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Automorphisms and conjugate connections
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Abstract. We study how the automorphism group of a Lie group G acts on the space

of gauge-equivalence classes of connections on a principal G-bundle P provided P is

reducible to H-subbundles. The action is investigated in terms of conjugate connections

and holonomy groups.
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1. Introduction

Let P be a principal bundle over a manifold M with a structure group
G .

We consider the situation that the structure group G of the bundle P

happens to be reduced to a closed subgroup H .
Let \sigma be an automorphism of G leaving fixed all elements of H .

It turns out then that \sigma induces via the subgroup reduction a trans-
formation of the space of connections on P , called a conjugation, a gener-
alization of the notion of conjugate affine connection in affine differential
geometry ([7]). The notion of conjugate connection in a principal bundle is
due to S. Kobayashi and E. Shinozaki ([5]).

It is a principal question how this conjugation relates to the gauge
theory of connections on a principal bundle.

S. Kobayashi and Shinozaki gave in [5] a substantial answer to this
question as follows.

Theorem ([5]) Let Aut(G, H) be the group of automorphisms of G leav-
ing fixed each element of H. Let \mathcal{G}(P) be the group of gauge transformations
of P , and let C(P) be the space of connections on P. Then

(i) the group Aut(G, H) acts on P, \mathcal{G}(P) and C(P) in a natural way
so that it induces an action on C(P)/\mathcal{G}(P) ,
and

(ii) for a fixed Riemannian metric on an oriented M and for an au-
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tomorphism invariant inner product of g, the Lie algebra of G , Aut(G, H)
acts on the space of Yang-Mills connections and on the moduli space \mathcal{M}(P)

of Yang-Mills connections.

The subject of this article is to understand in a more definite way the
action of Aut(G, H) on C(P)/\mathcal{G}(P) and on \mathcal{M}(P) .

Let Int(G, H) be the subgroup of Aut(G, H) consisting of inner au-
tomorphisms. Then, as will be shown, an inner automorphism acts on
each connection as a constant gauge transformation so that the action of
Aut(G, H) restricted to Int(G, H) on the space C(P)/\mathcal{G}(P) turns out to be
trivial. Namely,

Theorem 1 The action of Aut(G, H) on C(P)/\mathcal{G}(P) and on \mathcal{M}(P) in-
duces an action of the group of outer automorphisms Aut(G, H) /Int(G, H)
on C(P)/\mathcal{G}(P) and on \mathcal{M}(P) .

Furthermore we have

Theorem 2 The action of Aut(G, H) /Int(G, H) restricted to C^{*}(P)/\mathcal{G}(P)

and on \mathcal{M}^{*}(P) is free. Here C^{*}(P) denotes the space of connections on P
whose holonomy group is G, and \mathcal{M}^{*}(P)=\mathcal{M}(P)\cap(C^{*}(P)/\mathcal{G}(P)) .

In several cases, a bundle P has non-equivalent reductions to H-sub-
bundles. If P admits, for instance, two non-equivalent H-subbundles Q_{1} ,
Q_{2} , then from Theorem 1 the free group generated by two copies of the
group Aut(G, H) /Int(G, H) inherits an action on the space C(P)/\mathcal{G}(P) . It
is shown in Proposition 6 in section 5 that the action is not effective and
the quotient of this free group by a certain normal subgroup acts effectively
on C(P)/\mathcal{G}(P) and freely on C^{*}(P)/\mathcal{G}(P) .

2. Conjugate connections

If the structure group G of P is reducible to a closed subgroup H, then
there exist an open covering \{U_{i}\} of M giving local trivializations of P and
sections \{s_{i} : U_{i}arrow P\} such that the transition functions a_{ij} given by

s_{j}(x)=s_{i}(x)a_{ij}(x) , x\in U_{i}\cap U_{j} (1)

take values in H\subset G (refer to Proposition 5.3, p. 52 in [4]).

Note In the principal bundle P the subset \bigcup_{x\in M}\{s_{i}(x)a;a\in H\} de-
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fines a subbundle Q whose structure group is H . The fibre of Q over x is
\{s_{i}(x)a;a\in H\} , while the fibre of P is \{s_{i}(x)a;a\in G\} .

The actions of Aut(G, H) on P, \mathcal{G}(P) and on C(P) are defined by
making use of the sections \{s_{i} : U_{i}arrow P\} and the transition functions
\{a_{ij} : U_{i}\cap U_{j}arrow H\} .

The formulations we adopt here were first given in [5]. See Remark in
\S 2 in [5].

Let \sigma\in Aut(G, H) . Then \sigma induces a transformation of P, \sigma_{Q} : Parrow

P , satisfying

\sigma_{Q}\circ R_{a}=R_{\sigma(a)}\circ\sigma_{Q} , a\in G (2)

We write an arbitrary u in P as u=s_{i}(x) a for some s_{i} and a\in G and
define

\sigma_{Q}(u)=s_{i}(x)\sigma(a) (3)

Suppose that u has another representation u=s_{j}(x)a’ Then from (1)
we have a_{ij}(x)a’=a and

s_{j}(x)\sigma(a’)=s_{i}(x)a_{ij}(x)\sigma(a’)=s_{i}(x)\sigma(a) (4)

so that the definition of \sigma_{Q} does not depend on any choice of local trivializing
sections s_{i} .

Note that \sigma_{Q} leaves fixed all points of Q .
A gauge transformation of P is a bundle automorphism of P , namely a

diffeomorphism of P commuting with the right action R_{a} and inducing the
identity transformation id_{M} of the base manifold M .

The group of automorphisms Aut (G, H) induces the action on \mathcal{G}(P) in
the following way

g\in \mathcal{G}(P)\mapsto g^{\sigma}\in \mathcal{G}(P) (5)

where

g^{\sigma}(u)=(\sigma_{Q}og\circ(\sigma_{Q})^{-1})(u) , u\in P (6)

Obviously, g^{\sigma} is a diffeomorphism of P commuting with the right action.
It induces id_{M} on M .

The action of Aut(G, H) on the space of connections is defined by

\omega^{\sigma}=((\sigma_{Q})^{-1})^{*}(\sigma 0\omega) (7)
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Note (\sigma_{Q})^{-1}=(\sigma^{-1})_{Q}

The right hand side needs to be explained, \sigma\circ\omega is a g-valued l-form
on P, composed of \omega and \sigma\in Aut(g) .

((\sigma_{Q})^{-1})^{*} is the pull-back of 1-forms on P induced by the transforma-
tion (\sigma_{Q})^{-1} of P .

To see that \omega^{\sigma} is a connection we verify

\omega^{\sigma}(X\#)=X , X\in g (8)

where X\# is the fundamental vector field on P induced by the right action
R_{a(t)} , a(t)=\exp tX ,
and

R_{a}^{*}\omega^{\sigma}=Ad(a^{-1})\omega^{\sigma} , a\in G (9)

To simplify the argument we set \tau=\sigma^{-1} .
Since at u\in PX_{u}^{\beta}= \frac{d}{dt} (u exp tX) |_{t=0} it follows from \tau_{Q}(ua)=

\tau_{Q}(u)\tau(a) that (\tau_{Q})_{*}(X_{u}^{\mathfrak{p}})=(\tau(X))_{\tau_{Q}(u)}^{\Downarrow} . So at \tau_{Q}(u)(\tau_{Q}^{*}\omega)(X^{\beta})=\tau(X)

and hence \omega^{\sigma}(X^{\mathfrak{y}})=\sigma(\tau X)=X .
To show

(R_{a}^{*}\omega^{\sigma})(Y)=Ad(a^{-1})\omega^{\sigma}(Y) , Y\in T_{u}P (10)

we have \tau_{Q}\circ R_{a}=R_{\tau(a)}\circ\tau_{Q} and hence

(R_{\tau(a)})_{*}((\tau_{Q})_{*}Y)=(\tau_{Q})_{*}((R_{a})_{*}(Y)) (10)

so that

(R_{a}^{*}\tau_{Q}^{*}\omega)(Y)=\omega((\tau_{Q})_{*}(R_{a})_{*}(Y))=\omega((R_{\tau(a)})_{*}(\tau_{Q})_{*}Y)

=Ad((\tau(a))^{-1})\omega((\tau_{Q})_{*}Y) (12)

Since \sigma((\tau(a))^{-1})=(\sigma\tau(a))^{-1}=a^{-1}

R_{a}^{*}\omega^{\sigma}(Y)=\sigma(Ad((\tau(a))^{-1})\omega((\tau_{Q})_{*}(Y))

=Ad(a^{-1})\sigma(\omega((\tau_{Q})_{*}Y)=Ad(a^{-1})\omega^{\sigma}(Y). (13)

Definition We call \omega^{\sigma} the \sigma-conjugate of \omega for \sigma\in Aut(G, H) .

On the H-subbundle Q a connection and a gauge transformation are
naturally regarded as ones on P . To see this we represent connections on
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P and gauge transformations of P in terms of local data on M by applying
the local sections s_{i} : U_{i}arrow P .

In fact, let \omega be a connection on P . Then \omega has a local representation

\omega=\{\omega_{i}\} (14)

where each \omega_{i}=s_{i}^{*}\omega is a g-valued 1-form defined over U_{i}\subset M , the pull-back
of \omega by the section s_{i} .

Over U_{i}\cap U_{j} they satisfy the compatibility condition

\omega_{j}=a_{ij}^{-1}\omega_{i}a_{ij}+a_{ij}^{-1}da_{ij} . (15)

As a routine business shows, a family of g-valued 1-forms defined over
each local trivializing neighborhood U_{i} satisfying the compatibility condi-
tion yields conversely a connection on P whose pull-back by each s_{i} is again
itself.

The \sigma conjugate \omega^{\sigma} is represented

\omega^{\sigma}=\{\sigma(\omega_{i})\} , (16)

since \sigma_{Q}(s_{i}(x))=s_{i}(x) , x\in U_{i} .
Let \omega be a connection on Q . Since each s_{i} may be a section of Q , each

local representative of \omega=\{\omega_{i}\} , \omega_{i}=s_{i}^{*}(\omega) , is now a h-valued l-form.
\{\omega_{i}\} satisfies the compatibility condition (15) so that we can regard it as a
connection on P, whose \sigma conjugate \omega^{\sigma} is \omega for any \sigma\in Aut(G, H) .

This means that the set C(Q) of all connections on the H-subbundle Q is
a fixed-point set under the Aut(G, H)-action when regarded as connections
on P;

C(Q)\subset C^{Aut(G,H)}(P) . (17)

Remark. If H=\{a\in G;\sigma(a)=a, \sigma\in Aut(g, H)\} , then

C(Q)=C^{Aut(G,H)}(P) . (18)

A gauge transformation of P can be also represented in a local form;

g=\{g_{i}; U_{i}arrow G\} (19)

satisfying the compatibility condition

g_{j}(x)=a_{ij}^{-1}(x)g_{i}(x)a_{ij}^{-1} , x\in U_{i}\cap U_{j} . (20)
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Here g_{i} is given by

g(s_{i}(x))=s_{i}(x)g_{i}(x) , x\in U_{i} (21)

From the definition (6) the \sigma-conjugate g^{\sigma} of a g\in \mathcal{G}(P) is then repre-
sented as

g^{\sigma}=\{\sigma(g_{i});U_{i}arrow G\} (22)

A gauge transformation of Q is regarded as a g\in \mathcal{G}(P) by requiring
g(ua)=g(u)a , u\in Q , a\in G .

So, a gauge transformation g of Q satisfies from (22) g^{\sigma}=g for all
\sigma\in Aut(G, H) , since such a g has a local form \{g_{i} : U_{i}arrow G\} taking
values in H . On the other hand suppose that H=\{a\in G;\sigma(a)=a , \sigma\in

Aut(G, H) \} . Then, g\in \mathcal{G}(P) is fixed under the Aut(G, i7)-action if and
only if g is a gauge transformation of Q .

We will briefly understand in Theorem given by Kobayashi and Shi-
nozaki how the group Aut(G, H) acts on C(P)/\mathcal{G}(P) and on the moduli
space \mathcal{M}(P) .

We say that connections \omega_{1} , \omega_{2}\in C(P) are gauge equivalent if \omega_{2}=g^{*}\omega_{1}

for some g\in \mathcal{G}(P) .
We apply ((\sigma_{Q})^{-1})^{*} and \sigma\in Aut(g) to \omega_{2}=g^{*}\omega_{1} to have

\omega_{2}^{\sigma}=((\sigma_{Q})^{-1})^{*}g^{*}(\sigma(\omega_{1}))=((\sigma_{Q})^{-1})^{*}g^{*}\sigma_{Q}^{*}((\sigma_{Q}^{-1})^{*}(\sigma(\omega_{1})) (23)

which is just (g^{\sigma})^{*}(\omega_{1}^{\sigma}) . So,

Proposition 1 Assume that \omega_{1} , \omega_{2} are gauge equivalent connections on
P , namely, \omega_{2}=g^{*}(\omega_{1}) , g\in \mathcal{G}(P) . Then, their conjugate \omega_{1}^{\sigma} and \omega_{2}^{\sigma} ,
\sigma\in Aut(G, H) , are gauge equivalent under g^{\sigma}\in \mathcal{G}(P) .

Therefore, the automorphism group Aut(G, H) acts naturally on the
space of gauge equivalence classes of connections on P ;

Aut (G, H)\cross C(P)/\mathcal{G}(P)arrow C(P)/\mathcal{G}(P)

(\sigma, [\omega])\mapsto[\omega^{\sigma}] (24)

The first part of Theorem ([5]) follows from this proposition.

Let \Omega=d\omega+\frac{1}{2}[\omega\wedge\omega] be the curvature form of a connection \omega on P .
If we consider the connection as a family \omega=\{\omega_{i}\} of local g-valued

1-forms, then the curvature form \Omega=\{\Omega_{i}\} , \Omega_{i}=d\omega_{i}+\frac{1}{2}[\omega_{i}\wedge\omega_{i}] , is a
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g_{P}-valued, globally defined 2-form on M . Here g_{P}=P\cross_{Ad}g is the adjoint
bundle of P .

We provide a Riemannian metric on an oriented manifold M and an
automorphism invariant positive definite inner product \langle , \rangle on g . The
existence of such an inner product is guaranteed if G is a compact Lie group.

The Yang-Mills functional \mathcal{Y}\mathcal{M}(\omega) is defined by the integral over M of
an n-form \langle\Omega\wedge*\Omega\rangle(n=\dim M) , which is over U_{i} given by \langle\Omega_{i}\wedge*\Omega_{i}\rangle .

Since over U_{i}\cap U_{j}

\Omega_{j}=a_{ij}^{-1}\Omega_{i}a_{ij}^{-1} (25)

and the inner product is automorphism invariant, the two n-forms
\langle\Omega_{i}\wedge*\Omega_{i}\rangle and \langle\Omega_{j}\wedge*\Omega_{j}\rangle coincide over U_{i}\cap U_{j} so that the functional \mathcal{Y}\mathcal{M}

is well defined.
Let \omega^{\sigma} be the conjugate of \omega . Then it has the curvature form \Omega^{\sigma} ;

\Omega^{\sigma}=((\sigma_{Q}^{-1})^{*}(\sigma(\Omega)) (26)

whose local representation is (\Omega^{\sigma})_{i}=\sigma(\Omega_{i}) . It follows that

\langle(\Omega^{\sigma})_{i}\wedge*(\Omega^{\sigma})_{i}\rangle=\langle\Omega_{i}\wedge*\Omega_{i}\rangle (27)

which implies that \mathcal{Y}\mathcal{M}(\omega^{\sigma})=\mathcal{Y}\mathcal{M}(\omega) , \sigma\in Aut(G, H) , that is, the Yang-
Mills functional \mathcal{Y}\mathcal{M} is Aut (G, H) invariant

Therefore, if \omega is a Yang-Mills connection, so is \omega^{\sigma}

Remarks, (i) A Yang-Mills connection \omega is a solution of the Yang-Mills
equation

d_{\omega}(*\Omega)=0 (28)

where \Omega\in\Gamma(g_{P}\otimes\Lambda_{M}^{2}) and d_{\omega} is the covariant exterior derivative associated
to the connection \omega . It is obviously seen that the Yang-Mills equation is
Aut (G, H)-invariant, that is,

d_{\omega^{\sigma}}(*\Omega^{\sigma})=(d_{\omega}(*\Omega))^{\sigma} (29)

So we assert again that the moduli space \mathcal{M}(P) is invariant under the
action.

(ii) Suppose a base manifold M is an oriented Riemannian 4-manif0ld.
Since \Omega_{i}^{\sigma}=\sigma(\Omega_{i}) , the curvature form \{\Omega_{i}\} is self-dual (or anti-self-dual) if
and only if so is the curvature form of the \sigma-conjugate connection. Thus,
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when the structure group G of P is reducible to a closed subgroup H\subset G ,
Aut (G, H) acts naturally on the moduli space of self-dual connections on P
(or of anti-self-dual connections).

(iii) Generalizations of the notion of self-duality are given for a K\"ahler

manifold and for a quaternionic K\"ahler manifold (for instances see [8] and
[6] ) . We observe that over these manifolds the group Aut(G, H) acts on the
moduli space of respective self-dual connections on P provided the structure
group G of P is reducible to H

(iv) Similarly as the case of connections the automorphism group
Aut(G, H) enjoys an action on the space of Yang-Mills-Higgs fields (\omega, \Phi)

(or monopoles) modulo the gauge transformations of P . Here a Higgs field
\Phi is a section of g_{P} (for Yang-Mills-Higgs fields refer for examples to [2]
and [3] ) . The covariant derivatives of \Phi satisfy in terms of the action of
Aut (G, H)

\nabla^{\sigma}\Phi^{\sigma}=(\nabla\Phi)^{\sigma} (30)

Here \nabla and \nabla^{\sigma} mean the covariant derivatives with respect to \omega and \omega^{\sigma} ,
respectively.

3. Inner automorphisms

Before stating the Aut(G, if)-action on C(P)/\mathcal{G}(P) in terms of holon-
omy groups, we make a brief observation that any inner automorphism
\sigma\in Aut(G, H) induces naturally a constant gauge transformation of P.

In fact, if there is an element b\in G such that

\sigma(a)=b a b^{-1} a\in G , (31)

then R_{b}\circ\sigma_{Q} gives a gauge transformation, because

(R_{b}\circ\sigma_{Q})(ua)=\sigma_{Q}(u)\sigma(a)b=\sigma_{Q}(u)ba (32)

which is R_{a}(R_{b}\circ\sigma_{Q}(u)) .
It is easily checked that the gauge transformation R_{b}\circ\sigma_{Q} has a local

representation consisting of constant mappings \{g_{i}=b;U_{i}arrow G\} . Thus,
R_{b}o\sigma_{Q} may be a“constant” gauge transformation.

Furthermore for any \omega\in C(P) the \sigma-conjugate \omega^{\sigma} is gauge equivalent
to \omega with respect to the gauge transformation g_{\sigma}=R_{b}\circ\sigma_{Q} . This is because



Automorphisms and conjugate connections 149

\omega^{\sigma} is written as

R_{b}^{*}(g_{\sigma}^{-1})^{*}\sigma(\omega)=\sigma(Ad(b^{-1})(g_{\sigma}^{-1})^{*}\omega)=(g_{\sigma}^{-1})^{*}\omega . (33)

Here we used \sigma(Ad(b^{-1})(X)=X, X\in g .

Thus we get the following

Proposition 2 Let \sigma\in Int(G, H) , the group of inner automorphisms of
G leaving fixed all elements of H Then for each \omega\in C(P) the \sigma conjugate
\omega^{\sigma} is gauge equivalent to \omega .

Therefore the action of Aut(G, H) is trivial on C(P)/\mathcal{G}(P) when re-
stricted to the subgroup Int (G, H) .

So, Theorem 1 in Introduction follows from this proposition, namely
the action of Aut(G, H) induces in a natural way an action of the outer
automorphism group Aut(G, H) /Int(G, H) on C(P)/\mathcal{G}(P) and also on the
moduli space of Yang-Mills (respective self-dual) connections on P .

4. Conjugate connections and holonomy groups

We investigate how the conjugation on connections affect the holonomy
groups.

The holonomy group is defined in terms of horizontal curves [4].
Let x_{t} , 0\leq t\leq 1 be a closed curve in M starting at a point x\in M .
Let u be a point of P over x . We say that a lift u_{t} of x_{t} , a curve in P

whose projection is x_{t} , starting at u\omega-horizontal when it satisfies

\omega(\frac{d}{dt}u_{t})=0 (34)

The existence of a horizontal lift u_{t} of x_{t} starting at u is unique.
When t=1 , u_{1} is over x so that there is an a\in G such that u_{1}=ua .
The set of a\in G given in this way where x_{t} moves over all closed

curves starting at x is a subgroup of G which we call the holonomy group
\Phi(\omega)=\Phi_{u}(\omega) of \omega with a reference point u .

If we change a reference point as v=ua, then \Phi_{v}(\omega)=a^{-1}\Phi_{u}(\omega)a

(see Proposition 4.1, p.72, [4]).

Proposition 3 Let \sigma\in Aut(G, H) . Then, u_{t} is a \omega -horizontal curve if
and only if \sigma_{Q}(u_{t}) is a \omega^{\sigma} -horizontal curve.
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Therefore, for a fixed reference point u=s_{i}(x) , x\in U_{i}\sigma induces an
isomorphism of \Phi_{u}(\omega) to \Phi_{u}(\omega^{\sigma}) ;

\sigma : \Phi_{u}(\omega)arrow\Phi_{u}(\omega^{\sigma}) ; a\mapsto\sigma(a) (35)

Proof. Since \frac{d}{dt}(\sigma_{Q}(u_{t}))=(\sigma_{Q})_{*}(\frac{d}{dt}u_{t}) , it follows from the definition (7)

of the \sigma-conjugation

\omega^{\sigma}(\frac{d}{dt}(\sigma_{Q}(u_{t})))=\sigma(\omega(\frac{d}{dt}u_{t})) (36)

So the first statement is shown.
Take a reference point u=s_{i}(x) . Then u_{t} and \sigma_{Q}(u_{t}) are lifts of the

same curve x_{t} and have the same starting point u . So, for a\in\Phi_{u}(\omega)

u_{1}=s_{i}(x)a and thus

\sigma_{Q}(u_{1})=\sigma_{Q}(s_{i}(x)a)=u\sigma(a) (37)

This implies that \sigma induces an isomorphism between the holonomy
groups. \square

The following lemma is plainly clear. But we have no references to refer
to. So we are going to state

Lemma Let \omega\in C(P) and g\in \mathcal{G}(P) . Let u_{t} be a lift of a closed curve x_{t}

in M .
Then u_{t} is \omega -horizontal if and only if g^{-1}(u_{t}) is a g^{*}(\omega) -horizontal

curve.

Proposition 4 Let \sigma\in Aut(G, H) and let \omega\in C(P) be a connection
whose holonomy group \Phi_{u}(\omega) is G .

If \omega^{\sigma} is gauge equivalent to \omega , then \sigma must be an inner automorphism.

Proof. Suppose \omega^{\sigma}=g^{*}(\omega) for a g\in \mathcal{G}(P) .
For a\in\Phi_{u}(\omega) let u_{t} be a \omega-horizontal curve for which u_{1}=ua .
From Proposition 3 \sigma_{Q}(u_{t}) is \omega^{*} -horizontal, while from the above

lemma g^{-1}(u_{t}) is a g^{*}(\omega) -horizontal curve starting at g^{-1}(u) . Since u and
g^{-1}(u) are on the same fibre, we may set g^{-1}(u)=ub , b\in G .

From the right translation invariance R_{b^{-1g}}^{-1}(u_{t}) is g^{*}(\omega) -horizontal
and starts at ubb^{-1}=u .

Since \omega^{\sigma}=g^{*}(\omega) , from the uniqueness of solution of the horizontal
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curve equation (34) with respect to an initial point it holds

\sigma_{Q}(u_{t})=R_{b^{-1}g}^{-1}(u_{t}) , 0\leq t\leq 1 (38)

for which, if t=1 ,

\sigma_{Q}(u_{1})=R_{b^{-1}g}^{-1}(u_{1}) . (39)

We take a reference point u=s_{i}(x) , x\in U_{i} . Then \sigma_{Q}(u_{1})=u\sigma(a) and
R_{b^{-1g}}^{-1}(u_{1})=g^{-1}(u)ab^{-1}=ubab^{-1} . Thus

\sigma(a)=bab_{J}^{-1}. a\in\Phi_{u}(\omega) (40)

Since \Phi_{u}(\omega)=G , \sigma is an inner automorphism. \square

We write \overline{\sigma}\in Aut(G, H)/Int(G, H) for the equivalence class represented
by \sigma\in Aut(G, H) .

It suffices for the proof of Theorem 2 in Introduction to show that if

[\omega]^{\overline{\sigma}}=[\omega] (41)

for some \omega\in C^{*}(P) , then \overline{\sigma} is the identity, that is, \sigma\in Int(G, H) .
Here we define the action of \overline{\sigma} as [\omega]^{\overline{\sigma}}=[\omega^{\sigma}] .
The condition (41) for \overline{\sigma} is equivalent to that

\omega^{\sigma}=g^{*}(\omega) (42)

for a g\in \mathcal{G}(P) . But this is just the assumption of Proposition 4. So,
Theorem 2 is shown.

Remark. Let \omega be a connection having holonomy group not necessarily
to be the whole group G . If it has some \sigma conjugate \omega^{\sigma} gauge equivalent
to \omega , i.e., \omega^{\sigma}=g^{*}(\omega) , then the \sigma\in Aut(G, H) induces from (40) a group
conjugation between two subgroups \Phi_{u}(\omega) and \Phi_{u}(\omega^{\sigma}) , which is a condition
on an outer automorphism \overline{\sigma} having a fixed point on C(P)/\mathcal{G}(P) .

Of course Aut(G, H) /Int(G, H) leaves fixed the subspace C(Q)/\mathcal{G}(P)

pointwise.

5. Further remarks

A principal bundle P of structure group G may have many non-equiv-
alent reductions to H-subbundles even if a subgroup H is fixed. Here H-
subbundles Q_{1} , Q_{2} are equivalent in P if there is a g\in \mathcal{G}(P) sending Q_{1}
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onto Q_{2} .
For instance, a principal SU(2) bundle P has the number m of non-

equivalent SO(2)-reductions when the base manifold M is a 4-dimensi0n
oriented closed manifold;

m= \frac{1}{2}\#\{\alpha\in H^{2}(M;Z);\alpha\cdot\alpha=k\} . (43)

Here k=c_{2}(P)[M] is the second Chern number of the associated vector
bundle E=P\cross {}_{\rho}C^{2} and \alpha\cdot\alpha is the quadratic form of \alpha .

Consider the case that P has, for example, two non-equivalent H-
reductions Q_{1} and Q_{2} .

Then the group Aut(G, H) has the two actions on P derived from the
reductions Q_{1} and Q_{2} .

Proposition 5 (i) Let \sigma , \tau\in Aut(G, H) . If \sigma\tau=e in Aut(G, H), then
\sigma_{Q_{1}}\circ\tau_{Q_{2}} and \sigma_{Q_{2}}\circ\tau_{Q_{1}} act on P as 9au9e transformations so that \sigma_{Q_{1}}0\tau_{Q_{2}}

and \sigma_{Q_{2}}\circ\tau_{Q_{1}} induce the trivial action on C(P)/\mathcal{G}(P) .
(ii) More generally, if \sigma\tau\in Int(G, H) , then \sigma_{Q_{1}}0\tau_{Q_{2}} and \sigma_{Q_{2}}0\tau_{Q_{1}}

act trivially on C(P)/\mathcal{G}(P) .

Proof For a\in G

(\sigma_{Q_{1}}\tau_{Q_{2}})(ua)=\sigma_{Q_{1}}(\tau_{Q_{2}}(u)\tau(a))=\sigma_{Q_{1}}\tau_{Q_{2}}(u)a , (44)

since \sigma\tau=e in Aut (G, H) . So, (i) follows.
To show (ii) we let \mu^{-1}=\sigma\tau and have from (i) and \sigma\tau\mu=e that

\sigma Q_{1}(\tau\mu)_{Q_{2}}=\sigma_{Q_{1}}\tau_{Q_{2}}\mu Q_{2} is a gauge transformation of P so that \sigma_{Q_{1}}\tau_{Q_{2}}\mu_{Q_{2}}

acts trivially on C(P)/\mathcal{G}(P) . Since \mu is an inner automorphism, \mu_{Q_{2}} and
hence \sigma_{Q_{1}}0\tau_{Q_{2}} act on C(P)/\mathcal{G}(P) also trivially. \square

We denote by \overline{\sigma}_{Q_{i}} the transformation of C(P)/\mathcal{G}(P) given by
\overline{\sigma}\in Aut(G, H)/Int(G, H) via the H-reduction Q_{i} , i=1,2 and let

\overline{Aut(G,H)}_{Q_{i}}=\{\overline{\sigma}_{Q_{i}} ; \overline{\sigma}\in Aut(G, H)/Int(G, H)\} . (45)

Then we get a free group generated by \overline{Aut(G,H)}_{Q_{i}} , i=1,2 and denote

it by \overline{Aut(G,H)}_{Q_{1}}*\overline{Aut(G,H)}_{Q_{2}} .
From the above proposition the action of this free group on C(P)/\mathcal{G}(P)

induced by each factor \overline{Aut(G,H)}_{Q_{i}} is not effective.
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In fact, this free group has a canonical homomorphism

\varphi;\overline{Aut(G,H)}_{Q_{1}}*\overline{Aut(G,H)}_{Q_{2}}arrow Aut (G, H)/Int(G, H) , (46)

\varphi((\overline{\sigma_{1}})_{Q_{1}}(\overline{\sigma_{2}})_{Q_{2}}(\overline{\sigma_{3}})_{Q_{1}} , . . (\overline{\sigma_{k}})_{Q_{2}})=\overline{\sigma_{1}}\overline{\sigma_{2}}\cdot\cdot\overline{\sigma_{k}} (47)

whose kernel we denote by S acts on the space C(P)/\mathcal{G}(P) trivially. So,

Proposition 6 The actions ofAut(G, H) via the H-reductions Q_{1} and Q_{2}

induce in a natural manner the action on C(P)/\mathcal{G}(P) of the quotient group
\overline{Aut(G,H)}_{Q_{1}}*\overline{Aut(G,H)}_{Q_{2}}/S of the free group by the normal subgroup S .

This action is free on the subspace C^{*}(P)/\mathcal{G}(P) .

Proof To verify that this action is free on C^{*}/\mathcal{G}(P) let

\overline{\rho}=(\overline{\sigma_{1}})_{Q_{1}}(\overline{\sigma_{2}})_{Q_{2}} . (\overline{\sigma_{k}})_{Q_{2}} (48)

be an element of \overline{Aut(G,H)}_{Q_{1}}*\overline{Aut(G,H)}_{Q_{2}} and assume

[\omega]^{\overline{\rho}}=[\omega] (49)

for an \omega\in C^{*}(P) .
To show \overline{\rho}\in S we choose in \overline{\rho} a representative (\sigma_{1})_{Q_{1}}(\sigma_{2})_{Q_{2}}\cdot\cdot(\sigma_{k})_{Q_{2}}

acting on P as a diffeomorphism. Then (49) is equivalent to

(((\omega^{(\sigma_{k})_{Q_{2}}})^{(\sigma_{k-1})_{Q_{1}}} .) ^{(\sigma_{2})_{Q_{2}}})^{(\sigma_{1})_{Q_{1}}}=g^{*}(\omega) (50)

for a g\in \mathcal{G}(P) .
Since the holonomy group \Phi_{u}(\omega) is the whole group G , we iterate the

argument in the proof of Proposition 4 and have

\sigma_{1}\sigma_{2}\cdots\sigma_{k} : Garrow G (51)

must be inner. So, \overline{\rho} is in S=ker\varphi . \square

We finish this article with several remarks on outer automorphism
groups.

An automorphism of G induces an automorphism of its Lie algebra g .
When G is simply connected, an automorphism of g induces conversely an
automorphism of the group G (see for example Theorem 3.27 in [9]). So the
outer automorphism group Aut(G)/Int(G) is isomorphic to that of its Lie
algebra g , namely to Aut (g)/Int(g) .

The following two facts on outer automorphism groups are well known.
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The outer automorphism group Aut(G)/Int (G) of a compact Lie group
G is compact. If G is compact and semi-simple, then Aut(G)/Int(G) is a
finite group.

The second fact stems from that every derivation of a semi-simple Lie
algebra is an inner derivation.

Any automorphism of a Lie algebra g canonically extends as an aut0-
morphism of the complexification g^{C} commuting with the C-conjugation.
Thus the automorphism group Aut(g) of g is the subgroup in Aut(g^{C})

consisting of automorphisms commuting with the C-conjugation.
For complex simple Lie algebras the outer automorphism groups

Aut(g^{C})/Int(g^{C}) are completely determined in terms of the Dynkin dia-
grams.

If we fix a Cartan subalgebra in g^{C} . then any coset in Aut(g^{C}) modulo
Int (g^{C}) contains an automorphism leaving the Cartan subalgebra invariant.
By using the structure theorem of simple Lie algebras the outer automor-
phism group of g^{C} is then isomorphic to the finite group consisting of linear
transformations of the Cartan subalgebra leaving a simple root system, and
furthermore isomorphic to automorphisms of the Dynkin diagram of g^{C} .

In fact, the outer automorphism group is trivial for g^{C} of type A_{1} , B_{\ell} ,
C_{\ell} , E7, E_{8} , F_{4} or G_{2} , isomorphic to Z_{2}\cong\{1, -1\} for g^{C} of type A_{\ell}(P\geq 2) ,
D_{\ell}(\ell\geq 5) or E_{6} and isomorphic to S_{3} , the symmetric group of degree 3 for
g^{C} of type D_{4} (see Theorem 3.29, Ch. X in [1]).

We exhibit one example of outer automorphisms of SU(n) fixing a sub-
group.

Let

\sigma : su(n)arrow su(n) ; \sigma(X)=\overline{X} (52)

is an involution yielding a Riemannian symmetric pair (SU(n) , SO{n) )

When n\geq 3 the automorphism \sigma is outer, since rank su(n)>rank so (n)
and we have the following theorem. Let g be a compact semi-simple Lie
algebra and let \theta\in Aut(g) be an involution. Let k denote the set of fixed
points of \theta . Then \theta\in Int(g) if and only if rank g=rankk (see Theorem
5.6, Ch IX , [1] ) .

So, when n\geq 3 , su(n)\cong A_{n-1} and therefore the outer automorphism
group

Aut(SC/(n), SO(n))/Int(SU(n), SO{n) ) \cong Z_{2} , (53)
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( \sigma is a generator) acts effectively on the space of gauge equivalence classes of
connections C(P)/\mathcal{G}(P) , provided an SU(n) principal bundle P is reducible
to an SO(n)-subbundle.

For the n=2 case, contrarily to the n\geq 3 case, from the above
arguments \sigma is an inner automorphism and Aut(SU(2), SO (2) ) /Int(SU(2) ,
SO (2) ) must be trivial so that the moduli space of self-dual SU(2)-connec-
tions does not admit any outer automorphism action.

After preparing this manuscript, the author received a paper written
by S. Kobayashi and E. Shinozaki in which they obtained a theorem quite
similar to our theorems.
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