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Generating alternating groups

Naoki CHIGIRA
(Received March 11, 1996; Revised June 21, 1996)

Abstract. We will give an elementary proof of the following: For any nonidentity
element x in the alternating group A_{n} on n symbols, there exists an element y such that
x and y generate A_{n} .
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Let S_{n} be the symmetric group on the symbols \Omega=\{1,2, \ldots, n\} and
A_{n} the alternating group on \Omega . Isaacs and Zieschang [1] give an elementary
proof of the following:

Theorem A Assume that n\neq 4 and let x\in S_{n} be an arbitrary noniden-
tity element. Then there exists an element y\in S_{n} such that S_{n}=\langle x, y\rangle .

They say “A result similar to Theorem A is known to be valid for the
alternating group A_{n} for all values of n . Although it seems likely that a
proof of this result along the lines of our proof of Theorem A might exist,
there are technical difficulties in some cases, and we have not actually found
such a proof.”

In this note, we will give a proof for A_{n} along the lines of the proof of
Theorem A by Isaacs and Zieschang [1].

Theorem Let x\in A_{n} be an arbitrary nonidentity element. Then there
exists an element y\in A_{n} such that A_{n}=\langle x, y\rangle .

A nonempty subset \triangle\subseteq\Omega is said to be a block for G if \triangle^{x} is either
disjoint from or equal to \triangle for each element x\in G . A group G is said to
be primitive if the only blocks for G are the singleton subset or the whole
set \Omega .

The following theorems and lemma play an important role in our proof.

Theorem (Jordan) Suppose that G is a primitive subgroup of S_{n} . If G
contains a 3-cycle, then either G=S_{n} or G=A_{n} .
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Proof. See [1, Theorem (Jordan)]. \square

Theorem B Let x = (1, 2, 3, \ldots, m) for odd number m and y =

(1, 2, 3, , n) for odd number n , where 1<m<n . Then A_{n}=\langle x, y\rangle .

Proof. See [1, Theorem B]. \square

Lemma 1 Suppose that G is a transitive subgroup of S_{n} on \Omega .
(1) Let \triangle be a block for G. Then |\triangle| divides n . Especially, if \triangle\neq\Omega ,

then |\triangle|\leq n/2 .
(2) Let \alpha\in\Omega . Then G is primitive on \Omega if the only blocks containing

\alpha are \{\alpha\} and \Omega .

Proof. See [1, Lemma] and the above paragraph. \square

It is easy to prove the following:

Lemma 2 Suppose that G is a transitive subgroup of S_{n} on \Omega .
(1) If n is prime, then G is primitive on \Omega .
(2) If G contains a(n-1) -cycle, then G is primitive on \Omega .

Proof. (1) Let \triangle\subseteq\Omega be a block for G containing 1. By Lemma 1 (1),
\triangle=\{1\} or \Omega . Lemma 1 (2) yields the result.

(2) We may assume that G contains a (n-1)-cycle x=(2,3, . , n) .
Let \triangle\subseteq\Omega be a block for G containing 1. Since \triangle^{x}\ni 1^{x}=1 , we have
\triangle^{x}=\triangle . If \triangle contains \alpha(2\leq\alpha\leq n) , we have \triangle=\Omega by the action of x .
This is a contradiction. This yields that only blocks containing 1 are {1}
and \Omega . By Lemma 1 (2), we have the result. \square

Lemma 3 Let y= (2, 3, \ldots, n) for even number n and x be one of the
following elements:

(1) x=(1,2,3, \ldots, m) if n>m>1 and m is odd.
(2) x=(1,2)(3,4) if n\geq 4 .
(3) x=(1,2,3)(4,5,6) if n\geq 6 .
(4) x=(1,2,3,4)(5,6) if n\geq 6 .
(5) x=(1,2)(3,4)(5,6,7) if n\geq 8 .
(6) x=(1,2,3,4,5)(6,7,8) if n\geq 8 .
(7) x=(1,2,3)(4,5,6)(7,8,9) if n\geq 10 .

Then A_{n}=\langle x, y\rangle .

Proof. It is easily seen that \langle x, y\rangle is a transitive subgroup of A_{n} on \Omega in
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each case. By Lemma 2 (2) and Jordan’s theorem, it suffices to show that
\langle x, y\rangle contains a 3-cycle.

(1) If n\neq m+1 , then ((xyx^{-1}y^{-1})(x^{-1}y^{-1}xy))^{2}=(1, m+1, n) . If
n=m+1 , then xy^{-1}=(1, m+1, m) .

(2) If n\geq 8 , then (x(y^{-3}xy^{3}))^{2}=(1,5,2) . If n=6, then
(y^{-2}xy^{2})((y^{-3}xy^{3})^{-1}x(y^{-3}xy^{3}))=(1,3,4) . If n=4, then y=(2,3,4) .

(3) If n\geq 8 , then (x(y^{-1}xy)(y^{-2}xy^{2})^{-1})^{2}=(4,7,8) . If n=6, then
x^{-1}y=(1,4,2) .

(4) If n\geq 8 , then (x(y^{-2}xy^{2})^{-1})^{2}=(1,3,2) . If n=6, then x^{-1}y=

(1,5,2) .
(5) We see that x^{2}=(5,7, 6) .
(6) We see that x^{5}=(6,8,7) .
(7) We see that (x(y^{-1}xy))^{4}=(5,7,9) . \square

Proof of Theorem. We consider first the case where n is odd. It is trivial
when n=3. We may assume that n\geq 5 . If x is a 3-cycle, then we can
suppose x=(1,2,3) and we have \langle x, y\rangle=A_{n} for y=(1,2,3. , n) by
Theorem B. Therefore we can assume that x moves at least four points.

Suppose that n\not\equiv 1 (mod 3). We can suppose that 1^{x}=2 and 4^{x}=5 .
We take y=(2,3,4)(5,6, \ldots, n) and let G=\langle x, y\rangle . Then G is a transitive
subgroup of A_{n} on \Omega and G contains a 3-cycle y^{n-4} . It suffices to show that
G is primitive. Let \triangle\subset\infty\Omega be a block for G containing 1. If n=5 , then G is
primitive on \Omega by Lemma 2 (1). We may assume that n\geq 9 . If \triangle contains
\alpha\in\{5,6, \ldots, n\} then |\triangle|\geq n-3>n/2 because \triangle^{y}=\triangle and n\geq 9 . This
is a contradiction by Lemma 1 (1). This yields \triangle\subseteq\{1,2,3,4\} . Since |\triangle|

divides n , |\triangle| is odd. If |\triangle|=3 , it is easily seen that \triangle\neq\triangle^{y} . This yields
that G is primitive on \Omega by Lemma 1 (2). By Jordan’s theorem, we have
G=A_{n} .

Suppose that n\equiv 1 (mod 3). We may assume that n\geq 7 . We can
suppose that 3^{x}=4 and 5^{x}=6 . We take y=(1,2,3)(4,5)(6,7, \ldots, n) and
let G=\langle x, y\rangle . Then G is a transitive subgroup of A_{n} on \Omega and G contains
a 3-cycle y^{n-5} . Let \triangle\subseteq\Omega be a block for G containing 1. If n=7. then
G is primitive on \Omega by Lemma 2 (1). We may assume that n\geq 13 . If \triangle

contains a symbol \alpha\in\{6,7, \ldots, n\} , then |\triangle|\geq n-4>n/2 since \triangle^{y^{3}}=\triangle

and n\geq 13 , a contradiction by Lemma 2 (1). We have \triangle\subseteq\{1,2,3,4,5\} .
Since |\triangle| divides n , |\triangle| is odd and |\triangle|\neq 3 . If \triangle=\{1,2,3,4,5\} , then
\triangle^{x}=\{1^{x}, 2^{x}, 4, 4^{x}, 6\} , a contradiction. This yields that G is primitive on
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\Omega . By Jordan’s theorem, we have G=A_{n} .
Now, assume that n is even. Suppose that n\not\equiv 0 (mod 3). It is trivial

when n=4. We may assume that n\geq 8 . We can suppose that 3^{x}=4 .
We take y=(1,2,3)(4,5, . . , n) and let G=\langle x, y\rangle . Then G is a transitive
subgroup of A_{n} on \Omega and G contains a 3-cycle y^{n-3} . Let \triangle\subseteq\Omega be a
block for G containing 1. If \triangle contains a symbol \alpha\in\{4,5, , n\} , then
|\triangle|\geq n-2>n/2 since \triangle^{y^{3}}=\triangle and n\geq 8 . This is a contradiction by
Lemma 1 (1). We have \triangle\subseteq\{1,2,3\} . Since |\triangle| divides n , \triangle\neq\{1,2,3\} . If
|\triangle|=2 , it is easily seen that \triangle\neq\triangle^{y} . This yields that G is primitive on \Omega

by Lemma 1 (2). By Jordan’s theorem, we have G=A_{n} .
We may suppose that n\equiv 0 (mod 3). By Lemma 3 (1)-(4) , the theorem

holds where n=6. We may assume that n\geq 12 . If x moves at most seven
points, then there exists a (n-1)-cycle y such that \langle x, y\rangle=A_{n} by Lemma
3 (1)-(5) . Hence we may assume 1^{x}=2,3^{x}=4,5^{x}=6 and 7^{x}=8 .
We take y=(1,2,3)(4,5)(6,7)(8,9, \ldots, n) and let G=\langle x, y\rangle . Then G is a
transitive subgroup of A_{n} on \Omega and G contains a 3-cycle y^{2(n-7)} . Let \triangle\subsetarrow\Omega

be a block for G containing 1. If \triangle contains a symbol \alpha\in\{8,9, \ldots , n\} and
if n>12 , then |\triangle|\geq n-6>n/2 since \triangle^{y^{3}}=\triangle . This is a contradiction
by Lemma 1 (1). If n=12 and \triangle contains a symbol \alpha\in\{8,9,10,11,12\} ,
then \triangle\supseteq\{1,8,9,10,11,12\} . In this case we have \triangle=\Omega since \triangle^{y}=\triangle ,
a contradiction. We have \triangle\subseteq\{1,2,3,4,5,6,7\} . If |\triangle|\geq 2 , we can get a
contradiction in any cases by the action of x , y or y^{3} on \triangle . This yields
that G is primitive on \Omega by Lemma 1 (2). By Jordan’s theorem, we have
G=A_{n} . \square
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