Remark on fundamental solution for vorticity equation of two dimensional Navier - Stokes flows

(Dedicated to Professor Kôji Kubota on his sixtieth birthday)

Shin'ya Matsui* and Satosi Tokuno

(Received May 9, 1996; Revised December 18, 1996)

Abstract

In this paper we treat a perturbed heat equation related to the vorticity equation for the Navier-Stokes flow in \boldsymbol{R}^{2}. We get estimate for the fundamental solution of this equation. We note that estimate like ours played the essential role in the paper by Giga, Miyakawa and Osada [4] where they discussed existence of solution for NavierStokes equation in \boldsymbol{R}^{2} with measure as initial vorticity.

Key words: the incompressible Navier-Stokes equations, vorticity equation, fundamental solution, 2 dimensional flow.

1. Introduction and Results

Consider the incompressible Navier-Stokes equations in two dimensional Euclidean space \boldsymbol{R}^{2} :
(NS) $\left\{\begin{array}{c}u_{t}-\nu \Delta u+(u, \nabla) u+\nabla p=0, \quad \operatorname{div} u=0 \quad \text { in }(0, \infty) \times \boldsymbol{R}^{2}, \\ \left.u\right|_{t=0}=u_{0} \quad \text { in } \boldsymbol{R}^{2},\end{array}\right.$
where $u=u(t, x)=\left(u_{1}(t, x), u_{2}(t, x)\right)$ is the velocity vector field, $p=$ $p(t, x)$ is the pressure, $\nu>0$ is the kinematic viscosity, $u_{t}=\partial u / \partial t, \nabla=$ $\left(\partial / \partial x_{1}, \partial / \partial x_{2}\right)$ and $\operatorname{div} u=\partial u_{1} / \partial x_{1}+\partial u_{2} / \partial x_{2}$.

For the vorticity $\omega(t, x)=\operatorname{rot} u(t, x)=\partial u_{1} / \partial x_{2}-\partial u_{2} / \partial x_{1}$, we reduce (NS) to the following equations by the well known Biot-Savart law:
(NSR) $\left\{\begin{aligned} \omega_{t}-\nu \Delta \omega+(u, \nabla) \omega=0, & u(t, x)=\mathbf{K} * \omega(t, x) \\ & \text { in }(0, \infty) \times \boldsymbol{R}^{2}, \\ \left.\omega\right|_{t=0}=\omega_{0} \equiv \operatorname{rot} u_{0} & \text { in } \boldsymbol{R}^{2},\end{aligned}\right.$

[^0]where the kernel $\mathbf{K}(x)=x^{\perp} /\left(2 \pi|x|^{2}\right)$ with $x^{\perp}=\left(-x_{2}, x_{1}\right)$. The symbol * means a convolution with respect to space variable x. That is, for two functions $f=f(t, x)$ and $g=g(t, x)$ which may be independent of time variable t, we define
$$
f(t) * g(t)=\int_{\mathbf{R}^{2}} f(t, x-y) \cdot g(t, y) d y .
$$

Here we note that $\operatorname{rot}(\mathbf{K} * f)=f$ and $\operatorname{div}(\mathbf{K} * f)=0$ formally.
Here we summarize notations which we need throughout this paper. A function or a vector field $f=f(t, x)$ is denoted by $f(t)$ for simplicity. If $f=f(x)$, we denote only f. The Banach space $L^{p}\left(\boldsymbol{R}^{2}\right)$ represents scalar or \boldsymbol{R}^{2} valued Lebesgue's space with exponent p and we use $\|\cdot\|_{p}$ for its norm. We say that a vector field $f(t, x)=\left(f_{1}, f_{2}\right)$ is in $B_{\sigma}^{1,1}\left((0, T] \times \boldsymbol{R}^{2}\right)$, if $f(t)$ and all its derivatives are bounded and continuous in $(0, T] \times \boldsymbol{R}^{2}$ and $f(t)$ satisfies $\operatorname{div} f=0$ in $(0, T] \times \boldsymbol{R}^{2}$.

In [4] Giga, Miyakawa and Osada constructed a global solution to (NS) when initial vorticity ω_{0} is a integrable function (i.e. $\omega_{0} \in L^{1}\left(\boldsymbol{R}^{2}\right)$) or more generally a finite Radon measure by solving (NSR). Note that no smallness assumption on ω_{0} was imposed there and that u_{0} may not be square integrable even locally. They also proved that their solution is unique when $\omega_{0} \in L^{2}\left(\boldsymbol{R}^{2}\right)$. However for general finite Radon measure ω_{0} the uniqueness of solution seems to be a still open problem. Later their proof was simplified by Kato [5]. A difference proof was given by Ben-Artzi [1] when $\omega_{0} \in L^{1}\left(\boldsymbol{R}^{2}\right)$. An extention to bounded domain with zero boundary vorticity was given in Miyakawa and Yamada [6].

The method in [4] is based on the delicate estimates from above for the fundamental solution of the equation:
(RE) $\left\{\begin{array}{cl}\omega_{t}-\nu \Delta \omega+(u, \nabla) \omega=0 & \text { in }(0, T] \times \boldsymbol{R}^{2}, \\ \left.\omega\right|_{t=0}=\omega_{0} & \text { in } \boldsymbol{R}^{2}\end{array}\right.$
with a given coefficient $u(t)$. To obtain their estimates, they assumed that

$$
\operatorname{div} u=0 \quad \text { and } \quad\|v(t)\|_{1} \leq M_{0}
$$

with $M_{0}>0$ independent of t, where $v(t)=\operatorname{rot} u(t)$ so that $u(t)=\mathbf{K} * v(t)$. They used the special structure of \mathbf{K} in $u(t)=\mathbf{K} * v(t)$ to obtain their estimate. However, it is not clear in what may their constant depend on M_{0}. The purpose of our paper is to establish similar estimate under the
assumptions that $\operatorname{div} u=0$ and

$$
\begin{equation*}
\sup _{0 \leq t \leq T} \sqrt{t} \cdot\|u(t)\|_{\infty} \leq M \tag{1.1}
\end{equation*}
$$

for some positive constant M (instead of $\|v(t)\|_{1} \leq M_{0}$) with explicit dependence of constants in M. Our main result is
Theorem 1 Assume that the coefficient $u \in B_{\sigma}^{1,1}\left((0, T] \times \boldsymbol{R}^{2}\right)$ satisfies (1.1). Then the fundamental solution $\Gamma_{u}(t, x ; s, y)$ for (RE) satisfies:

$$
\Gamma_{u}(t, x ; s, y) \leq \frac{C e^{K_{1} M^{2}}}{\nu \delta(t-s)} \cdot \exp \left(-\frac{K_{2}|x-y|^{2}}{\nu(t-s)}\right)
$$

for $0 \leq s<t \leq T$ and $x, y \in \boldsymbol{R}^{2}$ with a numerical constant C, where the constants K_{1} and K_{2} are obtained as

$$
K_{1}=\frac{2(1+\delta)}{\nu(\sqrt{N}-2)} \quad \text { and } \quad K_{2}=\frac{1}{N(1+\delta)}
$$

for any $0<\nu, \delta \leq 1$ and any $N>4$.
Note that one can take $K_{2}<1 / 4$ as close as $1 / 4$ which is the constant appeared in exponent of the standard Gauss kernel. Here and hereafter we denote by C or C_{j} numerical positive constants $(j=0,1, \cdots)$. Their value may differ from one occasion to another.

Similar estimate was given in [4] with assumption $\|v(t)\|_{1} \leq M_{0}$. However, so just mentioned before K_{1} and K_{2} may depend on M_{0} in [4]. To show Theorem 1, we essentially use the methods developed by Nash [7] and prove it along the way in Fabes and Strook [3] (see also [2]) with some simplification. Although our result applies to the general dimension with standard modification, we restrict ourselves into two dimensional case.

In [5] Kato obtained the unique global solution $\omega(t)$ of (NSR) which is smooth for $t>0, \omega(0)=\omega_{0}$ and satisfeis

$$
\|\omega(t)\|_{p} \leq C_{1} \cdot t^{1-1 / p}\left\|\omega_{0}\right\|_{1}
$$

for $1 \leq p \leq \infty$. By the Calderón-Zygmund inequality $\|\nabla u\|_{r} \leq C_{2}\|\operatorname{rot} u\|_{r}$ for $1<r<\infty$ and the Gagliardo-Nierenberg inequality this estimates implies (1.1) with $u(t)=K * \omega(t), M=C_{0}\left\|\omega_{0}\right\|_{1}$ and $T=\infty$. Our Theorem 1 yields

Theorem 2 Let $\omega(t)$ be the unique global solution for (NSR) and $u(t)=$
$\mathbf{K} * \omega(t)$. Then we obtain

$$
\Gamma_{u}(t, x ; s, y) \leq \frac{C e^{C K_{1}\left\|\omega_{0}\right\|_{1}^{2}}}{\nu \delta(t-s)} \cdot \exp \left(-\frac{K_{2}|x-y|^{2}}{\nu(t-s)}\right)
$$

for $0 \leq s<t<\infty$ and $x, y \in \boldsymbol{R}^{2}$, where K_{1}, K_{2}, ν and δ are in Theorem 1.

2. Proof of Theorem 1

Here we prove Theorem 1 along the way in [3]. Let $A=\nu \Delta-(u(t), \nabla)$ and $A_{\psi}=e^{-\psi} A e^{\psi}$ for $\psi(x)=\alpha \cdot x$ (the inner product of vectors $\alpha, x \in \boldsymbol{R}^{2}$). Then we have

Lemma 2.1 Let f be a non negative rapidly decreasing function in \boldsymbol{R}^{2}, p be a natural number and $0 \leq t \leq T$. Then we obtain

$$
\int_{\boldsymbol{R}^{2}} A_{\psi} f \cdot f^{2 p-1} d x \leq-\frac{C \nu}{p} \cdot \frac{\|f\|_{2 p}^{4 p}}{\|f\|_{p}^{2 p}}+q_{p}(t) \cdot\|f\|_{2 p}^{2 p}
$$

here $q_{p}(t)=p \nu|\alpha|^{2}+M|\alpha| / \sqrt{t}$.
Proof. By simple calculus we have

$$
\begin{aligned}
& \int_{\boldsymbol{R}^{2}} A_{\psi} f \cdot f^{2 p-1} d x= \nu \int_{\boldsymbol{R}^{2}} e^{-\psi} \Delta\left(e^{\psi} f\right) \cdot f^{2 p-1} d x \\
&-\int_{\boldsymbol{R}^{2}}(u, \nabla)\left(e^{\psi} f\right) \cdot e^{-\psi} f^{2 p-1} d x \\
& \equiv \nu \cdot I_{1}-I_{2}
\end{aligned}
$$

In I_{1} we use the integral by parts, then we have

$$
\begin{aligned}
I_{1}= & -\int_{\boldsymbol{R}^{2}} \nabla\left(e^{\psi} f\right) \cdot \nabla\left(e^{-\psi} f^{2 p-1}\right) d x \\
=- & (2 p-1) \int_{\boldsymbol{R}^{2}} f^{2 p-2}|\nabla f|^{2} d x \\
& -2(p-1) \int_{\boldsymbol{R}^{2}} f^{2 p-1} \alpha \cdot \nabla f d x+|\alpha|^{2} \int_{\boldsymbol{R}^{2}} f^{2 p} d x
\end{aligned}
$$

If $p \geq 2$, we get $f^{2 p-2}|\nabla f|^{2}=\left|\nabla\left(f^{p}\right)\right|^{2} / p^{2}$ and

$$
2(p-1)\left|f^{2 p-1} \alpha \cdot \nabla f\right| \leq 2(p-1)\left\{|\alpha| f^{p} \cdot f^{p-1}|\nabla f|\right\}
$$

$$
\begin{aligned}
& \leq(p-1) \cdot|\alpha|^{2} f^{2 p}+(p-1) \cdot f^{2 p-2}|\nabla f|^{2} \\
& =(p-1) \cdot|\alpha|^{2} f^{2 p}+\frac{p-1}{p^{2}} \cdot\left|\nabla\left(f^{p}\right)\right|^{2} .
\end{aligned}
$$

Thus I_{1} satisfies

$$
I_{1} \leq-\frac{1}{p} \int_{\boldsymbol{R}^{2}}\left|\nabla\left(f^{p}\right)\right|^{2} d x+p|\alpha|^{2} \int_{\boldsymbol{R}^{2}} f^{2 p} d x
$$

Since the case $p=1$ is trivial, this estimate is valid for $p \geq 1$.
For I_{2} we obtain

$$
\begin{aligned}
I_{2} & =\int_{\boldsymbol{R}^{2}} e^{\psi} f \cdot\left\{-(u \cdot \alpha) e^{-\psi} f^{2 p-1}+(2 p-1) f^{2 p-2} e^{-\psi}(u, \nabla) f\right\} d x \\
& =-\int_{\boldsymbol{R}^{2}}(u \cdot \alpha) f^{2 p} d x+(2 p-1) \int_{\boldsymbol{R}^{2}} f^{2 p-1}(u, \nabla) f d x \\
& =-\int_{\boldsymbol{R}^{2}}(u \cdot \alpha) f^{2 p} d x
\end{aligned}
$$

here we use $\operatorname{div} u=0$. So by the assumption (1.1) we get

$$
\left|I_{2}\right| \leq\left|\int_{\boldsymbol{R}^{2}}(u \cdot \alpha) f^{2 p} d x\right| \leq \frac{M|\alpha|}{\sqrt{t}} \int_{\boldsymbol{R}^{2}} f^{2 p} d x
$$

Combining these estimates, we arrive at

$$
\begin{align*}
& \int_{\boldsymbol{R}^{2}} A_{\psi} f \cdot f^{2 p-1} d x \\
& \quad \leq-\frac{\nu}{p} \int_{\boldsymbol{R}^{2}}\left|\nabla\left(f^{p}\right)\right|^{2} d x+q_{p}(t) \int_{\boldsymbol{R}^{2}} f^{2 p} d x \tag{2.1}
\end{align*}
$$

Furthermore by Gagriado-Nirenberg inequality

$$
\|f\|_{2}^{2} \leq C\|f\|_{1} \cdot\|\nabla f\|_{2}
$$

holds. Replacing f by f^{p}, we get

$$
\|f\|_{2 p}^{2 p} \leq C\|f\|_{p}^{p} \cdot\left\|\nabla\left(f^{p}\right)\right\|_{2} .
$$

Hence we obtain (see, [7])

$$
\left\|\nabla\left(f^{p}\right)\right\|_{2}^{2}=\int_{\boldsymbol{R}^{2}}\left|\nabla\left(f^{p}\right)\right|^{2} d x \geq \frac{1}{C} \cdot \frac{\|f\|_{2 p}^{4 p}}{\|f\|_{p}^{2 p}}
$$

This and (2.1) prove our lemma.

For a non negative rapidly decreasing function $f=f(x)$ we put

$$
F(t)=F(t, x)=e^{-\psi(x)} \int_{\mathbf{R}^{2}} \Gamma_{u}(t, x ; 0, y) e^{\psi(y)} f(y) d y .
$$

Since Γ_{u} is the fundamental solution of (RE), $F(t)$ satisfies

$$
\begin{aligned}
\frac{d}{d t}\|F(t)\|_{2 p}^{2 p} & =2 p \int_{\boldsymbol{R}^{2}} \frac{d F}{d t}(t) \cdot(F(t))^{2 p-1} d x \\
& =2 p \int_{\boldsymbol{R}^{2}} A_{\psi} F(t) \cdot(F(t))^{2 p-1} d x
\end{aligned}
$$

for any natural number p. On the other hand, we have

$$
\frac{d}{d t}\|F(t)\|_{2 p}^{2 p}=2 p\|F(t)\|_{2 p}^{2 p-1} \cdot \frac{d}{d t}\|F(t)\|_{2 p} .
$$

Thus, by Lemma 2.1, we obtain

$$
\begin{equation*}
\frac{d}{d t}\|F(t)\|_{2 p} \leq-\frac{C \nu}{p} \cdot \frac{\|F(t)\|_{2 p}^{2 p+1}}{\|F(t)\|_{p}^{2 p}}+q_{p}(t) \cdot\|F(t)\|_{2 p} \tag{2.2}
\end{equation*}
$$

If $p=1$, neglecting the first term in the right hand side of (2.2) and applying the Gronwall's inequality, (2.2) implies

$$
\begin{equation*}
\|F(t)\|_{2} \leq \exp \left(\int_{0}^{t} q_{1}(s) d s\right) \cdot\|f\|_{2}=e^{Q(t)} \cdot\|f\|_{2}, \tag{2.3}
\end{equation*}
$$

where we use $F(0)=f$ and we define a new function $Q(t)=\nu|\alpha|^{2} t+$ $2 M|\alpha| \sqrt{t}$.

In the case of $p \geq 2$, we apply the following lemma on differential inequality to (2.2).

Lemma 2.2 Assume that $g(t) \in L^{1}(0, T)$ and $h(t)$ on $[0, T]$ hold

$$
\int_{0}^{t} h(s) \cdot \exp \left(2 p \int_{0}^{s} g(\theta) d \theta\right) d s>0
$$

for any $t \in[0, T]$ and a natural number p. If a function $u \in C^{1}([0, T])$ satisfies

$$
\frac{d}{d t} u(t) \leq-h(t) \cdot u^{1+2 p}(t)+g(t) \cdot u(t)
$$

for any $t \in[0, T]$, then we obtain

$$
(u(t))^{2 p} \leq \frac{\exp \left(2 p \int_{0}^{t} g(s) d s\right)}{2 p \int_{0}^{t} h(s) \cdot \exp \left(2 p \int_{0}^{s} g(\theta) d \theta\right) d s}
$$

for any $t \in[0, T]$.
Proof. Putting $v(t)=u(t) \cdot e^{-\int_{0}^{s} g(s) d s}$, then the differential inequality for $u(t)$ implies

$$
\begin{aligned}
\frac{d}{d t}\left(v^{-2 p}\right) & =-2 p v^{-2 p-1}\left(u^{\prime}-g\right) e^{-\int_{0}^{t} g(s) d s} \\
& \geq 2 p e^{(2 p+1) \int_{0}^{t} g(s) d s} u^{-2 p-1} \cdot h u^{2 p+1} e^{-\int_{0}^{t} g(s) d s} \\
& =2 p h(t) e^{2 p \int_{0}^{t} g(s) d s}
\end{aligned}
$$

Thus integrating in $[0, t]$ and neglecting $1 / u^{2 p}(0)$, we have

$$
\frac{e^{2 p \int_{0}^{t} g(s) d s}}{u^{2 p}(t)} \geq 2 p \int_{0}^{t} h(s) e^{2 p \int_{0}^{s} g(\theta) d \theta} d s
$$

Hence we get our assertion.
Applying Lemma 2.2 to (2.2) with $p \geq 2$ as $u(t)=\|F(t)\|_{p}$ and $q(t)=$ $q_{p}(t)$, we obtain

$$
\begin{equation*}
\|F(t)\|_{2 p}^{2 p} \leq \frac{e^{2 p Q_{p}(t)}}{\int_{0}^{t} C \nu\|F(s)\|_{p}^{-2 p} \cdot e^{2 p Q_{p}(s)} d s} \tag{2.4}
\end{equation*}
$$

for $t \in[0, T]$, where $Q_{p}(t) \equiv \int_{0}^{t} q_{p}(s) d s=p \nu|\alpha|^{2} \cdot t+2 M|\alpha| \cdot \sqrt{t}$. Now we set

$$
w_{p}(t) \equiv \sup \left\{s^{(p-2) /(2 p)} \cdot\|F(s)\|_{p} ; 0 \leq s \leq t\right\}
$$

and obtain

$$
\begin{aligned}
& \int_{0}^{t} C \nu\|F(s)\|_{p}^{-2 p} \cdot e^{2 p Q_{p}(s)} d s \\
& \geq C \nu\left(w_{p}(t)\right)^{-2 p} \cdot \int_{0}^{t} s^{p-2} \cdot e^{2 p Q_{p}(s)} d s
\end{aligned}
$$

Moreover for $\kappa=1-\delta /\left(p^{2}\right)$ with $0<\delta \leq p^{2}$, we have

$$
\begin{aligned}
\int_{0}^{t} s^{p-2} \cdot e^{2 p Q_{p}(s)} d s & \geq \int_{\kappa t}^{t} s^{p-2} \cdot e^{2 p Q_{p}(s)} d s \geq e^{2 p Q_{p}(\kappa t)} \cdot \int_{\kappa t}^{t} s^{p-2} d s \\
& =e^{2 p Q_{p}(\kappa t)} \cdot \frac{\left(1-\kappa^{p-1}\right) t^{p-1}}{p-1}
\end{aligned}
$$

Hence from (2.4) it follows that

$$
\begin{aligned}
& \left(t^{((2 p)-2) /(2 \cdot(2 p))} \cdot\|F(t)\|_{2 p}\right)^{2 p} \\
& \quad \leq \frac{(p-1) \cdot\left(w_{p}(t)\right)^{2 p}}{C \nu \cdot\left(1-\kappa^{p-1}\right)} \cdot e^{2 p\left(Q_{p}(t)-Q_{p}(\kappa t)\right)}
\end{aligned}
$$

Since $1-\kappa^{p-1} \geq 1-\kappa=\delta /\left(p^{2}\right)$, we have $2 p\left(Q_{p}(t)-Q_{p}(\kappa t)\right) \leq 2 \delta Q(t)$. Thus we get

$$
\begin{aligned}
\left(t^{((2 p)-2) /(2 \cdot(2 p))} \cdot\|F(t)\|_{2 p}\right)^{2 p} & \leq \frac{p^{2}(p-1) \cdot\left(w_{p}(t)\right)^{2 p}}{C \nu \delta} \cdot e^{2 \delta Q(t)} \\
& \leq \frac{p^{3} \cdot\left(w_{p}(t)\right)^{2 p}}{C \nu \delta} \cdot e^{2 \delta Q(t)}
\end{aligned}
$$

This arrives at

$$
\begin{equation*}
\frac{w_{2 p}(t)}{w_{p}(t)} \leq\left(\frac{p^{3}}{C \nu \delta}\right)^{1 /(2 p)} \cdot e^{(\delta / p) Q(t)} \tag{2.5}
\end{equation*}
$$

for $0 \leq t \leq T$. Here for $p=2^{k}$ we put $v_{k}(t)=w_{p}(t)$ provided that k is a natural number. Now we use (2.5) inductively to get

$$
\begin{aligned}
\sup _{k \geq 1} v_{k}(t) & \leq \sup _{k \geq 1} 8^{A_{k}} \cdot(C \nu \delta)^{B_{k}} \cdot e^{\delta Q(t) C_{k}} \cdot v_{1}(t) \\
& \leq \frac{C_{1}}{\sqrt{\nu \delta}} e^{\delta Q(t)} \cdot v_{1}(t)
\end{aligned}
$$

where $A_{k}=\sum_{j=1}^{k} j 2^{-(j-1)}, B_{k}=\sum_{j=1}^{k} 2^{-(j+1)}$, and $C_{k}=\sum_{j=1}^{k} 2^{-j}$.
Since $v_{k}(t)=\sup s^{(p-2) /(2 p)} \cdot\|F(t)\|_{p}$ with $p=2^{k}$, this estimate and (2.3) imply that

$$
\begin{equation*}
\|F(t)\|_{\infty} \leq \frac{C}{\sqrt{\nu \delta t}} e^{(1+\delta) Q(t)} \cdot\|f\|_{2} \tag{2.6}
\end{equation*}
$$

for $F(t, x)=e^{-\alpha \cdot x} \int_{\boldsymbol{R}^{2}} \Gamma_{u}(t, x ; 0, y) e^{\alpha \cdot y} f(y) d y$.

Now we prove the estimate in Theorem 1. We define a operator $\mathcal{F}_{u}(t)$: $L^{2}\left(\boldsymbol{R}^{2}\right) \rightarrow L^{\infty}\left(\boldsymbol{R}^{2}\right)$ by $\mathcal{F}_{u}(t) f=F(t, x)$. From (2.6) we have

$$
\left\|\mathcal{F}_{u}(t) f\right\|_{\infty} \leq \frac{C}{\sqrt{\nu \delta t}} e^{(1+\delta) Q(t)} \cdot\|f\|_{2} .
$$

At the same time, since the fundamental solution which define the adjoint operator $\left(\mathcal{F}_{u}(t)\right)^{*}: L^{1}\left(\boldsymbol{R}^{2}\right) \rightarrow L^{2}\left(\boldsymbol{R}^{2}\right)$ equals to $\Gamma_{(-u)}$, then we can see that $\left(\mathcal{F}_{u}(t)\right)^{*}$ is operator from $L^{2}\left(\boldsymbol{R}^{2}\right)$ to $L^{\infty}\left(\boldsymbol{R}^{2}\right)$. So we also obtain

$$
\left\|\left(\mathcal{F}_{u}(t)\right)^{*} f\right\|_{\infty} \leq \frac{C}{\sqrt{\nu \delta t}} e^{(1+\delta) Q(t)} \cdot\|f\|_{2} .
$$

Thus by duality

$$
\left\|\mathcal{F}_{u}(t) f\right\|_{2} \leq \frac{C}{\sqrt{\nu \delta t}} e^{(1+\delta) Q(t)} \cdot\|f\|_{1}
$$

Here, we put $v(\cdot)=u(\cdot+t)$. Then we have $\mathcal{F}_{u}(2 t)=\mathcal{F}_{v}(t) \circ \mathcal{F}_{u}(t)$. Hence we obtain

$$
\left\|\mathcal{F}_{u}(2 t) f\right\|_{\infty} \leq \frac{C}{\sqrt{\nu \delta t}} e^{(1+\delta) Q(t)} \cdot\left\|\mathcal{F}_{v}(t) f\right\|_{2} \leq \frac{C^{2}}{\nu \delta t} e^{2(1+\delta) Q(t)} \cdot\|f\|_{1}
$$

In this we put $f(y)=\rho_{\varepsilon}(y-z)$ for Friedrichs' mollifier ρ_{ε} and let $\varepsilon \rightarrow 0$, then we get

$$
\begin{equation*}
\Gamma_{u}(2 t, x ; 0, z) \leq \frac{C^{2}}{\nu \delta t} e^{2(1+\delta) Q(t)+\alpha \cdot(x-z)} . \tag{2.7}
\end{equation*}
$$

In (2.7) we put $\alpha=-\mu(x-z) / t$ for any positive μ, then we have

$$
\begin{align*}
& 2(1+\delta) Q(t)+\alpha \cdot(x-z) \\
& \quad=\left\{2 \nu(1+\delta) \mu^{2}-\mu\right\} \cdot \frac{|x-z|^{2}}{t}+4(1+\delta) M \mu \cdot \frac{|x-z|}{\sqrt{t}} . \tag{2.8}
\end{align*}
$$

Furthermore for any positive ε we have

$$
4(1+\delta) M \mu \cdot \frac{|x-z|}{\sqrt{t}} \leq \frac{4(1+\delta)^{2} M^{2} \mu}{\varepsilon}+\varepsilon \mu \cdot \frac{|x-z|^{2}}{t} .
$$

Here we put $\mu=1 /(2 \sqrt{N} \nu(1+\delta))$ and $\varepsilon=1-2 / \sqrt{N}$ for any $N>4$. Then we obtain

$$
2(1+\delta) Q(t)+\alpha \cdot(x-z) \leq \frac{-|x-z|^{2}}{2 N \nu(1+\delta) t}+\frac{2(1+\delta)}{\nu(\sqrt{N}-2)} \cdot M^{2}
$$

Hence by (2.7) we conclude

$$
\Gamma_{u}(t, x ; 0, z) \leq \frac{2 C^{2} e^{K_{1} M^{2}}}{\nu \delta t} e^{-K_{2}|x-z|^{2} /(\nu t)}
$$

where the constants K_{1} and K_{2} are as follows

$$
K_{1}=\frac{2(1+\delta)}{\nu(\sqrt{N}-2)} \quad \text { and } \quad K_{2}=\frac{1}{N(1+\delta)} .
$$

This proves our theorem 1 .
Remark. From the proof we have

$$
\begin{gathered}
\Gamma_{u}(t, x ; s, y) \leq \frac{C}{\nu \delta(t-s)} \cdot \exp \left\{-\frac{1}{\nu(1+\delta)}\left(\frac{1}{\sqrt{N}}-\frac{1}{N}\right)\right. \\
\left.\cdot \frac{|x-y|^{2}}{t-s}+\frac{2^{3 / 2} M}{\sqrt{N}} \cdot \frac{|x-y|^{2}}{\sqrt{t-s}}\right\}
\end{gathered}
$$

for any $N>0$. This follows from (2.3) and (2.8) and $\mu=1 /(2 \sqrt{N} \nu(1+\delta))$.
Acknowledgment We thank Professor Y. Giga for useful discussions with him.

References

[1] Ben-Artzi M., Global solution of two-dimensional Navier-Stokes and Euler equations. Arch. Rational Mech. Anal. 128 (1994), 329-358.
[2] Davies E.B., Explicit constants for Gaussian upper bounds on heat kernels. to appear.
[3] Fabes E.B. and Stroock D.W., A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96 (1986), 327-338.
[4] Giga Y., Miyakawa T. and Osada H., Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104 (1988), 223-250.
[5] Kato T., The Navier-Stokes equation for an incompressible fluid in \boldsymbol{R}^{2} with a measure as the initial vorticity. Differential and Integral Equations, 7 (1994), 949966.
[6] Miyakawa T. and Yamada M., Planar Navier-Stokes flows in a bounded domain with measures as initial vorticities. Hiroshima Math. J. 22 (1992), 401-420.
[7] Nash J., Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931-954.

Shin'ya Matsui
Hokkaido Information University
59-2, Nishi-Nopporo, Ebetsu, Japan
E-mail: matsui@do-johodai.ac.jp

Satoshi Tokuno
410, Hanzawa, Kurobe, Japan

[^0]: 1991 Mathematics Subject Classification : Primary 35Q30, Secondary 76D05.
 *Partially supported by Grant-in-Aid for Encouragement of Young Scientist (No. 07740126), Ministry of Education, Science and Culture of Japan.

