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A remark on the action of PGL(2, q) and PSL(2, q)
on the projective line
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Abstract. Let q be a prime power, K=GF(q) the finite field with q elements, \Omega=

K\cup\{\infty\} the project line over K . Let \lambda=PGL(2, q) and \prime J\backslash =PSL(2, q) be the linear
fractional group on \Omega and the special linear fractional group on \Omega , respectively. Let U be
any non-trivial subgroup of the (cyclic) multiplicative group K\backslash \{0\} and set E=U\cup\{\infty\} .
The main purpose of this note is to determine the structures of \lambda_{E} and ;Jc_{E} , the setwise
stabilizer of E in \star and /\rfloor\backslash , respectively. Then, as an application, by taking various q and
U , we obtain various 3-designs (\Omega, E^{\lambda}) and 3 (resp. 2)-designs (\Omega, E^{J|\backslash }) in case q\equiv-1 ,
(resp. q\equiv 1 ) (mod 4), which contain new designs.
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1. Introduction and notation

Throughout this note, we fix the following notation.

p : any prime number
q : a power of p
K:=GF(q) finite field with q elements
\Omega:=K\cup\{\infty\} projective line over K
F:=K\backslash \{0\} multiplicative group of K
\star^{1)}:=PGL(2, q)= \{x\mapsto(ax+b)/(cx+d)|a , b , c , d\in K ,

ad-bc\in F\}
/\rfloor\backslash ^{2)}:=PSL(2, q)= {x – (ax+b)/(cx+d)|a , b , c , d\in K ,

ad-bc\in F^{2}\}

m : a divisor of q-1 with m>1
U : a subgroup of order m of the (cyclic)

group F
E:=U\cup\{\infty\}
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1) ‘

\lambda’(dai) means ‘larg\’e.
2) ‘/\rfloor\backslash

’ (shou) means ‘small’.
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\star_{E} : setwise stabilizer of E in \star

/\rfloor\backslash _{E} : setwise stabilizer of E in ;\rfloor\backslash

\overline{D}(q, E):=(\Omega, E^{\star}) block design on the point set \Omega , whose
blocks are the images of E under the
group \star

D(q, E):=(\Omega, E^{;\rfloor\backslash }) block design on the point set \Omega , whose
blocks are the images of E under the
group ;\rfloor\backslash

The main purpose of this short note is to determine the structures
of *_{E} and /\rfloor\backslash _{E} . This is a generalization of [3, Proposition 3.1] and [4,
Theorem].As– an application, by taking various q and U, we obtain various
3-designs D(q, E) and 3 (resp. 2)-designs D(q, E) in case q\equiv-1 (resp.
q\equiv 1) (mod 4). Some of these designs fill in several blanks in the table of
Chee, Colbourn, Kreher [1].

2. Theorems and their proofs

Theorem A Set H:=\star_{E} . Then the following holds:
(i) If m=2, whence U=\{1, -1\} , then H\cong\Sigma_{3} , the symmetric group

of degree 3, and H is generated by the transformations x – -x and
x\mapsto(x-3)/(x+1) .

(ii) If m=3, whence U=\{1, \beta, \beta^{2}\} for some nontrivial cubic root of
unity \beta , then H\cong A_{4} , the alternating group of degree 4, and H is
generated by the transformations x\mapsto\beta x , and x\mapsto(x+2)/(x-1) .

(iii) If U is the multiplicative group of some subfield M of K, then H is
conjugate in \star to the group of all affine transformations x\mapsto ax+b ,
a\in U , b\in M , and H is a Frobenius group of order m(m+1) .

(iv) In all other cases, H=\{x\mapsto ux|u\in U\} is cyclic of order m .

Proof First, we show that the stabilizer H_{\infty} of \infty in H also stabilizes the
point 0, and equals the group C:=\{x\mapsto ux|u\in U\} . Clearly, C stabilizes
0 and is contained in H_{\infty} . Conversely, let \sigma : x\mapsto ax+b(a\in F. b\in K) be
any element of H_{\infty} and take an element u\in U\backslash \{1\} . Then

aU+b=U^{\sigma}=U=uU=u(aU+b)=aU+ub ,

and so aU=aU+c, where c=b(u-1) . Therefore, adding the number c
to the elements of aU only permutes these elements. Hence, the set aU is
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a union of left cosets of the subgroup \langle c\rangle of the additive group (K, +) . But
the field K has characteristic p , so the subgroup \langle c\rangle has order 1 or p . As
the order of aU equals the order of U , and m=|U| is a divisor of q-1 ,
the order of aU can not be divisible by p , hence \langle c\rangle has order 1 and c=0.
This forces b=0, as u was chosen to be different from 1. Consequently,
a\in U and \sigma\in C . Thus, we have H_{\infty}=C , which acts regularly on U , is
isomorphic to U , and hence cyclic of order m .

Assume H is not transitive on E , then the point \infty must be fixed by
H and H=H_{\infty} , and so H=C by the above. Then we are in case (iv).

Assume that H is transitive on E . Then, as C=H_{\infty} acts regularly on
U , the group H acts sharply 2-transitively on the m+1 points of E and
so is a Frobenius group of order m(m+1) (see [2] V.8.2). Hence H has a
normal subgroup N , which is regular on E, and C=H_{\infty} acts transitively
on the non-identity elements of N . This implies that N is an elementary
abelian r-group for some prime r , and m+1 is some power of the prime
r (see [2] II.2.3). As H is transitive on nonidentity elements of N , there
is no proper nontrivial subgroup of N normal in H. This implies that N
is contained in /\rfloor\backslash . Assume r is different from 2 and p. Then N is cyclic
by Dickson’s list of subgroups of /\rfloor\backslash =PSL(2, q) (see [2] II.8.27). Hence

|N|=r=m+1 . Moreover, the normalizer of N in /\rfloor\backslash is dihedral (see [2]
II.8.3-8.5) and N is a maximal cyclic subgroup of H . As H\cap;\rfloor\backslash has order
m(m+1) or m(m+1)/2 and is contained in the normalizer of Nin/[\backslash , we
see that m/2\leq 2 and m\leq 4 . Therefore, r=3 or r=5.

Assume r=5 . Then there is a Frobenius group of order 20 contained
in \star=PGL(2, q)\subset PSL(2, q)2 , which contradicts [2] II.8.27. Hence r=3,
and m=2 . Clearly, there is only one subgroup U of order 2 in F. hence
we are in case (i). Conversely, for p odd, the transformations x\mapsto-x and
x\mapsto(x-3)/(x+1) generate a subgroup H of \star isomorphic to \Sigma_{3} acting
2-transitively on E=\{\infty\}\cup\{1, -1\} .

Assume r=2, different from p, whence N is an elementary abelian 2-
group and from Dickson’s list it follows that N has order 4 and m=3 . Now
we are in case (ii). Conversely, if 3 divides q-1 , take some nontrivial cubic
root of unity \beta , then the transformations x\mapsto\beta x and x\mapsto(x+2)/(x-1)

generate a subgroup H of \star isomorphic to A_{4} acting 2-transitively on E=
\{\infty\}\cup\{1, \beta, \beta^{2}\} .

Assume r=p. The sharply 2-transitive group H on E now has a
normal Sylow p subgroup N . It is easily seen that the group N must have
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a unique fixed point \alpha on \Omega , left invariant by the whole of H , in particular
by C=H_{\infty} , and so \alpha must be one of the two fixed points of C , which are
\infty and 0. As N acts regularly on E=U\cup\{\infty\} , the unique fixed point of
N must be 0. Hence H fixes the point 0.

Consider the element t : x\mapsto 1/x of \star . It interchanges the points 0 and
\infty and leaves invariant the set U . It is easily verified that the transformation
t normalizes C and maps E onto the set M:=E^{t}=\{0\}\cup U . And H^{t}

acts sharply 2-transitively on E^{t} , fixing the point \infty . Hence H^{t} acts on \Omega

through transformations x – ax+b, a\in F . b\in Kt It is easily seen that
elements of order p in this group act as transformations x\mapsto x+b .

We claim that M is a subfield of K with multiplicative group U , and the
group H^{t} consists of all transformations x\mapsto ax+b , b\in M , a\in U\tau Clearly,
as 0\in E^{t} , and since N^{t} is an elementary abelian p-group, the Frobenius
kernel N^{t} of H^{t} consists of the transformations x\mapsto x+b , b\in M . As
N^{t} is a group, M is an additive subgroup of K . Clearly, M\backslash \{0\}=U is a
(multiplicative) subgroup of F , and so M is a subfield of K . Still, C=C^{t}

acts on the projective line by transformations x\mapsto ax , a\in U , and so the
group H^{t} consists of all the transformations x – ax+b, a\in U , b\in M , and
we are in case (iii).

Conversely, if M is some subfield of K, and U=M\backslash \{0\} , then consider
the group A of all transformations x\mapsto ax+b , a\in U , b\in M . It acts
sharply 2-transitively on the subset M of \Omega . The subgroup A^{t} of \star for the
transformation t : x\mapsto 1/x , acts 2-transitively on E=\{\infty\}\cup U . \square

Remark. If U is a subgroup of F^{2} , then C is contained in /\rfloor\backslash , and the
statements of the theorem hold for /\rfloor\backslash instead of \star . In particular, the
stabilizer of E in \star is contained in /\rfloor\backslash . If U does not consist of squares
only, the stabilizer of E in \star contains properly the stabilizer of E in /\rfloor\backslash .
Moreover we note that if 3 divides q-1 , then -3 is a square in K , whence
the involution x – (x+2)/(x-1) in (ii) of Theorem A is contained in
/\rfloor\backslash . In fact, since x^{2}+x+1=(x-\beta)(x-\beta^{2}) for a nontrivial cubic root
of unity \beta , by setting x=1 , we have 3=(1-\beta)(1-\beta^{2})=(1-\beta) \beta^{2}

(\beta-1)=-\beta^{2}(\beta-1)^{2} .

From this remark, we easily derive the following theorem.

Theorem B Set H:=/\rfloor\backslash _{E} . Then the following holds:
(i) If m=2, whence U=\{1, -1\} and q is odd, then H\cong\Sigma_{3} , and
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H is generated by x – -x, x\mapsto(x-3)/(x+1) , if-1 is a square
in F , whereas H\cong A_{3} , and H is generated by the transformation
x\mapsto(x-3)/(x+1) , if-1 is not a square in F.

(ii) If m=3, whence U=\{1, \beta, \beta^{2}\} for some nontrivial cubic root of
unity \beta , then H\cong A_{4} , and H is generated by the transformations
x – \beta x , and x – (x+2)/(x-1) .

(iii) If U is the multiplicative group of some subfield M of K , then H is
conjugate in \star to the group of all affine transformations x\mapsto ax+b ,
a\in U\cap F^{2} , b\in M_{j} hence H is a Frobenius group of order m(m+1)
or m(m+1)/2 .

(iv) Otherwise, H=\{x\mapsto ux|u\in U\cap F^{2}\} is cyclic of order m or m/2 .

3. Application of Theorems

We recall a well-known general fact that, for a t-homogeneous group H
on a finite set \Gamma with |\Gamma|=v and a subset A of \Gamma with |A|=k\geq t , the
pair (\Gamma, A^{H}) is a t-(v, k , \lambda ) design, where A^{H} is the set of images of A under

the group H, \lambda=|H| (\begin{array}{l}kt\end{array}) /|H_{A}| (\begin{array}{l}vt\end{array}) and H_{A} is the setwise stabilizer of

A in H . Since \star is 3-homogeneous on \Omega of order (q+1)q(q-1) and ;\rfloor\backslash is 3
(resp. 2)-homogeneous on \Omega of order (q+1)q(q-1)/2 in case q\equiv-1 (resp.
q\equiv 1) (mod 4), we have at once

Lemma The following holds.
(1) \overline{D}(q, E) is a 3-(q+l, |E| , |E|(|E|-1) (|E|-2)/|\star_{E}| ) design.
(2) (i) If q\equiv-1 (mod 4), then

D(q, E) is a 3-(q+l, |E| , |E|(|E|-1) (|E|-2)/2|/\lrcorner\backslash _{E}| ) design.
(ii) If q\equiv 1 (mod 4), t/ien

D(q, E) is a 2-(g+l, |E| , |E|(|E|-1) (q-1)/2|/\rfloor\backslash _{E}| ) design.

It is clear, that for any choice of E , the designs \overline{D}(q, E) and D(q, E)
coincide, if \star=/\rfloor\backslash , i.e. if p=2 , or if p>2 and |\star_{E}|=2|/1_{E}^{\backslash }| . In case
p>2 and \star_{E}=/\rfloor\backslash _{E} , the design \overline{D}(q, E) has twice as many blocks as the
design D(q, E) .

Assume p>2 . Then the situation is clearly well understood in case
(i), i.e. for m=2 , where the blocks of \overline{D}(q, E) are just all 3-subsets of \Omega .
In cases (iii) and (iv), the situation depends on the \underline{question} , whether 2m
divides q-1 or not. Remarkably, in case (ii), always D(q, E) and D(q, E)
are different.
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By combining the lemma with Theorems A and B , and taking various
q and U , we obtain various 3-and 2-designs. In a particular, [3, Theorem
3.2] (resp. [4, Theorem]) dealt with the case q\equiv-1 (mod 4) and U=F^{2}

(resp. q is a prime and q-1=2^{e}m , m odd, e\geq 2 , and U=F^{2^{i}} , 1\leq i\leq e).
Here, we give only examples which fill in blanks in the table of [1] (the

new ones are marked with * , whereas desigs given already in [3, 4] are
marked with*/).

q q-1 U D(q, E) : 2- or 3- (q+1, k, \lambda) \overline{D}(q, E) : 3- (q+1, k, \lambda)

F^{2} 2-(26, 13, 12 . 13) 3- (26, 13, 11 \cdot 13)^{*}

F^{3} 2- (26, 9, 72 \cdot 3) 3- (26, 9, 21\cdot 3)^{*}

5^{2} 2^{3} . 3 F^{4} 2- (26, 7, 42 \cdot 2)^{*} 3-(26, 7, 35)
F^{6} 2- (26, 5, 4 \cdot 3) 3- (26, 5, 3 )^{*}

F^{8} 2- (26, 4, 6 \cdot 2) 3-(26, 4, 2)
3^{3} 2 . 13 F^{2} 3- (28, 14, 6 . 14 )^{*\prime} 3- (28, 14, 6 \cdot 28)^{*}

29 2^{2} . 7

F^{2} 2-(30, 15, 14 . 15) 3- (30, 15, 13 \cdot 15)^{*\prime}

F^{4} 2- (30, 8, 28\cdot 4)^{*\prime} 3- (30, 8, 6 \cdot 8 )^{*\prime}

F^{7} 2- (30, 5, 4 \cdot 35) 3- (30, 5, 3\cdot 5)^{*}
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