \frac{|x-z|}{\sqrt{t}}\leq\frac{4(1+\delta)^{2}M^{2}\mu}{\epsilon}+\epsilon\mu \frac{|x-z|^{2}}{t} .

Here we put \mu=1/(2\sqrt{N}\nu(1+\delta)) and \epsilon=1-2/\sqrt{N} for any N>4 . Then
we obtain

2 (1+\delta)Q(t)+\alpha (x-z) \leq\frac{-|x-z|^{2}}{2N\nu(1+\delta)t}+\frac{2(1+\delta)}{\nu(\sqrt{N}-2)} M^{2}
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Hence by (2.7) we conclude

\Gamma_{u}(t, x;0, z)\leq\frac{2C^{2}e^{K_{1}M^{2}}}{\nu\delta t}e^{-K_{2}|x-z|^{2}/(\nu t)} ,

where the constants K_{1} and K_{2} are as follows

K_{1}= \frac{2(1+\delta)}{\nu(\sqrt{N}-2)} and K_{2}= \frac{1}{N(1+\delta)} .

This proves our theorem 1.

Remark. From the proof we have

\Gamma_{u}(t, x;s, y)\leq\frac{C}{\nu\delta(t-s)} exp \{-\frac{1}{\nu(1+\delta)}(\frac{1}{\sqrt{N}}-\frac{1}{N})

\frac{|x-y|^{2}}{t-s}+\frac{2^{3/2}M}{\sqrt{N}} \frac{|x-y|^{2}}{\sqrt{t-s}}\}

for any N>0 . This follows from (2.3) and (2.8) and \mu=1/(2\sqrt{N}\nu(1+\delta)) .
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