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on parabolic Bloch type spaces
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Abstract. Let H be the upper half-space of the Euclidean space. The α-parabolic

Bloch type space Bα(σ) on H is the set of all solutions u of the parabolic equation

(∂/∂t + (−∆x)α)u = 0 with 0 < α ≤ 1 which belong to C1(H) and have finite Bloch

norm with weight tσ . In this paper, we study representing and interpolating sequences

on parabolic Bloch type spaces. In our previous paper [8], the reproducing formula on

Bα(σ) is given. A representing sequence gives a discrete version of the reproducing for-

mula on Bα(σ). Interpolating sequences are closely related to representing sequences,

and such sequences are very interesting in their own right.

Key words: Bloch space, parabolic operator of fractional order, representing sequence,

interpolating sequence.

1. Introduction

Let n ≥ 1 and let H be the upper half-space of the (n + 1)-dimensional
Euclidean space, that is, H = {X = (x, t) ∈ Rn+1 : x = (x1, . . . , xn) ∈
Rn, t > 0}. For 0 < α ≤ 1, the parabolic operator L(α) is defined by

L(α) := ∂t + (−∆x)α, (1.1)

where ∂t = ∂/∂t, ∂` = ∂/∂x`, and ∆x = ∂2
1 + · · ·+ ∂2

n. Let C(H) be the set
of all real-valued continuous functions on H, and let C0(H) be the set of all
functions in C(H) which vanish continuously at ∂H ∪ {∞}. For a positive
integer k, Ck(H) denotes the set of all k times continuously differentiable
functions on H, and put C∞(H) = ∩kCk(H). Furthermore, let C∞c (H) be
the set of all functions in C∞(H) with compact support. A function u ∈
C(H) is said to be L(α)-harmonic if L(α)u = 0 in the sense of distributions
(for details, see Section 2). Put m(α) = min{1, 1/(2α)}. For a real number
σ > −m(α), let Bα(σ) be the set of all L(α)-harmonic functions u ∈ C1(H)
with the norm
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‖u‖Bα(σ) := |u(0, 1)|+ sup
(x,t)∈H

tσ
{
t1/(2α)|∇xu(x, t)|+ t|∂tu(x, t)|} < ∞,

(1.2)

where ∇x = (∂1, . . . , ∂n). We call Bα(σ) the α-parabolic Bloch type space.
Since Bα(σ) contains constant functions, we may identify Bα(σ)/R ∼= B̃α(σ),
where

B̃α(σ) :=
{
u ∈ B̃α(σ) : u(0, 1) = 0

}
.

The α-parabolic Bloch type space Bα(σ) is introduced and studied in our
previous paper [8]. The authors mainly studied fundamental properties and
reproducing formulae for functions of Bα(σ) in [8]. We remark that Bα(σ)
and B̃α(σ) are Banach spaces with the norm (1.2) (see [8, Theorem 3.2]). It
is also shown that when α = 1/2, every u ∈ B1/2(σ) is harmonic on H (see
[8, Remark 3.3]). Thus, B1/2(σ) coincides with the harmonic Bloch type
space.

In this paper, we study representing and interpolating sequences on
parabolic Bloch type spaces. First, we describe the definition of B̃α(σ)-
representing sequences. Let N0 = N ∪ {0}. For k ∈ N0, a function ωk

α on
H ×H is defined by

ωk
α(X;Y ) = ωk

α(x, t; y, s) := Dk
t W (α)(x−y, t+s)−Dk

t W (α)(−y, 1+s) (1.3)

for all X = (x, t), Y = (y, s) ∈ H, where Dt = −∂t and W (α) is the funda-
mental solution of L(α) (see Section 2 for definition). Let `∞ be the Banach
space of all bounded sequences. Furthermore, let X = {Xj} = {(xj , tj)} be
a sequence in H. For {λj} ∈ `∞, let

Uk
σ,X{λj}(X) :=

∑

j

λjt
n/2α+k−σ
j ωk

α(X;Xj) (1.4)

for all X ∈ H. We say that {Xj} is a B̃α(σ)-representing sequence of order
k if Uk

σ,X{λj} ∈ B̃α(σ) for all {λj} ∈ `∞ and the operator Uk
σ,X : `∞ → B̃α(σ)

is bounded and onto.
Next, we describe definition of B̃α(σ)-interpolating sequences. Let k ∈

N. For u ∈ B̃α(σ), we define a sequence of real numbers T k
σ,Xu by
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T k
σ,Xu :=

{
tk+σ
j ∂k

t u(Xj)
}
. (1.5)

We say that {Xj} is a B̃α(σ)-interpolating sequence of order k if the operator
T k

σ,X : B̃α(σ) → `∞ is bounded and onto.
It is known that for every k ∈ N, there exists a constant C > 0 such

that

tk+σ
∣∣∂k

t u(x, t)
∣∣ ≤ C‖u‖Bα(σ)

for all u ∈ B̃α(σ) and (x, t) ∈ H (see [8, Theorem 3.2 (4)]). Thus, T k
σ,X :

B̃α(σ) → `∞ is always bounded, and this is the reason why we consider a
weight tk+σ

j in definition of the operator T k
σ,X. We note that our definitions

and investigations for such sequences are more general, that is, we shall
study properties of operators Uk

σ,X and T k
σ,X when k is a fractional order.

Representation theorems for holomorphic and harmonic functions in Lp

were studied in [3]. Also, interpolating sequences for the classical Hardy
space H∞ were studied by L. Carleson [1], and many investigations on vari-
ous settings are well known. In [8], the authors give reproducing formulae on
the function space B̃α(σ). A representing sequence gives the discrete version
of the reproducing formula on the function space B̃α(σ). We study a suffi-
cient condition for a sequence in H to be the B̃α(σ)-representing sequence.
The interpolating sequences are closely related to representing sequences,
and such sequences are interesting in their own right. In this paper, we also
study B̃α(σ)-interpolating sequences.

We describe the construction of this paper. In Section 2, we present
preliminary results of parabolic Bloch type spaces. In particular, we recall
definitions of L(α)-harmonic functions and the fundamental solution of L(α).
In Section 3, we study a necessary and sufficient condition for a sequence
X ⊂ H which ensures that the operator Uk

σ,X : `∞ → B̃α(σ) is bounded. In
Section 4, we study properties of the operator T k

σ,X. As mentioned above,
T k

σ,X : B̃α(σ) → `∞ is always bounded. Therefore, we study boundedness
of T k

σ,X on a subspace of B̃α(σ). In Section 5, we give our representing
theorem, that is, we give a sufficient condition for a sequence X ⊂ H to
be the B̃α(σ)-representing sequence. In Section 6, we give our interpolating
theorem, that is, we give a sufficient condition for a sequence X ⊂ H to be
the B̃α(σ)-interpolating sequence.
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Throughout this paper, C will denote a positive constant whose value is
not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall some basic properties. We begin with describing
the operator (−∆x)α and the L(α)-harmonic functions. Since the case α = 1
is trivial, we only describe the case 0 < α < 1. For 0 < α < 1, (−∆x)α is
the convolution operator defined by

(−∆x)αψ(x, t) := −Cn,α lim
δ↓0

∫

|y|>δ

(
ψ(x + y, t)− ψ(x, t)

)|y|−n−2αdy (2.1)

for all ψ ∈ C∞c (H) and (x, t) ∈ H, where Cn,α = −4απ−n/2Γ((n + 2α)/2)/
Γ(−α) > 0. Let L̃(α) := −∂t+(−∆x)α be the adjoint operator of L(α). Then,
a function u ∈ C(H) is said to be L(α)-harmonic if u satisfies L(α)u = 0 in the
sense of distributions, that is,

∫
H
|u L̃(α)ψ|dV < ∞ and

∫
H

u L̃(α)ψdV = 0
for all ψ ∈ C∞c (H), where dV is the Lebesgue measure on H. We describe
the fundamental solution of L(α). For x ∈ Rn, let

W (α)(x, t) :=





1
(2π)n

∫

Rn

exp(−t|ξ|2α + i x · ξ) dξ (t > 0)

0 (t ≤ 0),

where x ·ξ denotes the inner product on Rn and |ξ| = (ξ ·ξ)1/2. The function
W (α) is the fundamental solution of L(α) and it is L(α)-harmonic on H. We
note that

W (α) > 0 on H and
∫

Rn

W (α)(x, t)dx = 1 for all 0 < t < ∞. (2.2)

Furthermore, W (α) ∈ C∞(H).
Since we treat fractional calculus in our investigations, we recall defi-

nitions of the fractional integral and differential operators for functions on
R+ = (0,∞) (for details, see [4]). For a real number κ > 0, let

FC−κ :=
{
ϕ ∈ C(R+) : ϕ(t) = O(t−κ′) (t →∞) for some κ′ > κ

}
. (2.3)
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For a function ϕ ∈ FC−κ, we can define the fractional integral D−κ
t ϕ of ϕ

by

D−κ
t ϕ(t) :=

1
Γ(κ)

∫ ∞

0

τκ−1ϕ(τ + t)dτ, t ∈ R+. (2.4)

We put FC0 := C(R+) and D0
t ϕ := ϕ. Moreover, let

FCκ :=
{
ϕ; ∂dκet ϕ ∈ FC−(dκe−κ)

}
, (2.5)

where dκe is the smallest integer greater than or equal to κ. Then, we can
also define the fractional derivative Dκ

t ϕ of ϕ ∈ FCκ by

Dκ
t ϕ(t) := D−(dκe−κ)

t

(
(−∂t)dκeϕ

)
(t), t ∈ R+. (2.6)

Clearly, when κ ∈ N0, the operator Dκ
t coincides with the ordinary dif-

ferential operator (−∂t)κ. For a multi-index γ = (γ1, . . . , γn) ∈ Nn
0 , let

∂γ
x := ∂γ1

1 · · · ∂γn
n . We present some properties of fractional derivatives of

the fundamental solution W (α).

Lemma 2.1 ([4, Theorem 3.1]) Let 0 < α ≤ 1 and let ν be a real number
such that ν > − n

2α . Let γ ∈ Nn
0 be a multi-index. Then, the following

statements hold.

(1) The derivatives ∂γ
xDν

t W (α)(x, t) and Dν
t ∂γ

xW (α)(x, t) can be defined, and
the equation ∂γ

xDν
t W (α)(x, t) = Dν

t ∂γ
xW (α)(x, t) holds. Furthermore,

there exists a constant C = C(n, α, γ, ν) > 0 such that

∣∣∂γ
xDν

t W (α)(x, t)
∣∣ ≤ C(t + |x|2α)−(n+|γ|

2α +ν)

for all (x, t) ∈ H.
(2) If a real number κ satisfies the condition κ+ν > − n

2α , then the derivative
Dκ

t ∂γ
xDν

t W (α)(x, t) is well defined, and

Dκ
t ∂γ

xDν
t W (α)(x, t) = ∂γ

xDκ+ν
t W (α)(x, t).

(3) The derivative ∂γ
xDν

t W (α)(x, t) is L(α)-harmonic on H.
(4) The derivative ∂γ

xDν
t W (α)(x, t) satisfies the homogeneous property, that

is,
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∂γ
xDν

t W (α)(x, t) = t−(n+|γ|
2α +ν)(∂γ

xDν
t W (α)

)
(t−

1
2α x, 1)

for all (x, t) ∈ H.

We note that ∂γ
xDν

t W (α)(−x, t) = (−1)|γ|∂γ
xDν

t W (α)(x, t) by the defini-
tion of W (α). We also describe basic properties of fractional derivatives of
functions in Bα(σ).

Lemma 2.2 ([8, Proposition 5.4]) Let 0 < α ≤ 1, σ > −m(α), and let
κ be a real number such that κ = 0 or κ > max{0,−σ}. Let γ ∈ Nn

0 be a
multi-index. If u ∈ Bα(σ), then the following statements hold.

(1) The derivatives ∂γ
xDκ

t u(x, t) and Dκ
t ∂γ

xu(x, t) can be defined, and the
equation ∂γ

xDκ
t u(x, t) = Dκ

t ∂γ
xu(x, t) holds. Furthermore, if (γ, κ) 6=

(0, 0), then there exists a constant C = C(n, α, σ, γ, κ) > 0 such that

∣∣∂γ
xDκ

t u(x, t)
∣∣ ≤ Ct−( |γ|2α +κ+σ)‖u‖Bα(σ)

for all (x, t) ∈ H.
(2) If ν = 0 or ν > max{0,−σ}, then

Dν
t ∂γ

xDκ
t u(x, t) = ∂γ

xDν+κ
t u(x, t) (2.7)

Furthermore, if ν < 0, then (2.7) also holds when ν < σ and ν + κ >

max{0,−σ}.
(3) The derivative ∂γ

xDκ
t u is L(α)-harmonic on H.

We give the definition of the kernel function, which is generalization of
(1.3). Let Iα,n be an interval (− n

2α ,∞). Then, for (γ, κ) ∈ Nn
0 × Iα,n, in

view of Lemma 2.1, we define a function ωγ,ν
α on H ×H by

ωγ,ν
α (X;Y ) = ωγ,ν

α (x, t; y, s)

:= ∂γ
xDν

t W (α)(x− y, t + s)− ∂γ
xDν

t W (α)(−y, 1 + s) (2.8)

for all X = (x, t), Y = (y, s) ∈ H. We may write ων
α = ω0,ν

α . We describe
the following lemma. In particular, Lemma 2.3 (1) is [5, Proposition 3.1
(1)]. The result Lemma 2.3 (2) is an immediate consequence of Lemma 2.3
(1).
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Lemma 2.3 Let 0 < α ≤ 1 and (γ, κ) ∈ Nn
0 × Iα,n. Then, the following

statements hold.

(1) For any compact set E ⊂ Rn and any real number T > 1, there exist
constants C1, C2 > 0 such that

∣∣ωγ,κ
α (x, t; y, s)

∣∣ ≤ C1|x|
(1 + s + |y|2α)

n+|γ|+1
2α +κ

+
C2|t− 1|

(1 + s + |y|2α)
n+|γ|

2α +κ+1

for all (x, t) ∈ E × [T−1, T ] and (y, s) ∈ H.
(2) For any compact set K ⊂ H, there exists a constant C > 0 such that

∣∣ωγ,κ
α (x, t; y, s)

∣∣ ≤ C

(1 + s + |y|2α)
n+|γ|

2α +κ+m(α)

for all (x, t) ∈ K and (y, s) ∈ H.

We give definitions of some function spaces, which are closely related
to parabolic Bloch type spaces. For 1 ≤ p < ∞ and λ > −1, the Lebesgue
space Lp(λ) := Lp(H, tλdV ) is defined to be the Banach space of all Lebesgue
measurable functions u on H with

‖u‖Lp(λ) :=
( ∫

H

|u(x, t)|ptλdV (x, t)
)1/p

< ∞.

The α-parabolic Bergman space bp
α(λ) is the set of all L(α)-harmonic func-

tions u on H with u ∈ Lp(λ). Furthermore, L∞ := L∞(H, dV ) is defined to
be the Banach space of all Lebesgue measurable functions u on H with

‖u‖L∞ := ess sup{|u(x, t)|; (x, t) ∈ H} < ∞,

and let b∞α be the set of all L(α)-harmonic functions u on H with u ∈ L∞.
We also consider the subspace of Bα(σ). The α-parabolic little Bloch type
space Bα,0(σ) is the set of all functions u ∈ Bα(σ) with

lim
(x,t)→∂H∪{∞}

tσ
{
t1/(2α)|∇xu(x, t)|+ t|∂tu(x, t)|} = 0. (2.9)

Furthermore, let B̃α,0(σ) be the set of all functions u ∈ Bα,0(σ) with
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u(0, 1) = 0. Clearly, Bα,0(σ) and B̃α,0(σ) are, respectively, the closed sub-
spaces of Bα(σ) and B̃α(σ) by definition. We describe reproducing formulae
by fractional derivatives on bp

α(λ) and Bα(σ). We note that Lemma 2.4 (1)
is [4, Theorem 5.2] and Lemma 2.4 (2) is [8, Theorem 5.7], respectively.

Lemma 2.4 Let 0 < α ≤ 1. Then, the following statements hold.

(1) Let 1 ≤ p < ∞ and λ > −1. If real numbers κ and ν satisfy κ > −λ+1
p

and ν > λ+1
p , then

u(x, t) =
2κ+ν

Γ(κ + ν)

∫

H

Dκ
t u(y, s)Dν

t W (α)(x− y, t + s)sκ+ν−1dV (y, s)

(2.10)

for all u ∈ bp
α(λ) and (x, t) ∈ H. Furthermore, (2.10) also holds for

ν = λ + 1 when p = 1.
(2) Let σ > −m(α). If real numbers κ ∈ R+ and ν ∈ R satisfy κ > −σ and

ν > σ, then

u(x, t)− u(0, 1) =
2κ+ν

Γ(κ + ν)

∫

H

Dκ
t u(y, s)ων

α(x, t; y, s)sκ+ν−1dV (y, s)

(2.11)

for all u ∈ Bα(σ) and (x, t) ∈ H. Furthermore, (2.11) also holds for
ν > max{0, σ} when κ = 0.

We also describe the following duality theorems. In the following lemma,
Lemma 2.5 (1) is [8, Theorem 3] and Lemma 2.5 (2) is [8, Theorem 4],
respectively.

Lemma 2.5 Let 0 < α ≤ 1, σ > −m(α), and λ > −1. Then, the following
statements hold.

(1) The duality (b1
α(λ))∗ ∼= B̃α(σ) holds under the pairing 〈 · , · 〉λ,σ, where

〈u, v〉λ,σ :=
2λ+σ+2

Γ(λ + σ + 2)

∫

H

u(y, s)Dtv(y, s)sλ+σ+1dV (y, s),

u ∈ b1
α(λ), v ∈ B̃α(σ). (2.12)

(2) The duality b1
α(λ) ∼= (B̃α,0(σ))∗ holds under the pairing (2.12), that is,
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〈u, v〉λ,σ with u ∈ b1
α(λ) and v ∈ B̃α,0(σ).

Lemma 2.6 ([11, Lemma 5]) Let θ, c ∈ R. If θ > −1 and θ−c+ n
2α +1 < 0,

then there exists a constant C = C(n, α, θ, c) > 0 such that

∫

H

sθ

(t + s + |x− y|2α)c
dV (y, s) = Ctθ−c+ n

2α +1

for all (x, t) ∈ H.

We also need the following lemma.

Lemma 2.7 ([7, Theorem 3.1]) Let 0 < α ≤ 1, 1 ≤ p < ∞, and λ ∈ R.
Suppose that a multi-index γ ∈ Nn

0 , and real numbers κ, ρ ∈ R with κ > − n
2α

satisfy

λ− ρp < p− 1 <

( |γ|
2α

+ κ

)
p + λ− ρp.

Then, for every f ∈ Lp(λ),

v(x, t) :=
∫

H

f(y, s)∂γ
xDκ

t W (α)(x− y, t + s)sρdV (y, s)

is well defined for every (x, t) ∈ H. Furthermore, let β ∈ Nn
0 be a multi-

index. If a real number ν ∈ R satisfies

ν + κ > − n

2α
and p− 1 <

( |γ|
2α

+ ν + κ

)
p + λ− ρp,

then

∂β
xDν

t v(x, t) =
∫

H

f(y, s)∂β+γ
x Dν+κ

t W (α)(x− y, t + s)sρdV (y, s).

Now, we recall the definition of α-parabolic cylinders, which are in-
troduced in [12]. The α-parabolic cylinders will be used to define separated
sequences below. For Y = (y, s) ∈ H and 0 < δ < 1, an α-parabolic cylinder
S

(α)
δ (Y ) = S

(α)
δ (y, s) is defined by
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S
(α)
δ (y, s) :=

{
(x, t) ∈ H; |x− y| <

(
2δ

1− δ2
s

)1/2α

,
1− δ

1 + δ
s < t <

1 + δ

1− δ
s

}
.

Clearly, limδ→1 S
(α)
δ (Y ) = H and S

(α)
δ (y, s) = Φ(α)

Y (S(α)
δ (0, 1)) for each Y ∈

H, where Φ(α)
Y (X) is the function defined by

Φ(α)
Y (X) :=

(
s1/2αx + y, st

)
, X = (x, t) ∈ H.

Also, V (S(α)
δ (y, s)) = 2Bn(2δs/(1 − δ2))n/(2α)+1, where Bn is the volume

of the unit ball in Rn. For 0 < δ < 1, we say that a sequence {Xj} ⊂ H

is δ-separated in the α-parabolic sense if α-parabolic cylinders S
(α)
δ (Xj) are

pairwise disjoint. We also need the following lemma.

Lemma 2.8 ([6, Lemma 4.2]) Let 0 < α ≤ 1. For every θ > −1 and
c > 0, there exists a constant C > 0 such that

sθ

(t + s + |x− y|2α)c
≤ C

F (δ)
sn/(2α)+1

∫

S
(α)
δ (y,s)

rθ

(t + r + |x− z|2α)c
dV (z, r)

for all 0 < δ < 1 and (x, t), (y, s) ∈ H, where

F (δ) =
(1− δ2)n/(2α)+θ+1−c

δn/(2α){(1 + δ)2(θ+1) − (1− δ)2(θ+1)} .

We describe representing and interpolating operators, which are studied
in [6]. Let X = {Xj} = {(xj , tj)} be a sequence in H. First, we give
the definition of the representing operators. Let (γ, κ) ∈ Nn

0 × Iα,n. For
{λj} ∈ `p, let

Uγ,κ
p,λ,X{λj}(X) :=

∑

j

λjt
n+|γ|

2α +κ−( n
2α +1+λ) 1

p

j ∂γ
xDκ

t W (α)(x− xj , t + tj)

(2.13)

for all X = (x, t) ∈ H. We call Uγ,κ
p,λ,X the representing operator of order

(γ, κ). The following result is also given in [6].

Lemma 2.9 ([6, Theorem 4.3]) Let 0 < α ≤ 1, 1 < p < ∞, λ > −1,
and let κ be a real number such that κ > λ+1

p . Let γ ∈ Nn
0 be a multi-
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index. Furthermore, let X = {Xj} = {(xj , tj)} be a sequence in H. Then,
Uγ,κ

p,λ,X : `p → bp
α(λ) is bounded if and only if for any 0 < δ < 1, there exists

M ∈ N such that X = X1 ∪ · · · ∪XM and each sequence Xi is δ-separated in
the α-parabolic sense. When p = 1, the “if” part also holds.

Next, we give the definition of the interpolating operators. Let γ ∈ Nn
0

and let κ be a real number such that κ > −(
n
2α +1+λ

)
. Then, for u ∈ bp

α(λ),
we define a sequence of real numbers T γ,κ

p,λ,Xu by

T γ,κ
p,λ,Xu :=

{
t
( n

2α +1+λ) 1
p +

|γ|
2α +κ

j ∂γ
xDκ

t u(Xj)
}

. (2.14)

We call T γ,κ
p,λ,X the interpolating operator of order (γ, κ). The boundedness

of the operator T γ,κ
p,λ,X : bp

α(λ) → `p is characterized by the following lemma.

Lemma 2.10 ([6, Lemma 4.1]) Let 0 < α ≤ 1, 1 ≤ p < ∞, λ > −1,
and κ be a real number such that κ > −λ+1

p . Let γ ∈ Nn
0 be a multi-

index. Furthermore, let X = {Xj} = {(xj , tj)} be a sequence in H. Then,
T γ,κ

p,λ,X : bp
α(λ) → `p is bounded if and only if for any 0 < δ < 1, there exists

M ∈ N such that X = X1 ∪ · · · ∪XM and each sequence Xi is δ-separated in
the α-parabolic sense.

3. The B̃α(σ)-representing operator

In this section, we define the B̃α(σ)-representing operators, and study
their properties. First, we give the definition of the B̃α(σ)-representing
operators. Let σ > −m(α) and X = {Xj} = {(xj , tj)} be a sequence in H.
Furthermore, let (γ, κ) ∈ Nn

0 × Iα,n. For {λj} ∈ `∞, put

Uγ,κ
σ,X{λj}(X) :=

∑

j

λjt
n+|γ|

2α +κ−σ
j ωγ,κ

α (X;Xj), X ∈ H. (3.1)

We call Uγ,κ
σ,X the B̃α(σ)-representing operator of order (γ, κ). Let c0 be

the totality of sequences convergent to 0, which is a closed subspace of `∞,
and we may regard a finite sequence as an element of c0. Now, we give a
necessary and sufficient condition for a sequence {Xj} which ensures that
Uγ,κ

σ,X : `∞ → B̃α(σ) is bounded and also that Uγ,κ
σ,X maps c0 into B̃α,0(σ),

Theorem 3.1 Let 0 < α ≤ 1, σ > −m(α), and let κ be a real number
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such that κ > σ. Let γ ∈ Nn
0 be a multi-index. Furthermore, let X = {Xj} =

{(xj , tj)} be a sequence in H. Then, Uγ,κ
σ,X : `∞ → B̃α(σ) is bounded and

Uγ,κ
σ,X maps c0 into B̃α,0(σ) if and only if for any 0 < δ < 1, there exists

M ∈ N such that X = X1 ∪ · · · ∪XM and each sequence Xi is δ-separated in
the α-parabolic sense.

Proof. First, suppose that Uγ,κ
σ,X : `∞ → B̃α(σ) is bounded and Uγ,κ

σ,X maps
c0 into B̃α,0(σ). Then, the restriction operator S := Uγ,κ

σ,X |c0 : c0 → B̃α,0(σ)
is bounded. Therefore, there exists the adjoint operator S∗ of S such that
S∗ : (B̃α,0(σ))∗ → (c0)∗ is bounded. Let λ > −1. Then, Lemma 2.5 (2)
implies that S∗ : b1

α(λ) → `1 is bounded. Let (· , ·) be the usual pairing of
`1 and `∞, and recall that 〈 · , · 〉λ,σ is the pairing of b1

α(λ) and B̃α,0(σ)
described in Lemma 2.5. Furthermore, let {ej} be the standard basis of `∞.
(We note that ej ∈ c0.) Then, for u ∈ b1

α(λ), we have

(S∗u, ej) = 〈u, Sej〉λ,σ = 〈u,Uγ,κ
σ,Xej〉λ,σ

= t
(n+|γ|)/(2α)+κ−σ
j

2λ+σ+2

Γ(λ + σ + 2)

×
∫

H

u(y, s)Dtω
γ,κ
α (y, s;xj , tj)sλ+σ+1dV (y, s)

= t
(n+|γ|)/(2α)+κ−σ
j

2λ+σ+2

Γ(λ + σ + 2)

×
∫

H

u(y, s)∂γ
xDκ+1

t W (α)(y − xj , s + tj)sλ+σ+1dV (y, s). (3.2)

Making a change of variable y = 2xj − z, we find that the right-hand side
of (3.2) is equal to

t
(n+|γ|)/(2α)+κ−σ
j

2λ+σ+2

Γ(λ + σ + 2)

×
∫

H

v(z, s)∂γ
xDκ+1

t W (α)(xj − z, tj + s)sλ+σ+1dV (z, s),

where v(z, s) = u(2xj − z, s). Furthermore, Lemma 2.7 and Lemma 2.4 (1)
imply that
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∫

H

v(z, s)∂γ
xDκ+1

t

(
W (α)(x− z, t + s)

)∣∣∣∣
(x,t)=(xj ,tj)

sλ+σ+1dV (z, s)

= ∂γ
xDκ−(λ+σ+1)

t

( ∫

H

v(z, s)

×Dλ+σ+2
t W (α)(x− z, t + s)sλ+σ+1dV (z, s)

)∣∣∣∣
(x,t)=(xj ,tj)

=
Γ(λ + σ + 2)

2λ+σ+2
∂γ

xDκ−(λ+σ+1)
t v(x, t)

∣∣∣∣
(x,t)=(xj ,tj)

= (−1)|γ|
Γ(λ + σ + 2)

2λ+σ+2
∂γ

xDκ−(λ+σ+1)
t u(xj , tj).

Hence, we obtain

(S∗u, ej) = (−1)|γ|t(n+|γ|)/(2α)+κ−σ
j ∂γ

xDκ−(λ+σ+1)
t u(xj , tj),

that is,

S∗u = (−1)|γ|
{
t
(n+|γ|)/(2α)+κ−σ
j ∂γ

xDκ−(λ+σ+1)
t u(Xj)

}

= (−1)|γ|T γ,κ−(λ+σ+1)
1,λ,X u.

Since S∗ is bounded, the operator T
γ,κ−(λ+σ+1)
1,λ,X is also bounded. Therefore,

by Lemma 2.10, for any 0 < δ < 1, there exists M ∈ N such that X =
X1 ∪ · · · ∪XM and each sequence Xi is δ-separated in the α-parabolic sense.

Next, we show the “only if” part. It is sufficient to prove that if X is
δ-separated in the α-parabolic sense for some 0 < δ < 1 then Uγ,κ

σ,X : `∞ →
B̃α(σ) is bounded and Uγ,κ

σ,X maps c0 into B̃α,0(σ). Thus, we suppose that
X = {Xj} = {(xj , tj)} is δ-separated in the α-parabolic sense. Let {λj} ∈
`∞. We begin with showing that the series in (3.1) converges uniformly on
compact subsets of H (we only use the pointwise convergence of this series
later). Let K be a compact subset of H. Then, Lemma 2.3 (2) and Lemma
2.8 imply that there exists a constant C = C(K) > 0 such that
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∣∣λjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (x, t;xj , tj)
∣∣

≤ C‖{λj}‖∞
t
(n+|γ|)/(2α)+κ−σ
j

(1 + tj + |xj |2α)(n+|γ|)/(2α)+κ+m(α)

≤ CF (δ)‖{λj}‖∞
∫

S
(α)
δ (Xj)

r|γ|/(2α)+κ−σ−1

(1 + r + |z|2α)(n+|γ|)/(2α)+κ+m(α)
dV (z, r)

for all 0 < δ < 1, j, and (x, t) ∈ K, where F (δ) is the function defined in
Lemma 2.8. Therefore, Lemma 2.6 shows that

∑

j

∣∣λjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (x, t;xj , tj)
∣∣

≤ CF (δ)‖{λj}‖∞
∑

j

∫

S
(α)
δ (Xj)

r|γ|/(2α)+κ−σ−1

(1 + r + |z|2α)(n+|γ|)/(2α)+κ+m(α)
dV (z, r)

≤ CF (δ)‖{λj}‖∞
∫

H

r|γ|/(2α)+κ−σ−1

(1 + r + |z|2α)(n+|γ|)/(2α)+κ+m(α)
dV (z, r)

≤ CF (δ)‖{λj}‖∞

for all (x, t) ∈ K, that is, the series in (3.1) converges uniformly on K. Put

uN (x, t) =
N∑

j=1

λjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (x, t;xj , tj), (x, t) ∈ H.

Then, we claim that {uN} is bounded in B̃α(σ). In fact, for each (β, m) ∈
Nn

0 × N0\{(0, 0)}, Lemma 2.1 (1) and Lemma 2.8 imply that

N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂β
xDm

t ωγ,κ
α (x, t;xj , tj)

∣∣

=
N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂β+γ
x Dm+κ

t W (α)(x− xj , t + tj)
∣∣

≤ C

(
sup

1≤j≤N
|λj |

) N∑

j=1

t
(n+|γ|)/(2α)+κ−σ
j

(t + tj + |x− xj |2α)(n+|β|+|γ|)/(2α)+m+κ



Representing and interpolating sequences 349

≤ CF (δ)
(

sup
1≤j≤N

|λj |
)

×
N∑

j=1

∫

S
(α)
δ (Xj)

r|γ|/(2α)+κ−σ−1

(t + r + |x− z|2α)(n+|β|+|γ|)/(2α)+m+κ
dV (z, r) (3.3)

for all X = (x, t) ∈ H. Therefore, (3.3) and Lemma 2.6 also imply that

N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂x`
ωγ,κ

α (X;Xj)
∣∣

≤ Ct−σ−1/(2α)

(
sup

1≤j≤N
|λj |

)
(3.4)

and

N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂tω
γ,κ
α (X;Xj)

∣∣ ≤ Ct−σ−1

(
sup

1≤j≤N
|λj |

)
(3.5)

for all X = (x, t) ∈ H. Thus, (3.4) and (3.5) show ‖uN‖Bα(σ) ≤ C‖{λj}‖∞
for all N ∈ N. Let λ > −1, and we recall the fact (b1

α(λ))∗ ∼= B̃α(σ) under
the pairing 〈 · , · 〉λ,σ defined in Lemma 2.5. Furthermore, since L1(λ)
is separable, the subspace b1

α(λ) of L1(λ) is also separable. Therefore, the
Banach-Alaoglu theorem implies that there exist a subsequence {uNi} ⊂
{uN} and a function u ∈ B̃α(σ) such that {uNi

} converges to u in the w*-
topology. By Lemma 2.3 (2) and Lemma 2.6, we have ωλ+σ+1

α (X; · ) =
ω0,λ+σ+1

α (X; · ) ∈ b1
α(λ) for each X ∈ H. Hence, Lemma 2.4 (2) with κ = 1

shows that

u(X) =
〈
ωλ+σ+1

α (X; · ), u
〉

λ,σ

= lim
i

〈
ωλ+σ+1

α (X; · ), uNi

〉
λ,σ

= lim
i

uNi
(X) = Uγ,κ

σ,X{λj}(X).

This implies Uγ,κ
σ,X{λj} ∈ B̃α(σ) and ‖Uγ,κ

σ,X{λj}‖Bα(σ) ≤ lim infi ‖uNi‖Bα(σ)

≤ C‖{λj}‖∞, that is, the operator Uγ,κ
σ,X : `∞ → B̃α(σ) is bounded. Next,

let {ηj} ∈ c0, and put
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vN (X) =
N∑

j=1

ηjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (X;Xj), X ∈ H.

Then, by (3.3), we have vN ∈ B̃α,0(σ). Furthermore, (3.4) and (3.5) show
that

‖vM − vN‖Bα(σ) ≤ C

(
sup

N+1≤j≤M
|ηj |

)
→ 0 (M > N →∞).

Hence, there exists a function v ∈ B̃α,0(σ) such that {vN} converges to v

in B̃α(σ). Thus, {vN} also converges to v in the w*-topology. Therefore,
Lemma 2.4 (2) with κ = 1 also implies that

v(X) =
〈
ωλ+σ+1

α (X; · ), v
〉

λ,σ

= lim
N

〈
ωλ+σ+1

α (X; · ), vN

〉
λ,σ

= lim
N

vN (X) = Uγ,κ
σ,X{ηj}(X).

It follows that Uγ,κ
σ,X maps c0 into B̃α,0(σ). ¤

4. The B̃α(σ)-interpolating operator

In this section, we define B̃α(σ)-interpolating operators, and study their
properties. First, we give the definition of the B̃α(σ)-interpolating opera-
tors. Let σ > −m(α) and put Σσ := {0} ∪ {

κ ∈ R : κ > max{0,−σ}}.
Furthermore, let X = {Xj} = {(xj , tj)} be a sequence in H, and let
(γ, κ) ∈ (Nn

0 × Σσ)\{(0, 0)}. Then, for u ∈ B̃α(σ), we define a sequence
of real numbers T γ,κ

σ,Xu by

T γ,κ
σ,Xu :=

{
t
|γ|/(2α)+κ+σ
j ∂γ

xDκ
t u(Xj)

}
. (4.1)

By Lemma 2.2 (1), the linear operator T γ,κ
σ,X : B̃α(σ) → `∞ is always bounded,

and we call T γ,κ
σ,X the B̃α(σ)-interpolating operator of order (γ, κ). We also

consider the operator T γ,κ
σ,X on the subspace B̃α,0(σ) of B̃α(σ). We give suffi-

cient conditions for a sequence {Xj} which ensures that T γ,κ
σ,X maps B̃α,0(σ)

into c0. We give the following theorem.
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Theorem 4.1 Let 0 < α ≤ 1, σ > −m(α), and (γ, κ) ∈ (Nn
0 × Σσ)\

{(0, 0)}. Then, the following statements hold.

(1) If u ∈ B̃α,0(σ), then lim(x,t)→∂H∪{∞} t|γ|/(2α)+κ+σ∂γ
xDκ

t u(x, t) = 0.
(2) If a sequence X = {Xj} ⊂ H satisfies Xj → ∂H ∪ {∞} (j →∞), then

T γ,κ
σ,X maps B̃α,0(σ) into c0.

(3) If for any 0 < δ < 1, there exists M ∈ N such that X = X1 ∪ · · · ∪ XM

and each sequence Xi is δ-separated in the α-parabolic sense, then T γ,κ
σ,X

maps B̃α,0(σ) into c0.

Proof. (1) Let u ∈ B̃α(σ). Then, by Lemma 2.4 (2) with κ = 1 and
ν = σ + 1, we have

u(x, t) =
2σ+2

Γ(σ + 2)

∫

H

Dtu(y, s)ωσ+1
α (x, t; y, s)sσ+1dV (y, s) (4.2)

for all (x, t) ∈ H. Let (γ, κ) ∈ (Nn
0 × Σσ)\{(0, 0)}. If κ /∈ N0, then differen-

tiating through the integral (4.2), we obtain

∂γ
xDdκet u(x, t)

=
2σ+2

Γ(σ + 2)

∫

H

Dtu(y, s)∂γ
xDdκe+σ+1

t W (α)(x− y, t + s)sσ+1dV (y, s).

Thus, we have

∂γ
xDκ

t u(x, t) =
2σ+2

Γ(σ + 2)
1

Γ(dκe − κ)

∫ ∞

0

τ dκe−κ−1

∫

H

Dtu(y, s)

× ∂γ
xDdκe+σ+1

t W (α)(x− y, t + s + τ)sσ+1dV (y, s)dτ.

Here, Lemma 2.1 (1) and Lemma 2.6 imply that

∫ ∞

0

τ dκe−κ−1

×
∫

H

∣∣Dtu(y, s)∂γ
xDdκe+σ+1

t W (α)(x− y, t + s + τ)
∣∣sσ+1dV (y, s)dτ



352 Y. Hishikawa and M. Yamada

≤ C‖u‖Bα(σ)

∫ ∞

0

τ dκe−κ−1

×
∫

H

1
(t + s + τ + |x− y|2α)(n+|γ|)/(2α)+dκe+σ+1

dV (y, s)dτ

= C‖u‖Bα(σ)

∫ ∞

0

τ dκe−κ−1

(t + τ)|γ|/(2α)+dκe+σ
dτ < ∞,

because |γ|/(2α) + κ + σ > 0. Therefore, the Fubini theorem shows

∂γ
xDκ

t u(x, t)

=
2σ+2

Γ(σ + 2)

∫

H

Dtu(y, s)∂γ
xDκ+σ+1

t W (α)(x− y, t + s)sσ+1dV (y, s). (4.3)

If κ ∈ N0, then clearly we also obtain (4.3). Hence, we conclude that
Equation (4.3) holds for every (γ, κ) ∈ (Nn

0 ×Σσ)\{(0, 0)}. Let u ∈ B̃α,0(σ)
and let η > 0 be a real number such that |γ|/(2α) + κ + σ > η. Then, given
ε > 0, there exists a compact set K ⊂ H such that sσ+1|Dtu(y, s)| < ε for
all (y, s) ∈ Kc, because u ∈ B̃α,0(σ). Hence, Lemma 2.1 (1) and Lemma 2.6
again imply that

t|γ|/(2α)+κ+σ|∂γ
xDκ

t u(x, t)|

≤ Ct|γ|/(2α)+κ+σ

∫

H

sσ+1|Dtu(y, s)|
(t + s + |x− y|2α)(n+|γ|)/(2α)+κ+σ+1

dV (y, s)

≤ Ctη
∫

H

sσ+1|Dtu(y, s)|
(t + s + |x− y|2α)n/(2α)+η+1

dV (y, s)

≤ Cεtη
∫

Kc

1
(t + s + |x− y|2α)n/(2α)+η+1

dV (y, s)

+ C‖u‖Bα(σ)t
η

∫

K

1
(t + s + |x− y|2α)n/(2α)+η+1

dV (y, s)

≤ Cε + C‖u‖Bα(σ)
tη

(1 + t + |x|2α)n/(2α)+η+1

≤ Cε + C‖u‖Bα(σ)
1

(1 + t + |x|2α)n/(2α)+1
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for all (x, t) ∈ H. Thus, we obtain

lim
(x,t)→∂H∪{∞}

t|γ|/(2α)+κ+σ|∂γ
xDκ

t u(x, t)| ≤ Cε.

(2) The desired result immediately follows from Theorem 4.1 (1).
(3) Let X = {Xj} and 0 < δ < 1. Suppose that there exists M ∈ N

such that X = X1 ∪ · · · ∪ XM and each sequence Xi is δ-separated in the
α-parabolic sense. Then clearly, for any compact set K ⊂ H, there exists
j0 ∈ N such that Xj ∈ Kc for all j ≥ j0, that is, Xj → ∂H ∪ {∞} (j →∞).

¤

5. The B̃α(σ)-representing theorem

In this section, we give a representing theorem for B̃α(σ). Let σ >

−m(α) and X = {Xj} = {(xj , tj)} be a sequence in H. Furthermore, let
(γ, κ) ∈ Nn

0×Iα,n. For {λj} ∈ `∞, we recall the B̃α(σ)-representing operator

Uγ,κ
σ,X{λj}(X) =

∑

j

λjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (X;Xj), X ∈ H. (5.1)

We say that {Xj} is a B̃α(σ)-representing sequence of order (γ, κ) if
Uγ,κ

σ,X{λj} ∈ B̃α(σ) for all {λj} ∈ `∞ and the operator Uγ,κ
σ,X : `∞ → B̃α(σ) is

bounded and onto. We also say that {Xj} is a B̃α,0(σ)-representing sequence
of order (γ, κ) if Uγ,κ

σ,X{λj} ∈ B̃α,0(σ) for all {λj} ∈ c0 and the operator
Uγ,κ

σ,X : c0 → B̃α,0(σ) is bounded and onto. In this section, we give a repre-
senting theorem for B̃α(σ) and B̃α,0(σ), that is, we give a sufficient condition
for a sequence {Xj} to be the B̃α(σ)-representing and B̃α,0(σ)-representing
sequence. We need the following lemma.

Lemma 5.1 ([6, Lemma 5.2]) Let 0 < α ≤ 1, γ ∈ Nn
0 , κ > −n/(2α), and

θ ∈ R. Then, there exists a constant C = C(n, α, γ, κ, θ) > 0 such that

∣∣sθ∂γ
xDκ

t W (α)(x− y, t + s)− rθ∂γ
xDκ

t W (α)(x− z, t + r)
∣∣

≤ C
(δ + δ1/(2α))rθ

(t + r + |x− z|2α)(n+|γ|)/(2α)+κ

for all (x, t), (y, s) ∈ H, (z, r) ∈ S
(α)
δ (y, s), and 0 < δ ≤ 1/3.
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We also give the Lipschitz type estimates of functions in B̃α(σ).

Proposition 5.2 Let 0 < α ≤ 1, σ > −m(α), and (γ, κ) ∈ (Nn
0 ×

Σσ)\{(0, 0)}. Then, there exists a constant C = C(n, α, σ, γ, κ) > 0 such
that

∣∣∂γ
xDκ

t u(y, s)− ∂γ
xDκ

t u(x, t)
∣∣ ≤ C

(
δ + δ

1
2α

)
s−(|γ|/(2α)+κ+σ)‖u‖Bα(σ) (5.2)

for all u ∈ B̃α(σ), (x, t) ∈ H, (y, s) ∈ S
(α)
δ (x, t), and 0 < δ ≤ 1/3.

Proof. Let u ∈ B̃α(σ), (x, t) ∈ H, (y, s) ∈ S
(α)
δ (x, t), and 0 < δ ≤ 1/3.

Then, by (4.3) and Lemma 5.1, we have

∣∣∂γ
xDκ

t u(y, s)− ∂γ
xDκ

t u(x, t)
∣∣

≤ C

∫

H

|Dtu(z, r)|∣∣∂γ
xDκ+σ+1

t W (α)(y − z, s + r)

− ∂γ
xDκ+σ+1

t W (α)(x− z, t + r)
∣∣rσ+1dV (z, r)

≤ C(δ + δ1/(2α))
∫

H

|Dtu(z, r)|rσ+1

(r + s + |z − y|2α)(n+|γ|)/(2α)+κ+σ+1
dV (z, r)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

×
∫

H

1
(r + s + |z − y|2α)(n+|γ|)/(2α)+κ+σ+1

dV (z, r).

Hence, (5.2) follows from Lemma 2.6, where C is independent of δ. ¤

Given 0 < δ < 1, we say that a sequence {Xj} ⊂ H is a δ-lattice in
the α-parabolic sense if H =

⋃
j S

(α)
δ (Xj) and {Xj} is ε-separated in the

α-parabolic sense for some ε, 0 < ε < δ. The notion of the δ-lattice in the
α-parabolic sense is introduced in [13] and an example of the δ-lattice is
given in [13, Remark 4.3].

Let 0 < δ ≤ 1/3 and {Xj} be a δ-lattice in the α-parabolic sense (ε-
separated for some 0 < ε < δ). Then, we take a pairwise disjoint covering
{Sj} of H as follows:

S1 = S
(α)
δ (X1)\

⋃

k≥2

S(α)
ε (Xk)
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Sj = S
(α)
δ (Xj)\

{( ⋃

m≤j−1

Sm

) ⋃ ( ⋃

k≥j+1

S(α)
ε (Xk)

)}
, (j ≥ 2). (5.3)

It is easy to see that S
(α)
ε (Xj) ⊂ Sj ⊂ S

(α)
δ (Xj) ⊂ S

(α)
1/3(Xj), and there

exists a constant C > 0 independent of δ such that V (Sj) ≤ Ct
n/2α+1
j for

all j ≥ 1. We show the main theorem of this section.

Theorem 5.3 Let 0 < α ≤ 1, σ > −m(α), and κ be a real number such
that κ > σ. Then, there exists 0 < δ0 < 1 such that if a sequence {Xj} in
H is the δ-lattice in the α-parabolic sense with 0 < δ ≤ δ0, then {Xj} is the
B̃α(σ)-representing and B̃α,0(σ)-representing sequence of order (0, κ).

Proof. Suppose that 0 < δ ≤ 1/3 and X = {Xj} = {(xj , tj)} is the δ-lattice
in the α-parabolic sense (ε-separated for some 0 < ε < δ). Here constraints
of δ will be imposed later. Theorem 3.1 implies that U0,κ

σ,X : `∞ → B̃α(σ)
is bounded and U0,κ

σ,X maps c0 into B̃α,0(σ). Let {Sj} be a pairwise disjoint
covering of H defined in (5.3). Then, we define an operator Bσ,X on B̃α(σ)
by

Bσ,Xu :=
{

t
1+σ−(n/(2α)+1)
j Dtu(Xj)V (Sj)

}
=

{
t
σ−n/(2α)
j Dtu(Xj)V (Sj)

}
.

We note that Bσ,X : B̃α(σ) → `∞ is bounded and Bσ,X maps B̃α,0(σ) into c0,
because V (Sj) ≤ Ct

n/(2α)+1
j and {Xj} is ε-separated for some 0 < ε < δ.

Thus, we define an operator Aκ
σ,X on B̃α(σ) by

Aκ
σ,Xu(x, t) :=

2κ+1

Γ(κ + 1)
U0,κ

σ,XBσ,Xu(x, t)

=
2κ+1

Γ(κ + 1)

∑

j

tκjDtu(xj , tj)ωκ
α(x, t;xj , tj)V (Sj).

Then, Aκ
σ,X : B̃α(σ) → B̃α(σ) is bounded and Aκ

σ,X maps B̃α,0(σ) into itself.
It suffices to show that Aκ

σ,X is invertible on B̃α(σ) for all δ sufficiently small.
We shall show that ‖I − Aκ

σ,X‖ < 1 for all δ sufficiently small, where I

is the identity operator on B̃α(σ). In fact, Lemma 2.4 (2) implies that for
u ∈ B̃α(σ) and (x, t) ∈ H,
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u(x, t) =
2κ+1

Γ(κ + 1)

∫

H

Dtu(y, s)ωκ
α(x, t; y, s)sκdV (y, s)

=
2κ+1

Γ(κ + 1)

∑

j

∫

Sj

Dtu(y, s)ωκ
α(x, t; y, s)sκdV (y, s).

Hence, we obtain

(
I −Aκ

σ,X
)
u(x, t) =

2κ+1

Γ(κ + 1)
(Π1(x, t) + Π2(x, t)),

where

Π1(x, t) =
∑

j

∫

Sj

Dtu(y, s)
(
sκωκ

α(x, t; y, s)− tκj ωκ
α(x, t;xj , tj)

)
dV (y, s)

and

Π2(x, t) =
∑

j

∫

Sj

(Dtu(y, s)−Dtu(xj , tj)
)
tκj ωκ

α(x, t;xj , tj))dV (y, s).

First, we shall show that there exists a constant C > 0 independent of
δ and u such that ‖Π1‖Bα(σ) ≤ C(δ + δ1/(2α))‖u‖Bα(σ). By Lemmas 5.1 and
2.6, we have for each 1 ≤ ` ≤ n,

|∂x`
Π1(x, t)|

≤
∑

j

∫

Sj

|Dtu(y, s)|
∣∣sκ∂x`

Dκ
t W (α)(x− y, t + s)

− tκj ∂x`
Dκ

t W (α)(x− xj , t + tj)
∣∣dV (y, s)

≤ C(δ + δ1/(2α))
∑

j

∫

Sj

|Dtu(y, s)|sκ

(t + s + |x− y|2α)(n+1)/(2α)+κ
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∫

H

s−1−σ+κ

(t + s + |x− y|2α)(n+1)/(2α)+κ
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ) · t−σ−1/(2α),

and
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|∂tΠ1(x, t)|

≤
∑

j

∫

Sj

|Dtu(y, s)|∣∣sκDκ+1
t W (α)(x− y, t + s)

− tκjDκ+1
t W (α)(x− xj , t + tj)

∣∣dV (y, s)

≤ C(δ + δ1/(2α))
∑

j

∫

Sj

|Dtu(y, s)|sκ

(t + s + |x− y|2α)n/(2α)+κ+1
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∫

H

s−1−σ+κ

(t + s + |x− y|2α)n/(2α)+κ+1
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ) · t−σ−1.

Therefore, we obtain ‖Π1‖Bα(σ) ≤ C(δ + δ1/(2α))‖u‖Bα(σ), where the con-
stant C is independent of δ and u.

Next, we shall show that there exists a constant C > 0 independent of
δ and u such that ‖Π2‖Bα(σ) ≤ C(δ + δ1/(2α))‖u‖Bα(σ). By Lemma 2.1 (1)
and Proposition 5.2, we have for each 1 ≤ ` ≤ n,

|∂x`
Π2(x, t)|

≤
∑

j

∫

Sj

|Dtu(y, s)−Dtu(xj , tj)|tκj
∣∣∂x`

Dκ
t W (α)(x− xj , t + tj)

∣∣dV (y, s)

≤
∑

j

∫

Sj

|Dtu(y, s)−Dtu(xj , tj)|tκj
(t + tj + |x− xj |2α)(n+1)/(2α)+κ

dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

×
∑

j

∫

Sj

s−1−σtκj
(t + tj + |x− xj |2α)(n+1)/(2α)+κ

dV (y, s),

and

|∂tΠ2(x, t)|

≤
∑

j

∫

Sj

|Dtu(y, s)−Dtu(xj , tj)|tκj
∣∣Dκ+1

t W (α)(x− xj , t + tj)
∣∣dV (y, s)



358 Y. Hishikawa and M. Yamada

≤
∑

j

∫

Sj

|Dtu(y, s)−Dtu(xj , tj)|tκj
(t + tj + |x− xj |2α)n/(2α)+κ+1

dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∑

j

∫

Sj

s−1−σtκj
(t + tj + |x− xj |2α)n/(2α)+κ+1

dV (y, s).

Since Sj ⊂ S
(α)
δ (Xj) ⊂ S

(α)
1/3(Xj), there exists a constant C > 0 independent

of δ such that

C−1s ≤ tj ≤ Cs, t + s + |x− y|2α ≤ C(t + tj + |x− xj |2α)

for all (y, s) ∈ Sj and j. Therefore, Lemma 2.6 implies that there exists a
constant C > 0 independent of δ such that for each 1 ≤ ` ≤ n,

|∂x`
Π2(x, t)|

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∑

j

∫

Sj

s−1−σ+κ

(t + s + |x− y|2α)(n+1)/(2α)+κ
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∫

H

s−1−σ+κ

(t + s + |x− y|2α)(n+1)/(2α)+κ
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ) · t−σ−1/(2α),

and

|∂tΠ2(x, t)|

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∑

j

∫

Sj

s−1−σ+κ

(t + s + |x− y|2α)n/(2α)+κ+1
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ)

∫

H

s−1−σ+κ

(t + s + |x− y|2α)n/(2α)+κ+1
dV (y, s)

≤ C(δ + δ1/(2α))‖u‖Bα(σ) · t−σ−1.

Hence, we obtain ‖Π2‖Bα(σ) ≤ C(δ + δ1/(2α))‖u‖Bα(σ), where the constant
C is independent of δ and u. ¤



Representing and interpolating sequences 359

6. The B̃α(σ)-interpolating theorem

In this section, we give a interpolating theorem for the α-parabolic Bloch
type spaces. Let σ > −m(α) and X = {Xj} = {(xj , tj)} be a sequence in
H. Furthermore, let (γ, κ) ∈ (Nn

0 × Σσ)\{(0, 0)}. For u ∈ B̃α(σ), we recall
the B̃α(σ)-interpolating operator

T γ,κ
σ,Xu :=

{
t
|γ|/(2α)+κ+σ
j ∂γ

xDκ
t u(Xj)

}
. (6.1)

We say that {Xj} is a B̃α(σ)-interpolating sequence of order (γ, κ) if the
operator T γ,κ

σ,X : B̃α(σ) → `∞ is bounded and onto. Again, we remark that
T γ,κ

σ,X : B̃α(σ) → `∞ is always bounded by Lemma 2.2 (1). We also say that
{Xj} is a B̃α,0(σ)-interpolating sequence of order (γ, κ) if T γ,κ

σ,X : B̃α,0(σ) →
c0 is bounded and onto. In this section, we give an interpolating theorem
for B̃α(σ) and B̃α,0(σ), that is, we give a sufficient condition for a sequence
{Xj} to be the B̃α(σ)-interpolating and B̃α,0(σ)-interpolating sequence. We
need the following lemma.

Lemma 6.1 Let 0 < α ≤ 1, σ > −m(α), and κ be a real number such that
κ > σ. Let γ ∈ Nn

0 be a multi-index. Furthermore, let X = {Xj} = {(xj , tj)}
be δ-separated in the α-parabolic sense. If (β, ν) ∈ Nn

0 × Σσ\{(0, 0)} and
{λj} ∈ `∞, then

∂β
xDν

t

(
Uγ,κ

σ,X{λj}
)
(x, t)

=
∞∑

j=1

λjt
(n+|γ|)/(2α)+κ−σ
j ∂β+γ

x Dν+κ
t W (α)(x− xj , t + tj) (6.2)

for all (x, t) ∈ H.

Proof. Let (β, ν) ∈ Nn
0 × Σσ\{(0, 0)}.

Suppose ν ∈ N0. Put

uN (x, t) =
N∑

j=1

λjt
(n+|γ|)/(2α)+κ−σ
j ωγ,κ

α (x, t;xj , tj), (x, t) ∈ H.

Then, {∂β
xDν

t uN} converges uniformly on Rn × [τ,∞) for every τ > 0. In
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fact, by (3.3), we have

N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂β
xDν

t ωγ,κ
α (x, t;xj , tj)

∣∣

≤ CF (δ)‖{λj}‖∞

×
N∑

j=1

∫

S
(α)
δ (Xj)

r|γ|/(2α)+κ−σ−1

(t + r + |x− z|2α)(n+|β|+|γ|)/(2α)+ν+κ
dV (z, r)

≤ CF (δ)‖{λj}‖∞
∫

H

r|γ|/(2α)+κ−σ−1

(t + r + |x− z|2α)(n+|β|+|γ|)/(2α)+ν+κ
dV (z, r)

for all X ∈ H. Since (β, ν) ∈ Nn
0 × N0\{(0, 0)}, Lemma 2.6 implies

N∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂β
xDν

t ωγ,κ
α (X;Xj)

∣∣

≤ CF (δ)‖{λj}‖∞t−(|β|/(2α)+ν+σ).

Thus, we have {∂β
xDν

t uN} converges uniformly on Rn × [τ,∞) for every
τ > 0. It follows that we can differentiate term by term, so that (6.2) is
obtained.

Suppose ν /∈ N0. Then, Lemma 2.6 also implies

∫ ∞

0

τ dνe−ν−1
∞∑

j=1

|λj |t(n+|γ|)/(2α)+κ−σ
j

∣∣∂β
xDdνet ωγ,κ

α (x, t + τ ;xj , tj)
∣∣dτ

≤ CF (δ)‖{λj}‖∞
∫ ∞

0

τ dνe−ν−1

×
∫

H

r(|γ|)/(2α)+κ−σ−1

(t + τ + r + |x− z|2α)(n+|β|+|γ|)/(2α)+dνe+κ
dV (z, r)dτ

≤ CF (δ)‖{λj}‖∞
∫ ∞

0

τ dνe−ν−1

(t + τ)|β|/(2α)+dνe+σ
dτ < ∞,

because ν > max{0,−σ}. Hence, differentiating term by term, we obtain
(6.2) from the Fubini theorem. ¤
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We show the main theorem of this section.

Theorem 6.2 Let 0 < α ≤ 1, σ > −m(α), and (γ, κ) ∈ (Nn
0 × Σσ)\

{(0, 0)}. Then, there exists 0 < δ0 < 1 such that if a sequence {Xj} in
H is δ-separated in the α-parabolic sense with δ0 ≤ δ < 1, then {Xj} is a
B̃α(σ)-interpolating and B̃α,0(σ)-interpolating sequence of order (γ, κ).

Proof. Let ν be a real number such that ν > σ. We note that the function

s(n+2|γ|)/(2α)+κ+ν∂2γ
x Dκ+ν

t W (α)(0, 2s)

is constant on H. In fact, by Lemma 2.1 (4), we have

∂2γ
x Dκ+ν

t W (α)(0, 2s)

= 2−((n+2|γ|)/(2α)+κ+ν)s−((n+2|γ|)/(2α)+κ+ν)∂2γ
x Dκ+ν

t W (α)(0, 1).

Thus, s(n+2|γ|)/(2α)+κ+ν∂2γ
x Dκ+ν

t W (α)(0, 2s) is constant on H. Put

cγ,κ,ν := s(n+2|γ|)/(2α)+κ+ν∂2γ
x Dκ+ν

t W (α)(0, 2s)

= 2−((n+2|γ|)/(2α)+κ+ν)∂2γ
x Dκ+ν

t W (α)(0, 1).

Then, as in the proof of [14, Proposition 1 (2)], it is easy to see that
∂2γ

x Dκ+ν
t W (α)(0, 1) 6= 0. Therefore, we obtain cγ,κ,ν 6= 0.

Suppose that X = {Xj} = {(xj , tj)} is δ-separated in the α-parabolic
sense. Here constraints of δ will be imposed later. By Theorem 3.1, the
operator Uγ,ν

σ,X : `∞ → B̃α(σ) is bounded and Uγ,ν
σ,X maps c0 into B̃α,0(σ).

Therefore, T γ,κ
σ,XUγ,ν

σ,X : `∞ → `∞ is bounded and T γ,κ
σ,XUγ,ν

σ,X maps c0 into c0

by Theorem 4.1 (3). As in the proof of Theorem 5.3, it suffices to show that
there exists 0 < δ0 < 1 such that if δ0 ≤ δ < 1 then ‖I − Sγ,κ,ν

σ,X ‖ < 1, where
I is the identity operator on `∞ and Sγ,κ,ν

σ,X = c−1
γ,κ,νT γ,κ

σ,XUγ,ν
σ,X . In fact, the

operator I − Sγ,κ,ν
σ,X maps a sequence {λj} in `∞ to a sequence {ξm} in `∞

given by

ξm = λm − c−1
γ,κ,νt|γ|/(2α)+κ+σ

m ∂γ
xDκ

t

(
Uγ,ν

σ,X{λj}
)
(Xm).

By Lemma 6.1, we have
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ξm = λm − c−1
γ,κ,νt|γ|/(2α)+κ+σ

m

×
∞∑

j=1

λjt
(n+|γ|)/(2α)+ν−σ
j ∂2γ

x Dκ+ν
t W (α)(xm − xj , tm + tj)

= c−1
γ,κ,νt|γ|/(2α)+κ+σ

m

×
∑

j 6=m

λjt
(n+|γ|)/(2α)+ν−σ
j ∂2γ

x Dκ+ν
t W (α)(xm − xj , tm + tj).

Thus, Lemma 2.1 (1) and Lemma 2.8 imply

|ξm| ≤
∣∣c−1

γ,κ,ν

∣∣t|γ|/(2α)+κ+σ
m

×
∑

j 6=m

|λj |t(n+|γ|)/(2α)+ν−σ
j

∣∣∂2γ
x Dκ+ν

t W (α)(xm − xj , tm + tj)
∣∣

≤ C‖{λj}‖∞t|γ|/(2α)+κ+σ
m

∑

j 6=m

t
(n+|γ|)/(2α)+ν−σ
j

(tm + tj + |xm − xj |2α)(n+2|γ|)/(2α)+κ+ν

≤ CF (δ/2)‖{λj}‖∞t|γ|/(2α)+κ+σ
m

×
∑

j 6=m

∫

S
(α)
δ/2(Xj)

r|γ|/(2α)+ν−σ−1

(tm + r + |xm − z|2α)(n+2|γ|)/(2α)+κ+ν
dV (z, r)

≤ CF (δ/2)‖{λj}‖∞t|γ|/(2α)+κ+σ
m

×
∫

H\S(α)
δ (Xm)

r|γ|/(2α)+ν−σ−1

(tm + r + |xm − z|2α)(n+2|γ|)/(2α)+κ+ν
dV (z, r)

= CF (δ/2)‖{λj}‖∞
∫

H\S(α)
δ (0,1)

t|γ|/(2α)+ν−σ−1

(1 + t + |x|2α)(n+2|γ|)/(2α)+κ+ν
dV (z, r),

where C is independent of δ. Since F (δ/2) is bounded for all 1/2 ≤ δ < 1,
Lemma 2.6 shows that there exists 0 < δ0 < 1 such that if δ0 ≤ δ < 1 then
‖I − Sγ,κ,ν

σ,X ‖ < 1. ¤
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