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Generalized Mannheim curves in Minkowski space-time E4
1
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Abstract. In this paper, the definition of generalized spacelike Mannheim curve in

Minkowski space-time E4
1 is given. The necessary and sufficient conditions for the

generalized spacelike Mannheim curve are obtained. Also, some characterizations of

Mannheim curve are given.
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1. Introduction

The curves are a fundamental structure of differential geometry. An
increasing interest of the theory of curves makes a development of special
curves to be examined. A way to classification and characterization of curves
is the relationship between the Frenet vectors of the curves. For example,
Saint Venant proposed the question whether upon the surface generated by
the principal normal of a curve, a second curve can exist which has for its
principal normal of the given curve in 1845. This question was answered by
Bertrand in 1850. He showed that a necessary and sufficient condition for the
existence of such a second curve is that a linear relationship with constant co-
efficients exists between the first and second curvatures of the given original
curve. The pairs of curves of this kind have been called Bertrand partner
curves or more commonly Bertrand curves [4], [7], [14]. There are many
works related with Bertrand curves in the Euclidean space and Minkowski
space, [11]–[2]. Also, generalized Bertrand curves in Euclidean 4- space are
defined and characterized in [9]. Another kind of associated curve have
been called Mannheim curve and Mannheim partner curve. The notion of
Mannheim curves was discovered by A. Mannheim in 1878. These curves in
Euclidean 3-space are characterized in terms of the curvature and torsion
as follows: A space curve is a Mannheim curve if and only if its curvature κ

and torsion τ satisfy the relation

κ(s) = α
(
κ2(s) + τ2(s)

)
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for some constant α. The articles concerning Mannheim curves are rather
few. In [3], a remarkable class of Mannheim curves is studied. General
Mannheim curves in the Euclidean 3-space are obtained in [15]. Mannheim
partner curves in Euclidean 3-space and Minkowski 3-space are studied and
the necessary and sufficient conditions for the Mannheim partner curves
are obtained in [8], [13]. Recently, Mannheim curves are generalized and
some characterizations and examples of generalized Mannheim curves in
Euclidean 4-space E4 are given by [10].

In this paper, we study the generalized spacelike Mannheim partner
curves in 4−dimensional Minkowski space-time. We will give the necessary
and sufficient conditions for the generalized spacelike Mannheim partner
curves.

2. Preliminaries

The basic concepts of the theory of curves in Minkowski space-time E4
1

are briefly presented in this section. A more complete elementary treat-
ment can be found in [12]. Minkowski space-time E4

1 is an Euclidean space
provided with the standard flat metric given by

〈 , 〉 = −dx2
1 + dx2

2 + dx2
3 + dx2

4

where (x1, x2, x3, x4) is a rectangular coordinate system in R4.
Since 〈 , 〉 is an indefinite metric, recall that a vector v ∈ E4

1 can have
one of the three causal characters; it can be spacelike if 〈v,v〉 > 0 or v = 0,
timelike if 〈v,v〉 < 0 and null (lightlike) if 〈v,v〉 = 0 and v 6= 0. Similarly,
an arbitrary curve c = c(s) in E4 can locally be spacelike, timelike or
null (lightlike) if all of its velocity vectors c′(s) are, respectively, spacelike,
timelike or null. The norm of v ∈ E4

1 is given by ‖v‖ =
√
|〈v,v〉|. If

‖c′(s)‖ =
√
|〈c′(s), c′(s)〉| 6= 0 for all s ∈ L, then C is a regular curve in

E4
1 . A spacelike (timelike) regular curve C is parameterized by arc-length

parameter s which is given by c : L → E4
1 , then the tangent vector c′(s)

along C has unit length, that is,

〈c(s), c(s)〉 = 1, (〈c(s), c(s)〉 = −1)

for all s ∈ L.
Hereafter, curves are considered spacelike and regular C∞ curves in E4

1 .
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Let e1(s) = c′(s) for all s ∈ L, then the vector field e1(s) is spacelike and it
is called spacelike unit tangent vector field on C.

The spacelike curve C is called special spacelike Frenet curve if there
exist three smooth functions k1, k2, k3 on C and smooth non-null frame
field {e1, e2, e3, e4} along the curve C. Also, the functions k1, k2, and k3

are called the first, the second, and the third curvature function on C,
respectively. For the C∞ special spacelike Frenet curve C, the following
Frenet formula is hold




e′1
e′2
e′3
e′4


 =




0 k1 0 0
µ1k1 0 k2 0

0 µ2k2 0 k3

0 0 µ3k3 0







e1

e2

e3

e4




where µi = ∓1, 1 ≤ i ≤ 3, [12].
Due to characters of Frenet vector fields of the spacelike curve C, µi

(1 ≤ i ≤ 3) are defined as in the following three subcases;

Case 1: If e4 is timelike, then µi, 1 ≤ i ≤ 3 are

µ1 = µ2 = −1, µ3 = 1

where e1, e2, e3 and e4 are mutually orthogonal vector fields satisfying equa-
tions

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1, 〈e4, e4〉 = −1.

Case 2: If e3 is timelike, then µi, 1 ≤ i ≤ 3 are

µ1 = −1, µ2 = µ3 = 1

where e1, e2, e3 and e4 are mutually orthogonal vector fields satisfying equa-
tions

〈e1, e1〉 = 〈e2, e2〉 = 〈e4, e4〉 = 1, 〈e3, e3〉 = −1.

Case 3: If e2 is timelike, then µi, 1 ≤ i ≤ 3 are

µ1 = µ2 = 1, µ3 = −1
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where e1, e2, e3 and e4 are mutually orthogonal vector fields satisfying equa-
tions

〈e1, e1〉 = 〈e3, e3〉 = 〈e4, e4〉 = 1, 〈e2, e2〉 = −1.

For s ∈ L, the non-null frame field {e1, e2, e3, e4} and curvature functions
k1 and k2 are determined as follows

1st step e1(s) = c′(s)

2nd step k1(s) = ‖e′1(s)‖ > 0

e2(s) =
1

k1(s)
e′1(s)

3rd step k2(s) = ‖e′2(s)− µ1k1(s)e1(s)‖ > 0

e3(s) =
1

k2(s)
(e′2(s)− µ1k1(s)e1(s))

4th step e4(s) = ε
1

‖e′3(s)− µ2k2(s)e2(s)‖ (e′3(s)− µ2k2(s)e2(s))

where ε is taken −1 or +1 to make +1 the determinant of {e1, e2, e3, e4},
that is, the non-null orthonormal frame field is of positive orientation. The
function k3 is determined by

k3(s) = 〈e′3(s), e4(s)〉 6= 0.

So the function k3 never vanishes.
In order to make sure that the spacelike curve C is a special spacelike

Frenet curve, above steps must be checked, from 1st step to 4th step, for
s ∈ L.

At the each point of spacelike curve C, a line `1 in the direction of e2

is called the first normal line, a line `2 in the direction of e3 is called the
second normal line and a line `3 in the direction of e4 is called the third
normal line.

Note that, according to three different case of spacelike curve C, `3, `2
and `1 can be timelike, respectively, which are called second binormal, first
binormal and principal normal line at the each point of the spacelike curve
C.
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3. Generalized spacelike Mannheim curves in E4
1

In E4 the Bertrand curves and Mannheim curves are generalized by [9]
and [10], respectively. In these regards, we have investigate generalization
of spacelike Mannheim curves Minkowski space in E4

1 .

Definition 3.1 A special spacelike curve C in E4
1 is a generalized spacelike

Mannheim curve if there exists a special spacelike Frenet curve C∗ in E4
1

such that the first normal line at each point of C is included in the plane
generated by the second normal line and the third normal line of C∗ at the
corresponding point under φ. Here φ is a bijection from C to C∗. The curve
C∗ is called the generalized spacelike Mannheim mate curve of C.

By the definition, a generalized Mannheim mate curve C∗ is given by

c∗(s) = c(s) + α(s)e2(s), s ∈ L (3.1)

where α is a smooth function on L. Generally, the parameter s isn’t an
arc-length of C∗. Let s∗ be the arc-length of C∗ defined by

s∗ =
∫ s

0

∥∥∥∥
dc∗(s)

ds

∥∥∥∥ds.

If a smooth function f : L → L∗ is given by f(s) = s∗, then

dc∗(s)
ds

= e1(s) + α′(s)e2(s) + α(s)µ1k1(s)e1(s) + α(s)k2(s)e3(s)

= (1 + µ1α(s)k1(s))e1(s) + α′(s)e2(s) + α(s)k2(s)e3(s).

for ∀s ∈ L. Thus, we have

f ′(s) =
ds∗

ds
=

∥∥∥∥
dc∗(s)

ds

∥∥∥∥

=
√∣∣(1 + µ1α(s)k1(s))2 + ε2(α′(s))2 + ε3(α(s)k2(s))2

∣∣

where εi =
{
−1, ei is timelike

1, ei is spacelike
, for 2 ≤ i ≤ 4.

This means that, in the Case 1, e4 is timelike and
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f ′(s) =
√∣∣(1− α(s)k1(s))2 + (α′(s))2 + (α(s)k2(s))2

∣∣

or in the Case 2, e3 is timelike and

f ′(s) =
√∣∣(1− α(s)k1(s))2 + (α′(s))2 − (α(s)k2(s))2

∣∣

or in the Case 3, e2 is timelike and

f ′(s) =
√∣∣(1 + α(s)k1(s))2 − (α′(s))2 + (α(s)k2(s))2

∣∣.

The spacelike curve C∗ with arc-length parameter s∗ is

c∗ : L∗ → E4
1

s∗ → c∗(s∗).

For a bijection φ : C → C∗ defined by φ(c(s)) = c∗(f(s)), the reparametriza-
tion of C∗ is

c∗(f(s)) = c(s) + α(s)e2(s)

where α is a smooth function on L.

Theorem 3.1 If a special spacelike Frenet curve C in E4
1 is a general-

ized spacelike Mannheim curve, then the first curvature function k1 and the
second curvature function k2 of C satisfy the equality

k1(s) = −α
(
µ1k

2
1(s) + µ2k

2
2(s)

)
, s ∈ L (3.2)

where α is a constant number and µ1 = µ2 = −1 when e4 is timelike or
µ1 = −1, µ2 = 1 when e3 is timelike or µ1 = µ2 = 1 when e2 is timelike.

Proof. Let C be a generalized spacelike Mannheim curve and C∗ be the
generalized spacelike Mannheim mate curve of C with the diagram;

c
· ·

c∗
· ·

f : L −→ L∗

↓ ↓
φ : E4

1 −→ E4
1 .
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A smooth function f is defined by f(s) =
∫ ∥∥dc∗(s)

ds

∥∥ds = s∗ and s∗ is
the arc-length parameter of C∗. Also φ is a bijection which is defined by
φ(c(s)) = c∗(f(s)). Thus, the spacelike curve C∗ is reparametrized by

c∗(f(s)) = c(s) + α(s)e2(s) (3.3)

where α is a smooth function. By differentiating both sides of (3.3) with
respect to s

f ′(s)e∗1(f(s)) = (1 + µ1α(s)k1(s))e1 + α′(s)e2(s) + α(s)k2(s)e3(s) (3.4)

is obtained.
On the other hand, since the first normal line at the each point of C is

lying in the plane generated by the second normal line and the third normal
line of C∗ at the corresponding points under bijection φ, the vector field
e2(s) is given by

e2(s) = g(s)e∗3(f(s)) + h(s)e∗4(f(s))

where g and h are some smooth functions on L. If we take into consideration

〈
e∗1(f(s)), g(s)e∗3(f(s)) + h(s)e∗4(f(s))

〉
= 0

and the equation (3.4), then we have α′(s) = 0. So we rewrite the equation
(3.4) as

f ′(s)e∗1(f(s)) = (1 + µ1αk1(s))e1(s) + αk2(s)e3(s), (3.5)

that is,

e∗1(f(s)) =
(1 + µ1αk1(s))

f ′(s)
e1(s) +

αk2(s)
f ′(s)

e3(s)

where

f ′(s) =
√∣∣(1 + µ1αk1(s))2 + ε3(αk2(s))2

∣∣, ε3 =
{ −1, e3 is timelike,

1, e3 is spacelike.

By taking differentiation both sides of the equations (3.5) with respect to s,
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f ′(s)k∗1(f(s))e∗2(f(s))

=
(

1 + µ1αk1(s)
f ′(s)

)′
e1(s) +

(
(1 + µ1αk1(s))k1(s) + µ2α(k2(s))2

f ′(s)

)
e2(s)

+
(

αk2(s)
f ′(s)

)′
e3(s) +

(
αk2(s)k3(s)

f ′(s)

)
e4(s) (3.6)

is obtained for s ∈ L. Since
〈
e∗2(f(s)), g(s)e∗3(f(s)) + h(s)e∗4(f(s))

〉
= 0,

then in the equation (3.6) the coefficient of e2(s) vanishes, that is,

(1 + µ1αk1(s))k1(s) + µ2α(k2(s))2 = 0.

Thus, k1(s) = −α(µ1k
2
1(s) + µ2k

2
2(s)) is satisfied. This completes the proof.

¤

If we investigate the special cases separately, then we have

in the Case 1; k1(s) = α
(
k2
1(s) + k2

2(s)
)
,

in the Case 2; k1(s) = α
(
k2
1(s)− k2

2(s)
)
,

in the Case 3; k1(s) = −α
(
k2
1(s) + k2

2(s)
)
.

Theorem 3.2 Let C be a special spacelike Frenet curve in E4
1 whose curva-

ture functions k1 and k2 are non-constant functions and satisfy the equality
k1(s) = −α(µ1k

2
1(s)+µ2k

2
2(s)), where α is non-zero constant, for all s ∈ L.

If the spacelike curve C∗ given by

c∗(s) = c(s) + αe2(s)

is a special spacelike Frenet curve, then C∗ is a generalized spacelike
Mannheim mate curve of C.

Proof. The arc-length parameter of C∗ is defined by

s∗ =
∫ s

0

∥∥∥∥
dc∗(s)

ds

∥∥∥∥ds
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for all s ∈ L. Under the assumption of

k1(s) = −α
(
µ1k

2
1(s) + µ2k

2
2(s)

)

and after calculations for all cases, separately, we obtain

in the Case 1; f ′(s) =
√
|1− αk1(s)|,

in the Case 2; f ′(s) =
√
|1− αk1(s)|,

in the Case 3; f ′(s) =
√
|1 + αk1(s)|.

Thus, we can generalize

f ′(s) =
√
|1 + µ1αk1(s)|

for all s ∈ L.
By differentiating the equation c∗(f(s)) = c(s)+αe2(s) with respect to

s, it is seen that

f ′(s)e∗1(f(s)) = (1 + µ1αk1(s))e1(s) + αk2(s)e3(s).

So, it is seen that

e∗1(f(s)) =
(

1 + µ1αk1(s)√
|1 + µ1αk1(s)|

e1(s) +
αk2(s)√

|1 + µ1αk1(s)|
e3(s)

)
(3.7)

for s ∈ L.
The differentiation of the last equation with respect to s is

f ′(s)k∗1(f(s))e∗2(f(s))

=
(√|1 + µ1αk1(s)|

)′
e1(s) +

(
(1 + µ1αk1(s))k1(s) + µ2αk2

2(s)√
|1 + µ1αk1(s)|

)
e2(s)

+
(

αk2(s)√
|1 + µ1αk1(s)|

)′
e3(s) +

(
αk2(s)k3(s)√
|1 + µ1αk1(s)|

)
e4(s). (3.8)

According to our assumption,

(1 + µ1αk1(s))k1(s) + µ2αk2
2(s)√

|1 + µ1αk1(s)|
= 0
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is hold. Thus, the coefficient of e2(s) in the equation (3.8) is zero. It is seen
from the equation (3.8), e∗2(f(s)) is given by linear combination of e1(s),
e3(s) and e4(s). Also, from equation (3.7), e∗1(f(s)) is a linear combination
of e1(s) and e3(s). Moreover, C∗ is a special spacelike Frenet curve that the
vector e2(s) is given by linear combination of e∗3(f(s)) and e∗4(f(s)).

Therefore, the first normal line C lies in the plane generated by the
second normal line and third normal line of C∗ at the corresponding points
under a bijection φ which is defined by φ(c(s)) = c∗(f(s)). Thus, the proof
of the theorem is completed. ¤

Remark 3.1 In 4-dimensional Minkowski space for a special spacelike
Frenet curve C with curvature functions k1 and k2 satisfying

k1(s) = −α
(
µ1k

2
1(s) + µ2k

2
2(s)

)
,

it is not clear that a smooth spacelike curve C∗ given by (3.1) is a special
Frenet curve. So, it is unknown whether the reverse of Theorem 3.1 is true
or false.

Theorem 3.3 Let C be a spacelike special curve in E4
1 with non-zero third

curvature function k3. If there exists a spacelike special Frenet curve C∗ in
E4

1 such that the first normal line of C is linearly dependent with the third
normal line of C∗ at the corresponding points c(s) and c∗(s), respectively,
under a bijection φ : C → C∗, then the curvatures k1 and k2 of C are
constant functions.

Proof. Let C be a spacelike Frenet curve in E4
1 with the Frenet frame field

{e1, e2, e3, e4} and curvature functions k1, k2 and k3. Also, we assume that
C∗ be a spacelike special Frenet curve in E4

1 with the Frenet frame field
{e∗1, e∗2, e∗3, e∗4} and curvature functions k∗1 , k∗2 and k∗3 .

Let the first normal line of C be linearly dependent with the third
normal line of C∗ at the corresponding points C and C∗, respectively. Then
the parametrization of C∗ is

c∗(f(s)) = c(s) + α(s)e2(s) (3.9)

for all s ∈ L. If s∗ is the arc-length parameter of C∗, then
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s∗ =
∫ s

0

√∣∣(1 + µ1αk1)2 + ε2(α′(s)) + ε3(α(s)k2(s))2
∣∣ds (3.10)

where

εi =
{ −1, ei is timelike

1, ei is spacelike
, for 2 ≤ i ≤ 4

and

f : L → L∗

s → f(s) = s∗.

Moreover, φ : C → C∗ is a bijection given by φ(c(s)) = c∗(f(s)).
By differentiating the equation (3.9) with respect to s and using Frenet

formulas, we have

f ′(s)e∗1(f(s))

= (1 + µ1α(s)k1(s))e1(s) + α′(s)e2(s) + α(s)k2(s)e3(s). (3.11)

Since e∗4(f(s)) = ∓e2(s), then

〈f ′(s)e∗1(f(s)), e∗4(f(s))〉
= 〈(1 + µ1α(s)k1(s))e1(s) + α′(s)e2(s) + α(s)k2(s)e3(s), ∓e2(s)〉,

that is,

0 = ∓α′(s).

It is easily seen that α is a constant number from the last equation. Thus,
hereafter we can denote α(s) = α, for all s ∈ L.

From the equation (3.10), we get

f ′(s) =
√∣∣(1 + µ1αk1(s))2 + ε3(αk2(s))2

∣∣ > 0

where
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ε3 =
{ −1, ei is timelike

1, ei is spacelike
, for 2 ≤ i ≤ 4.

Then, we rewrite the equation (3.11) as follows;

e∗1(f(s)) =
(

1 + µ1αk1(s)
f ′(s)

)
e1(s) +

(
αk2(s)
f ′(s)

)
e3(s).

The differentiation of the last equation with respect to s is

f ′(s)k∗1(f(s))e∗2(f(s))

=
(

1 + µ1αk1(s)
f ′(s)

)′
e1(s) +

(
k1(s) + µ1αk2

1(s) + µ2αk2
2(s)

f ′(s)

)
e2(s)

+
(

αk2(s)
f ′(s)

)′
e3(s) +

(
αk2(s)k3(s)

f ′(s)

)
e4(s). (3.12)

Since 〈f ′(s)k∗1(f(s))e∗2(f(s)), e∗4(f(s))〉 = 0 and e∗4(f(s)) = ∓e2(s) for all
s ∈ L, we obtain

k1(s) + µ1αk2
1(s) + µ2αk2

2(s) = 0

is satisfied. Then,

α = − k1(s)
µ1k2

1(s) + µ2k2
2(s)

(3.13)

is a non-zero constant number. Thus, from the equation (3.12), it is seen
that

e∗2(f(s)) =
1

f ′(s)K(s)

(
1 + µ1αk1(s)

f ′(s)

)′
e1(s) +

1
f ′(s)K(s)

(
αk2(s)
f ′(s)

)
e3(s)

+
1

f ′(s)K(s)

(
αk2(s)k3(s)

f ′(s)

)
e4(s)

where K(s) = k∗1(f(s)) for all s ∈ L. By differentiating the last equation
with respect to s, we obtain
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f ′(s)
[
µ1k

∗
1(f(s))e∗1(f(s)) + k∗2(f(s))e∗3(f(s))

]

=
(

1
f ′(s)K(s)

(
1 + µ1αk1(s)

f ′(s)

)′)′
e1(s)

+
(

k1(s)
f ′(s)K(s)

(
1 + µ1αk1(s)

f ′(s)

)′
+

µ2k2(s)
f ′(s)K(s)

(
αk2(s)
f ′(s)

)′)
e2(s)

+
((

1
f ′(s)K(s)

(
αk2(s)
f ′(s)

)′)′
+

µ3k3(s)
f ′(s)K(s)

(
αk2(s)k3(s)

f ′(s)

))
e3(s)

+
((

1
f ′(s)K(s)

(
αk2(s)k3(s)

f ′(s)

)′)′
+

k3(s)
f ′(s)K(s)

(
αk2(s)
f ′(s)

)′)
e4(s)

for all s ∈ L. If we take into consideration
〈
f ′(s)(µ1k

∗
1(f(s))e∗1(f(s)) + k∗2(f(s))e∗3(f(s))), e∗4(f(s))

〉
= 0

and

e∗4(f(s)) = ∓e2(s),

then

µ1αk1(s)k1
′(s)f ′(s)− k1(s)(1 + µ1αk1(s))f ′′(s)

+ µ2αk2(s)k2
′(s)f ′(s)− µ2αk2

2(s)f
′′(s) = 0.

If we arrange the last equation, then we find

α
(
µ1k1(s)k′1(s) + µ2k2(s)k′2(s)

)
f ′(s)

− (
k1 + α

(
µ1k

2
1(s) + µ2k

2
2(s)

))
f ′′(s) = 0. (3.14)

Moreover, the differentiation of the equation (3.13) with respect to s is

k′1(s) + 2α
(
µ1k1(s)k′1(s) + µ2k2(s)k′2(s)

)
= 0.

From the above equation, we see

−k′1(s)
2

= α
(
µ1k1(s)k′1(s) + µ2k2(s)k′2(s)

)
. (3.15)
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If we substitute the equations (3.13) and (3.15) into the equation (3.14), we
obtain

−k′1(s)
2

= 0.

Finally, we find that the first curvature function is constant (that is, positive
constant).

Thus, from the equation (3.15) it is seen that the second curvature
function k2 is positive constant, too. This completes the proof. ¤

In [5], a formula of parametric equation of Mannheim curve is given in
E3. Moreover, the parametric equation of generalized Mannheim curve in E4

is obtained in [10]. The following theorem gives a parametric representation
of a generalized spacelike Mannheim curve with timelike second binormal
vector in E4

1 .

Theorem 3.4 Let C be a spacelike special curve defined by

c(u) =




α
∫

f(u) sinhudu

α
∫

f(u) cosh udu

α
∫

f(u)g(u)du

α
∫

f(u)h(u)du




for u ∈ I ⊂ R. Here α is a non-zero constant number, g : I → R and
h : I → R are any smooth functions and the positive valued smooth function
f : I → R is given by

f(u) = (1 + g2(u) + h2(u))−3/2

× ∣∣− 1− g2(u)− h2(u) + ġ2(u) + ḣ2(u) + (ġ(u)h(u)− g(u)ḣ(u))2
∣∣−/2

×
∣∣(− 1− g2(u)− h2(u) + ġ2(u) + ḣ2(u) + (ġ(u)h(u)− g(u)ḣ(u))2

)3

− (1 + g2(u) + h2(u))3
[
(g(u)− g̈(u))2 + (h(u)− ḧ(u))2

− (
(g(u)ḣ(u)− ġ(u)h(u)) + (ġ(u)ḧ(u)− g̈(u)ḣ(u))

)2

+ (g(u)ḧ(u)− g̈(u)h)(u)2
∣∣,
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for u ∈ I. Then the curvature functions k1 and k2 of C satisfy

k1(u) = α
(
k2
1(u) + k2

2(u)
)

at the each point c(u) of C.

Proof. Let C be a spacelike special curve defined by

c(u) =




α
∫

f(u) sinhudu

α
∫

f(u) cosh udu

α
∫

f(u)g(u)du

α
∫

f(u)h(u)du




, u ∈ I ⊂ R

where α is a non-zero constant number, g and h are any smooth functions.
f is a positive valued smooth function. Thus, we obtain

ċ(u) =




αf(u) sinhu

αf(u) cosh u

αf(u)g(u)
αf(u)h(u)


 , u ∈ I ⊂ R (3.16)

where the subscript dot (.) denotes the differentiation with respect to u.
The arc-length parameter s of C is given by

s = ψ(u) =
∫ u

u0

‖ċ(u)‖du

where ‖ċ(u)‖ = αf(u)
√

1 + g2(u) + h2(u).
If ϕ denotes the inverse function of ψ : I → L ⊂ R, then u = ϕ(s) and

ϕ′(s) =
∥∥∥∥

dc(u)
du

∣∣∣∣
u=ϕ(s)

∥∥∥∥
−1

, s ∈ I

where the prime (′) denotes the differentiation with respect to s.
The unit tangent vector e1(s) of the curve C at the each point c(ϕ(s))

is given by
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e1(s) = (1 + g2(ϕ(s)) + h2(ϕ(s)))−1/2




sinh(ϕ(s))
cosh(ϕ(s))

g(ϕ(s))
h(ϕ(s))


 (3.17)

for all s ∈ L. Some simplifying assumptions are made for the sake of brevity
as follows;

sinh := sinh(ϕ(s)), cosh := cosh(ϕ(s))

f := f(ϕ(s)), g := g(ϕ(s)), h := h(ϕ(s)),

ġ := ġ(ϕ(s)) =
dg(u)
du

∣∣∣∣
u=ϕ(s)

, ḣ := ḣ(ϕ(s)) =
dh(u)

du

∣∣∣∣
u=ϕ(s)

,

g̈ := g̈(ϕ(s)) =
d2g(u)
du2

∣∣∣∣
u=ϕ(s)

, ḧ := ḧ(ϕ(s)) =
d2h(u)

du2

∣∣∣∣
u=ϕ(s)

,

ϕ′ := ϕ′(s) =
dϕ

ds

∣∣∣∣
s

,

A := 1 + g2 + h2, B := gġ + hḣ, C := ġ2 + ḣ2,

D := gg̈ + hḧ, E := ġg̈ + ḣḧ, F := g̈2 + ḧ2.

Then, we have

Ȧ = 2B, Ḃ = C + D, Ċ = 2E, ϕ′ = α−1f−1A−1/2.

So, we rewrite the equation (3.17) as

e1 := e1(s) = A−1/2




sinh
cosh

g

h


 . (3.18)

By differentiating the last equation with respect to s, we find
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e′1 = ϕ′




− 1
2A−3/2Ȧ sinh+A−1/2 cosh

− 1
2A−3/2Ȧ cosh+A−1/2 sinh

− 1
2A−3/2Ȧg + A−1/2ġ

− 1
2A−3/2Ȧh + A−1/2ḣ




,

that is,

e′1 = −ϕ′A−1/2




A−1B sinh− cosh
A−1B cosh− sinh

A−1Bg − ġ

A−1Bh− ḣ


 . (3.19)

From the last equation, we obtain

k1 := k1(s) = ‖e′1(s)‖ = ϕ′A−1|−A + AC −B2|1/2. (3.20)

By the fact that e2(s) = (k1(s))−1e′1(s), we have

e2 := e2(s) = −A1/2| −A + AC −B2|−1/2




A−1B sinh− cosh
A−1B cosh− sinh

A−1Bg − ġ

A−1Bh− ḣ


 .

In order to get second curvature function k2, we need to calculate k2(s) =
‖e′2(s)−µ1k1(s)e1(s)‖. It is seen from the above equation 〈e2(s), e2(s)〉 = 1,
that is, e2 is spacelike. Thus, µ1 is equal to −1 and k2(s) = ‖e′2(s) +
k1(s)e1(s)‖. After a long process of calculation, we have

e′2 + k1e1 = ϕ′A−3/2| −A+AC −B2|−3/2




(P + Q) sinh−R cosh
(P + Q) cosh−R sinh

Pg −Rġ + Qg̈

Ph−Rḣ + Qḧ


 (3.21)

where
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P = (−A + AC −B2)2 + (−A + AC −B2)(B2 −AC −AD)
+ AB(−B + AE −BD),

Q = A2(−A + AC −B2), (3.22)

R = A2(−B + AE −BD).

If we simplify P then we have

P = A2(1− C + BE + D − CD).

Thus, we rewrite the equations (3.22) and (3.23) as

e′2 + k1e1 = ϕ′A1/2| −A + AC −B2|−3/2




(P̃ + Q̃) sinh−R̃ cosh

(P̃ + Q̃) cosh−R̃ sinh

P̃ g − R̃ġ + Q̃g̈

P̃ h− R̃ḣ + Q̃ḧ




(3.23)

where

P̃ = 1− C + BE + D − CD,

Q̃ = −A + AC −B2, (3.24)

R̃ = −B + AE −BD.

Consequently, from the equations (3.24) and (3.25), we find

‖e′2 + k1e1‖2

= (ϕ′)2A| −A + AC −B2|−3

× ∣∣(P̃ + Q̃)2 − R̃2 + P̃ 2(g2 + h2) + R̃2
(
ġ2 + ḣ2

)
+ Q̃2

(
g̈2 + ḧ2

)

− 2P̃ R̃
(
gġ + hḣ

)− 2R̃Q̃
(
ġg̈ + ḣḧ

)
+ 2P̃ Q̃

(
gg̈ + hḧ

)∣∣.

If we substitute the abbreviations into the last equation, we get
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‖e′2 + k1e1‖2

= (ϕ′)2A| −A + AC −B2|−3

× ∣∣P̃ 2A + 2P̃ Q̃ + Q̃2 − R̃2 + R̃2C + Q̃2F − 2P̃ R̃B − 2R̃Q̃E + 2P̃ Q̃D
∣∣.

After substituting the equation (3.24) into the last equation and simplifying
it, we have

k2
2 = ‖e′2 + k1e1‖2

= (ϕ′)2A| −A + AC −B2|−2

×
∣∣(−A + AC −B2)(1 + F ) + (1− C)(1 + D)2 + 2BE(1 + D)−AE2

∣∣.

Moreover, from the equation (3.20) it is seen that

k2
1 = (ϕ′)2A−2|−A + AC −B2|.

The last two equation gives us

k2
1 + k2

2 = (ϕ′)2A−2|−A + AC −B2|−2

× ∣∣(−A + AC −B2)3 + A3
(
(−A + AC −B2)(1 + F )

+ (1− C)(1 + D)2 + 2BE(1 + D)−AE2
)∣∣.

By the fact ϕ′ = α−1f−1A−1/2, we obtain

k2
1 + k2

2 = α−2f−2A−3
∣∣−A + AC −B2|−2

× ∣∣(−A + AC −B2)3 + A3
(
(−A + AC −B2)(1 + F )

+ (1− C)(1 + D)2 + 2BE(1 + D)−AE2
)∣∣. (3.25)

and

k1 = α−1f−1A−3/2(−A + AC −B2)1/2. (3.26)

According to our assumption,
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f = (1 + g2 + h2)−3/2
∣∣− 1− g2 − h2 + ġ2 + ḣ2 +

(
ġh− gḣ

)2∣∣−5/2

× ∣∣(−1− g2 − h2 + ġ2 + ḣ2 +
(
ġh− gḣ

)2)3

− (1 + g2 + h2)3
((

g − g̈
)2 +

(
h− ḧ

)2

− ((
gḣ− ġh

)
+

(
ġḧ− g̈ḣ

))2 +
(
gḧ− g̈h

)2)∣∣,

we obtain

f = A−3/2| −A + AC −B2|−5/2

× ∣∣(−A + AC −B2)3

+ A3
(
(1 + F ) + (1− C)(1 + D)2 + 2BE(1 + D)−AE2

)∣∣.

If we substitute the above equations (3.25) and (3.26), we obtain

k1 = α(k2
1 + k2

2).

The proof is completed. ¤

In the above equation µ1 = µ2 = −1 which is the special Case 1. This
formula is the parametric equation of generalized spacelike Mannheim curve
with timelike second binormal vector in the Minkowski space-time E4

1 .
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