# A remark on the action of $P G L(2, q)$ and $P S L(2, q)$ on the projective line 

（Dedicated to Professor Takeshi Kondo on his sixtieth birthday）

## Shiro Iwasaki and Thomas Meixner

（Received December 25，1995）


#### Abstract

Let $q$ be a prime power，$K=G F(q)$ the finite field with $q$ elements，$\Omega=$ $K \cup\{\infty\}$ the project line over $K$ ．Let 大 $=P G L(2, q)$ and 小 $=P S L(2, q)$ be the linear fractional group on $\Omega$ and the special linear fractional group on $\Omega$ ，respectively．Let $U$ be any non－trivial subgroup of the（cyclic）multiplicative group $K \backslash\{0\}$ and set $E=U \cup\{\infty\}$ ． The main purpose of this note is to determine the structures of 大 $_{E}$ and 小 ${ }_{E}$ ，the setwise stabilizer of $E$ in 大 and 小，respectively．Then，as an application，by taking various $q$ and $U$ ，we obtain various 3－designs（ $\Omega, E^{\text {大 }}$ ）and 3 （resp．2）－designs（ $\Omega, E^{\prime \prime}$ ）in case $q \equiv-1$ ， $($ resp．$q \equiv 1)(\bmod 4)$ ，which contain new designs．


Key words：$P G L(2, q), P S L(2, q)$ ，stabilizer，Frobenius group，design．

## 1．Introduction and notation

Throughout this note，we fix the following notation．

| $p$ | any prime number |
| :---: | :---: |
| $q$ ： | a power of $p$ |
| $K:=G F(q)$ | finite field with $q$ elements |
| $\Omega:=K \cup\{\infty\}$ | projective line over $K$ |
| $F:=K \backslash\{0\}$ | multiplicative group of $K$ |
| 大 $^{1)}:=P G L(2, q)=$ | $\begin{aligned} & \{x \mapsto(a x+b) /(c x+d) \mid a, b, c, d \in K, \\ & \quad a d-b c \in F\} \end{aligned}$ |
| 小 $^{2)}:=P S L(2, q)=$ | $\begin{aligned} & \{x \mapsto(a x+b) /(c x+d) \mid a, b, c, d \in K, \\ & \left.\quad a d-b c \in F^{2}\right\} \end{aligned}$ |
| $m$ ： | a divisor of $q-1$ with $m>1$ |
| $U$ ： | a subgroup of order $m$ of the（cyclic） group $F$ |
| $E:=U \cup\{\infty\}$ |  |

1991 Mathematics Subject Classification：20E07，05B05．
1）＇大＇（dai）means＇large＇．
2）＇小＇（shou）means＇small＇．

$$
\begin{array}{ll}
\text { 大 }_{E}: & \begin{array}{l}
\text { setwise stabilizer of } E \text { in 大 } \\
\text { 小 }_{E}: \\
\widetilde{D}(q, E):=\left(\Omega, E^{\text {大 }}\right)
\end{array} \begin{array}{l}
\text { setwise stabilizer of } E \text { in 小 } \\
\text { block design on the point set } \Omega, \text { whose } \\
\text { blocks are the images of } E \text { under the }
\end{array} \\
\quad \begin{array}{l}
\text { group 大 }
\end{array} \\
D(q, E):=\left(\Omega, E^{\text {小 })} \begin{array}{l}
\text { block design on the point set } \Omega, \text { whose } \\
\text { blocks are the images of } E \text { under the } \\
\text { group 小 }
\end{array}\right.
\end{array}
$$

The main purpose of this short note is to determine the structures of $大_{E}$ and $\boldsymbol{小}_{E}$ ．This is a generalization of［3，Proposition 3．1］and［4， Theorem］．As an application，by taking various $q$ and $U$ ，we obtain various 3－designs $\widetilde{\boldsymbol{D}}(q, E)$ and 3 （resp．2）－designs $\boldsymbol{D}(q, E)$ in case $q \equiv-1$（resp． $q \equiv 1)(\bmod 4)$. Some of these designs fill in several blanks in the table of Chee，Colbourn，Kreher［1］．

## 2．Theorems and their proofs

Theorem A Set $H:=$ 大 $_{E}$ ．Then the following holds：
（i）If $m=2$ ，whence $U=\{1,-1\}$ ，then $H \cong \Sigma_{3}$ ，the symmetric group of degree 3 ，and $H$ is generated by the transformations $x \mapsto-x$ and $x \mapsto(x-3) /(x+1)$ ．
（ii）If $m=3$ ，whence $U=\left\{1, \beta, \beta^{2}\right\}$ for some nontrivial cubic root of unity $\beta$ ，then $H \cong A_{4}$ ，the alternating group of degree 4 ，and $H$ is generated by the transformations $x \mapsto \beta x$ ，and $x \mapsto(x+2) /(x-1)$ ．
（iii）If $U$ is the multiplicative group of some subfield $M$ of $K$ ，then $H$ is conjugate in 大 to the group of all affine transformations $x \mapsto a x+b$ ， $a \in U, b \in M$ ，and $H$ is a Frobenius group of order $m(m+1)$ ．
（iv）In all other cases，$H=\{x \mapsto u x \mid u \in U\}$ is cyclic of order $m$ ．
Proof．First，we show that the stabilizer $H_{\infty}$ of $\infty$ in $H$ also stabilizes the point 0 ，and equals the group $C:=\{x \mapsto u x \mid u \in U\}$ ．Clearly，$C$ stabilizes 0 and is contained in $H_{\infty}$ ．Conversely，let $\sigma: x \mapsto a x+b(a \in F, b \in K)$ be any element of $H_{\infty}$ and take an element $u \in U \backslash\{1\}$ ．Then

$$
a U+b=U^{\sigma}=U=u U=u(a U+b)=a U+u b
$$

and so $a U=a U+c$ ，where $c=b(u-1)$ ．Therefore，adding the number $c$ to the elements of $a U$ only permutes these elements．Hence，the set $a U$ is
a union of left cosets of the subgroup $\langle c\rangle$ of the additive group $(K,+)$ ．But the field $K$ has characteristic $p$ ，so the subgroup $\langle c\rangle$ has order 1 or $p$ ．As the order of $a U$ equals the order of $U$ ，and $m=|U|$ is a divisor of $q-1$ ， the order of $a U$ can not be divisible by $p$ ，hence $\langle c\rangle$ has order 1 and $c=0$ ． This forces $b=0$ ，as $u$ was chosen to be different from 1．Consequently， $a \in U$ and $\sigma \in C$ ．Thus，we have $H_{\infty}=C$ ，which acts regularly on $U$ ，is isomorphic to $U$ ，and hence cyclic of order $m$ ．

Assume $H$ is not transitive on $E$ ，then the point $\infty$ must be fixed by $H$ and $H=H_{\infty}$ ，and so $H=C$ by the above．Then we are in case（iv）．

Assume that $H$ is transitive on $E$ ．Then，as $C=H_{\infty}$ acts regularly on $U$ ，the group $H$ acts sharply 2－transitively on the $m+1$ points of $E$ and so is a Frobenius group of order $m(m+1)$（see［2］V．8．2）．Hence $H$ has a normal subgroup $N$ ，which is regular on $E$ ，and $C=H_{\infty}$ acts transitively on the non－identity elements of $N$ ．This implies that $N$ is an elementary abelian $r$－group for some prime $r$ ，and $m+1$ is some power of the prime $r$（see［2］II．2．3）．As $H$ is transitive on nonidentity elements of $N$ ，there is no proper nontrivial subgroup of $N$ normal in $H$ ．This implies that $N$ is contained in 小．Assume $r$ is different from 2 and $p$ ．Then $N$ is cyclic by Dickson＇s list of subgroups of 小 $=P S L(2, q)$（see［2］II．8．27）．Hence $|N|=r=m+1$ ．Moreover，the normalizer of $N$ in 小 is dihedral（see［2］ II．8．3－8．5）and $N$ is a maximal cyclic subgroup of $H$ ．As $H \cap$ 小 has order $m(m+1)$ or $m(m+1) / 2$ and is contained in the normalizer of $N$ in 小，we see that $m / 2 \leq 2$ and $m \leq 4$ ．Therefore，$r=3$ or $r=5$ ．

Assume $r=5$ ．Then there is a Frobenius group of order 20 contained in 大 $=P G L(2, q) \subset P S L\left(2, q^{2}\right)$ ，which contradicts［2］II．8．27．Hence $r=3$ ， and $m=2$ ．Clearly，there is only one subgroup $U$ of order 2 in $F$ ，hence we are in case（i）．Conversely，for $p$ odd，the transformations $x \mapsto-x$ and $x \mapsto(x-3) /(x+1)$ generate a subgroup $H$ of 大 isomorphic to $\Sigma_{3}$ acting 2－transitively on $E=\{\infty\} \cup\{1,-1\}$ ．

Assume $r=2$ ，different from $p$ ，whence $N$ is an elementary abelian 2－ group and from Dickson＇s list it follows that $N$ has order 4 and $m=3$ ．Now we are in case（ii）．Conversely，if 3 divides $q-1$ ，take some nontrivial cubic root of unity $\beta$ ，then the transformations $x \mapsto \beta x$ and $x \mapsto(x+2) /(x-1)$ generate a subgroup $H$ of 大 isomorphic to $A_{4}$ acting 2－transitively on $E=$ $\{\infty\} \cup\left\{1, \beta, \beta^{2}\right\}$ ．

Assume $r=p$ ．The sharply 2 －transitive group $H$ on $E$ now has a normal Sylow $p$－subgroup $N$ ．It is easily seen that the group $N$ must have
a unique fixed point $\alpha$ on $\Omega$ ，left invariant by the whole of $H$ ，in particular by $C=H_{\infty}$ ，and so $\alpha$ must be one of the two fixed points of $C$ ，which are $\infty$ and 0 ．As $N$ acts regularly on $E=U \cup\{\infty\}$ ，the unique fixed point of $N$ must be 0 ．Hence $H$ fixes the point 0 ．

Consider the element $t: x \mapsto 1 / x$ of 大．It interchanges the points 0 and $\infty$ and leaves invariant the set $U$ ．It is easily verified that the transformation $t$ normalizes $C$ and maps $E$ onto the set $M:=E^{t}=\{0\} \cup U$ ．And $H^{t}$ acts sharply 2 －transitively on $E^{t}$ ，fixing the point $\infty$ ．Hence $H^{t}$ acts on $\Omega$ through transformations $x \mapsto a x+b, a \in F, b \in K$ ．It is easily seen that elements of order $p$ in this group act as transformations $x \mapsto x+b$ ．

We claim that $M$ is a subfield of $K$ with multiplicative group $U$ ，and the group $H^{t}$ consists of all transformations $x \mapsto a x+b, b \in M, a \in U$ ．Clearly， as $0 \in E^{t}$ ，and since $N^{t}$ is an elementary abelian $p$－group，the Frobenius kernel $N^{t}$ of $H^{t}$ consists of the transformations $x \mapsto x+b, b \in M$ ．As $N^{t}$ is a group，$M$ is an additive subgroup of $K$ ．Clearly，$M \backslash\{0\}=U$ is a （multiplicative）subgroup of $F$ ，and so $M$ is a subfield of $K$ ．Still，$C=C^{t}$ acts on the projective line by transformations $x \mapsto a x, a \in U$ ，and so the group $H^{t}$ consists of all the transformations $x \mapsto a x+b, a \in U, b \in M$ ，and we are in case（iii）．

Conversely，if $M$ is some subfield of $K$ ，and $U=M \backslash\{0\}$ ，then consider the group $A$ of all transformations $x \mapsto a x+b, a \in U, b \in M$ ．It acts sharply 2 －transitively on the subset $M$ of $\Omega$ ．The subgroup $A^{t}$ of 大 for the transformation $t: x \mapsto 1 / x$ ，acts 2－transitively on $E=\{\infty\} \cup U$ ．

Remark．If $U$ is a subgroup of $F^{2}$ ，then $C$ is contained in 小，and the statements of the theorem hold for 小 instead of 大．In particular，the stabilizer of $E$ in 大 is contained in 小．If $U$ does not consist of squares only，the stabilizer of $E$ in 大 contains properly the stabilizer of $E$ in 小． Moreover we note that if 3 divides $q-1$ ，then -3 is a square in $K$ ，whence the involution $x \mapsto(x+2) /(x-1)$ in（ii）of Theorem A is contained in小．In fact，since $x^{2}+x+1=(x-\beta)\left(x-\beta^{2}\right)$ for a nontrivial cubic root of unity $\beta$ ，by setting $x=1$ ，we have $3=(1-\beta)\left(1-\beta^{2}\right)=(1-\beta) \cdot \beta^{2}$ $(\beta-1)=-\beta^{2}(\beta-1)^{2}$ ．

From this remark，we easily derive the following theorem．
Theorem B Set $H:=$ 小 $_{E}$ ．Then the following holds：
（i）If $m=2$ ，whence $U=\{1,-1\}$ and $q$ is odd，then $H \cong \Sigma_{3}$ ，and
$H$ is generated by $x \mapsto-x, x \mapsto(x-3) /(x+1)$ ，if -1 is a square in $F$ ，whereas $H \cong A_{3}$ ，and $H$ is generated by the transformation $x \mapsto(x-3) /(x+1)$ ，if -1 is not a square in $F$ ．
（ii）If $m=3$ ，whence $U=\left\{1, \beta, \beta^{2}\right\}$ for some nontrivial cubic root of unity $\beta$ ，then $H \cong A_{4}$ ，and $H$ is generated by the transformations $x \mapsto \beta x$ ，and $x \mapsto(x+2) /(x-1)$ ．
（iii）If $U$ is the multiplicative group of some subfield $M$ of $K$ ，then $H$ is conjugate in 大 to the group of all affine transformations $x \mapsto a x+b$ ， $a \in U \cap F^{2}, b \in M$ ，hence $H$ is a Frobenius group of order $m(m+1)$ or $m(m+1) / 2$ ．
（iv）Otherwise，$H=\left\{x \mapsto u x \mid u \in U \cap F^{2}\right\}$ is cyclic of order $m$ or $m / 2$ ．

## 3．Application of Theorems

We recall a well－known general fact that，for a $t$－homogeneous group $H$ on a finite set $\Gamma$ with $|\Gamma|=v$ and a subset $A$ of $\Gamma$ with $|A|=k \geq t$ ，the pair $\left(\Gamma, A^{H}\right)$ is a $t-(v, k, \lambda)$ design，where $A^{H}$ is the set of images of $A$ under the group $H, \lambda=|H|\binom{k}{t} /\left|H_{A}\right|\binom{v}{t}$ and $H_{A}$ is the setwise stabilizer of $A$ in $H$ ．Since 大 is 3－homogeneous on $\Omega$ of order $(q+1) q(q-1)$ and 小 is 3 （resp．2）－homogeneous on $\Omega$ of order $(q+1) q(q-1) / 2$ in case $q \equiv-1$（resp． $q \equiv 1)(\bmod 4)$ ，we have at once

## Lemma The following holds．

（1）$\widetilde{\boldsymbol{D}}(q, E)$ is a $3-\left(q+1,|E|,|E|(|E|-1)(|E|-2) / \mid\right.$ 大 $\left._{E} \mid\right)$ design．
（2）（i）If $q \equiv-1(\bmod 4)$ ，then $\boldsymbol{D}(q, E)$ is a $3-\left(q+1,|E|,|E|(|E|-1)(|E|-2) / 2 \mid\right.$ 小 $\left._{E} \mid\right)$ design．
（ii）If $q \equiv 1(\bmod 4)$ ，then $D(q, E)$ is a $2-\left(q+1,|E|,|E|(|E|-1)(q-1) / 2\left|小_{E}\right|\right)$ design．
It is clear，that for any choice of $E$ ，the designs $\widetilde{\boldsymbol{D}}(q, E)$ and $\boldsymbol{D}(q, E)$ coincide，if 大 $=$ 小，i．e．if $p=2$ ，or if $p>2$ and $\left|\boldsymbol{大}_{E}\right|=2\left|小_{E}\right|$ ．In case $p>2$ and 大 $_{E}=$ 小 $_{E}$ ，the design $\widetilde{\boldsymbol{D}}(q, E)$ has twice as many blocks as the design $\boldsymbol{D}(q, E)$ ．

Assume $p>2$ ．Then the situation is clearly well understood in case （i），i．e．for $m=2$ ，where the blocks of $\widetilde{\boldsymbol{D}}(q, E)$ are just all 3 －subsets of $\Omega$ ． In cases（iii）and（iv），the situation depends on the question，whether $2 m$ divides $q-1$ or not．Remarkably，in case（ii），always $\widetilde{\boldsymbol{D}}(q, E)$ and $\boldsymbol{D}(q, E)$ are different．

By combining the lemma with Theorems A and B, and taking various $q$ and $U$, we obtain various 3 -and 2 -designs. In a particular, [3, Theorem 3.2 ] (resp. [4, Theorem]) dealt with the case $q \equiv-1(\bmod 4)$ and $U=F^{2}$ (resp. $q$ is a prime and $q-1=2^{e} m, m$ odd, $e \geq 2$, and $U=F^{2^{i}}, 1 \leq i \leq e$ ).

Here, we give only examples which fill in blanks in the table of [1] (the new ones are marked with $*$, whereas desigs given already in $[3,4]$ are marked with $* /$ ).

| $q$ | $q-1$ | $U$ | $\boldsymbol{D}(q, E): 2-$ or $3-(q+1, k, \lambda)$ | $\widetilde{\boldsymbol{D}}(q, E): 3-(q+1, k, \lambda)$ |
| :--- | :--- | :--- | :--- | :--- |
| $5^{2}$ | $2^{3} \cdot 3$ | $F^{2}$ | $2-(26,13,12 \cdot 13)$ | $3-(26,13,11 \cdot 13)^{*}$ |
|  |  | $2-(26,9,72 \cdot 3)$ | $3-(26,9,21 \cdot 3)^{*}$ |  |
|  |  | $2-(26,7,42 \cdot 2)^{*}$ | $3-(26,7,35)$ |  |
|  | $F^{6}$ | $2-(26,5,4 \cdot 3)$ | $3-(26,5,3)^{*}$ |  |
|  | $F^{8}$ | $2-(26,4,6 \cdot 2)$ | $3-(26,4,2)$ |  |
| $3^{3}$ | $2 \cdot 13$ | $F^{2}$ | $3-(28,14,6 \cdot 14)^{* \prime}$ | $3-(28,14,6 \cdot 28)^{*}$ |
| 29 | $F^{2}$ | $2-(30,15,14 \cdot 15)$ | $3-(30,15,13 \cdot 15)^{* \prime}$ |  |
|  | $2^{2} \cdot 7$ | $F^{4}$ | $2-(30,8,28 \cdot 4)^{* \prime}$ | $3-(30,8,6 \cdot 8)^{* \prime}$ |
|  |  | $F^{7}$ | $2-(30,5,4 \cdot 35)$ | $3-(30,5,3 \cdot 5)^{*}$ |

## References

[1] Chee Y.M., Colbourn C.J. and Kreher D.L., Simple $t$-designs with $v \leq 30$. Ars Combin. 29 (1990), 193-258.
[2] Huppert B., Endliche Gruppen I. Springer, 1967.
[3] Iwasaki S., An elementary and unified approach to the Mathieu-Witt systems. J. Math. Soc. Japan 40 (1988), 393-414.
[4] Iwasaki S., Infinite families of 2-and 3-designs with parameters $v=p+1, k=$ $(p-1) / 2^{i}+1$, where $p$ odd prime, $2^{e} \mathrm{~T}(p-1), e \geq 2,1 \leq i \leq e$. (to appear in J . Combin. Designs)

Shiro Iwasaki<br>Department of Mathematics<br>Hitotsubashi University<br>Kunitachi, Tokyo 186, Japan<br>E-mail: iwasaki@math.hit-u.ac.jp

Thomas Meixner
Mathematisches Institut der Justus-Liebig-Universität Gießen

Arndtstraße 2, 35392 Gießen, Deutschland
E-mail: Thomas.Meixner@math.uni-giessen.de

