Representing and interpolating sequences on parabolic Bloch type spaces

Yôsuke Hishikawa and Masahiro Yamada

(Received December 2, 2010; Revised June 6, 2011)

Abstract

Let H be the upper half-space of the Euclidean space. The α-parabolic Bloch type space $\mathcal{B}_{\alpha}(\sigma)$ on H is the set of all solutions u of the parabolic equation $\left(\partial / \partial t+\left(-\Delta_{x}\right)^{\alpha}\right) u=0$ with $0<\alpha \leq 1$ which belong to $C^{1}(H)$ and have finite Bloch norm with weight t^{σ}. In this paper, we study representing and interpolating sequences on parabolic Bloch type spaces. In our previous paper [8], the reproducing formula on $\mathcal{B}_{\alpha}(\sigma)$ is given. A representing sequence gives a discrete version of the reproducing formula on $\mathcal{B}_{\alpha}(\sigma)$. Interpolating sequences are closely related to representing sequences, and such sequences are very interesting in their own right.

Key words: Bloch space, parabolic operator of fractional order, representing sequence, interpolating sequence.

1. Introduction

Let $n \geq 1$ and let H be the upper half-space of the $(n+1)$-dimensional Euclidean space, that is, $H=\left\{X=(x, t) \in \mathbb{R}^{n+1}: x=\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\left.\mathbb{R}^{n}, t>0\right\}$. For $0<\alpha \leq 1$, the parabolic operator $L^{(\alpha)}$ is defined by

$$
\begin{equation*}
L^{(\alpha)}:=\partial_{t}+\left(-\Delta_{x}\right)^{\alpha} \tag{1.1}
\end{equation*}
$$

where $\partial_{t}=\partial / \partial t, \partial_{\ell}=\partial / \partial x_{\ell}$, and $\Delta_{x}=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$. Let $C(H)$ be the set of all real-valued continuous functions on H, and let $C_{0}(H)$ be the set of all functions in $C(H)$ which vanish continuously at $\partial H \cup\{\infty\}$. For a positive integer $k, C^{k}(H)$ denotes the set of all k times continuously differentiable functions on H, and put $C^{\infty}(H)=\cap_{k} C^{k}(H)$. Furthermore, let $C_{c}^{\infty}(H)$ be the set of all functions in $C^{\infty}(H)$ with compact support. A function $u \in$ $C(H)$ is said to be $L^{(\alpha)}$-harmonic if $L^{(\alpha)} u=0$ in the sense of distributions (for details, see Section 2). Put $m(\alpha)=\min \{1,1 /(2 \alpha)\}$. For a real number $\sigma>-m(\alpha)$, let $\mathcal{B}_{\alpha}(\sigma)$ be the set of all $L^{(\alpha)}$-harmonic functions $u \in C^{1}(H)$ with the norm

$$
\begin{equation*}
\|u\|_{\mathcal{B}_{\alpha}(\sigma)}:=|u(0,1)|+\sup _{(x, t) \in H} t^{\sigma}\left\{t^{1 /(2 \alpha)}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\}<\infty \tag{1.2}
\end{equation*}
$$

where $\nabla_{x}=\left(\partial_{1}, \ldots, \partial_{n}\right)$. We call $\mathcal{B}_{\alpha}(\sigma)$ the α-parabolic Bloch type space. Since $\mathcal{B}_{\alpha}(\sigma)$ contains constant functions, we may identify $\mathcal{B}_{\alpha}(\sigma) / \mathbb{R} \cong \widetilde{\mathcal{B}}_{\alpha}(\sigma)$, where

$$
\widetilde{\mathcal{B}}_{\alpha}(\sigma):=\left\{u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma): u(0,1)=0\right\} .
$$

The α-parabolic Bloch type space $\mathcal{B}_{\alpha}(\sigma)$ is introduced and studied in our previous paper [8]. The authors mainly studied fundamental properties and reproducing formulae for functions of $\mathcal{B}_{\alpha}(\sigma)$ in [8]. We remark that $\mathcal{B}_{\alpha}(\sigma)$ and $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ are Banach spaces with the norm (1.2) (see [8, Theorem 3.2]). It is also shown that when $\alpha=1 / 2$, every $u \in \mathcal{B}_{1 / 2}(\sigma)$ is harmonic on H (see [8, Remark 3.3]). Thus, $\mathcal{B}_{1 / 2}(\sigma)$ coincides with the harmonic Bloch type space.

In this paper, we study representing and interpolating sequences on parabolic Bloch type spaces. First, we describe the definition of $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ representing sequences. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For $k \in \mathbb{N}_{0}$, a function ω_{α}^{k} on $H \times H$ is defined by

$$
\begin{equation*}
\omega_{\alpha}^{k}(X ; Y)=\omega_{\alpha}^{k}(x, t ; y, s):=\mathcal{D}_{t}^{k} W^{(\alpha)}(x-y, t+s)-\mathcal{D}_{t}^{k} W^{(\alpha)}(-y, 1+s) \tag{1.3}
\end{equation*}
$$

for all $X=(x, t), Y=(y, s) \in H$, where $\mathcal{D}_{t}=-\partial_{t}$ and $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$ (see Section 2 for definition). Let ℓ^{∞} be the Banach space of all bounded sequences. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. For $\left\{\lambda_{j}\right\} \in \ell^{\infty}$, let

$$
\begin{equation*}
U_{\sigma, \mathbb{X}}^{k}\left\{\lambda_{j}\right\}(X):=\sum_{j} \lambda_{j} t_{j}^{n / 2 \alpha+k-\sigma} \omega_{\alpha}^{k}\left(X ; X_{j}\right) \tag{1.4}
\end{equation*}
$$

for all $X \in H$. We say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing sequence of order k if $U_{\sigma, \mathbb{X}}^{k}\left\{\lambda_{j}\right\} \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ for all $\left\{\lambda_{j}\right\} \in \ell^{\infty}$ and the operator $U_{\sigma, \mathbb{X}}^{k}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and onto.

Next, we describe definition of $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating sequences. Let $k \in$ \mathbb{N}. For $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$, we define a sequence of real numbers $T_{\sigma, \mathbb{X}}^{k} u$ by

$$
\begin{equation*}
T_{\sigma, \mathbb{X}}^{k} u:=\left\{t_{j}^{k+\sigma} \partial_{t}^{k} u\left(X_{j}\right)\right\} . \tag{1.5}
\end{equation*}
$$

We say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating sequence of order k if the operator $T_{\sigma, \mathbb{X}}^{k}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is bounded and onto.

It is known that for every $k \in \mathbb{N}$, there exists a constant $C>0$ such that

$$
t^{k+\sigma}\left|\partial_{t}^{k} u(x, t)\right| \leq C\|u\|_{\mathcal{B}_{\alpha}(\sigma)}
$$

for all $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ and $(x, t) \in H$ (see [8, Theorem 3.2 (4)]). Thus, $T_{\sigma, \mathbb{X}}^{k}$: $\widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is always bounded, and this is the reason why we consider a weight $t_{j}^{k+\sigma}$ in definition of the operator $T_{\sigma, \mathbb{X}}^{k}$. We note that our definitions and investigations for such sequences are more general, that is, we shall study properties of operators $U_{\sigma, \mathbb{X}}^{k}$ and $T_{\sigma, \mathbb{X}}^{k}$ when k is a fractional order.

Representation theorems for holomorphic and harmonic functions in L^{p} were studied in [3]. Also, interpolating sequences for the classical Hardy space H^{∞} were studied by L. Carleson [1], and many investigations on various settings are well known. In [8], the authors give reproducing formulae on the function space $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. A representing sequence gives the discrete version of the reproducing formula on the function space $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. We study a sufficient condition for a sequence in H to be the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing sequence. The interpolating sequences are closely related to representing sequences, and such sequences are interesting in their own right. In this paper, we also study $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating sequences.

We describe the construction of this paper. In Section 2, we present preliminary results of parabolic Bloch type spaces. In particular, we recall definitions of $L^{(\alpha)}$-harmonic functions and the fundamental solution of $L^{(\alpha)}$. In Section 3, we study a necessary and sufficient condition for a sequence $\mathbb{X} \subset H$ which ensures that the operator $U_{\sigma, \mathbb{X}}^{k}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded. In Section 4, we study properties of the operator $T_{\sigma, \mathbb{X}}^{k}$. As mentioned above, $T_{\sigma, \mathrm{X}}^{k}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is always bounded. Therefore, we study boundedness of $T_{\sigma, \mathbb{X}}^{k}$ on a subspace of $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. In Section 5 , we give our representing theorem, that is, we give a sufficient condition for a sequence $\mathbb{X} \subset H$ to be the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing sequence. In Section 6 , we give our interpolating theorem, that is, we give a sufficient condition for a sequence $\mathbb{X} \subset H$ to be the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating sequence.

Throughout this paper, C will denote a positive constant whose value is not necessarily the same at each occurrence; it may vary even within a line.

2. Preliminaries

In this section, we recall some basic properties. We begin with describing the operator $\left(-\Delta_{x}\right)^{\alpha}$ and the $L^{(\alpha)}$-harmonic functions. Since the case $\alpha=1$ is trivial, we only describe the case $0<\alpha<1$. For $0<\alpha<1,\left(-\Delta_{x}\right)^{\alpha}$ is the convolution operator defined by

$$
\begin{equation*}
\left(-\Delta_{x}\right)^{\alpha} \psi(x, t):=-C_{n, \alpha} \lim _{\delta \downarrow 0} \int_{|y|>\delta}(\psi(x+y, t)-\psi(x, t))|y|^{-n-2 \alpha} d y \tag{2.1}
\end{equation*}
$$

for all $\psi \in C_{c}^{\infty}(H)$ and $(x, t) \in H$, where $C_{n, \alpha}=-4^{\alpha} \pi^{-n / 2} \Gamma((n+2 \alpha) / 2) /$ $\Gamma(-\alpha)>0$. Let $\widetilde{L}^{(\alpha)}:=-\partial_{t}+\left(-\Delta_{x}\right)^{\alpha}$ be the adjoint operator of $L^{(\alpha)}$. Then, a function $u \in C(H)$ is said to be $L^{(\alpha)}$-harmonic if u satisfies $L^{(\alpha)} u=0$ in the sense of distributions, that is, $\int_{H}\left|u \widetilde{L}^{(\alpha)} \psi\right| d V<\infty$ and $\int_{H} u \widetilde{L}^{(\alpha)} \psi d V=0$ for all $\psi \in C_{c}^{\infty}(H)$, where $d V$ is the Lebesgue measure on H. We describe the fundamental solution of $L^{(\alpha)}$. For $x \in \mathbb{R}^{n}$, let

$$
W^{(\alpha)}(x, t):= \begin{cases}\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \exp \left(-t|\xi|^{2 \alpha}+i x \cdot \xi\right) d \xi & (t>0) \\ 0 & (t \leq 0)\end{cases}
$$

where $x \cdot \xi$ denotes the inner product on \mathbb{R}^{n} and $|\xi|=(\xi \cdot \xi)^{1 / 2}$. The function $W^{(\alpha)}$ is the fundamental solution of $L^{(\alpha)}$ and it is $L^{(\alpha)}$-harmonic on H. We note that

$$
\begin{equation*}
W^{(\alpha)}>0 \text { on } H \quad \text { and } \quad \int_{\mathbb{R}^{n}} W^{(\alpha)}(x, t) d x=1 \text { for all } 0<t<\infty \tag{2.2}
\end{equation*}
$$

Furthermore, $W^{(\alpha)} \in C^{\infty}(H)$.
Since we treat fractional calculus in our investigations, we recall definitions of the fractional integral and differential operators for functions on $\mathbb{R}_{+}=(0, \infty)$ (for details, see [4]). For a real number $\kappa>0$, let

$$
\begin{equation*}
\mathcal{F C} \mathcal{C}^{-\kappa}:=\left\{\varphi \in C\left(\mathbb{R}_{+}\right): \varphi(t)=O\left(t^{-\kappa^{\prime}}\right)(t \rightarrow \infty) \text { for some } \kappa^{\prime}>\kappa\right\} \tag{2.3}
\end{equation*}
$$

For a function $\varphi \in \mathcal{F} \mathcal{C}^{-\kappa}$, we can define the fractional integral $\mathcal{D}_{t}^{-\kappa} \varphi$ of φ by

$$
\begin{equation*}
\mathcal{D}_{t}^{-\kappa} \varphi(t):=\frac{1}{\Gamma(\kappa)} \int_{0}^{\infty} \tau^{\kappa-1} \varphi(\tau+t) d \tau, \quad t \in \mathbb{R}_{+} \tag{2.4}
\end{equation*}
$$

We put $\mathcal{F} \mathcal{C}^{0}:=C\left(\mathbb{R}_{+}\right)$and $\mathcal{D}_{t}^{0} \varphi:=\varphi$. Moreover, let

$$
\begin{equation*}
\mathcal{F C} \mathcal{C}^{\kappa}:=\left\{\varphi ; \partial_{t}^{\lceil\kappa\rceil} \varphi \in \mathcal{F C}^{-(\lceil\kappa\rceil-\kappa)}\right\} \tag{2.5}
\end{equation*}
$$

where $\lceil\kappa\rceil$ is the smallest integer greater than or equal to κ. Then, we can also define the fractional derivative $\mathcal{D}_{t}^{\kappa} \varphi$ of $\varphi \in \mathcal{F C}^{\kappa}$ by

$$
\begin{equation*}
\mathcal{D}_{t}^{\kappa} \varphi(t):=\mathcal{D}_{t}^{-(\lceil\kappa\rceil-\kappa)}\left(\left(-\partial_{t}\right)^{\lceil\kappa\rceil} \varphi\right)(t), \quad t \in \mathbb{R}_{+} \tag{2.6}
\end{equation*}
$$

Clearly, when $\kappa \in \mathbb{N}_{0}$, the operator \mathcal{D}_{t}^{κ} coincides with the ordinary differential operator $\left(-\partial_{t}\right)^{\kappa}$. For a multi-index $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{N}_{0}^{n}$, let $\partial_{x}^{\gamma}:=\partial_{1}^{\gamma_{1}} \cdots \partial_{n}^{\gamma_{n}}$. We present some properties of fractional derivatives of the fundamental solution $W^{(\alpha)}$.

Lemma 2.1 ([4, Theorem 3.1]) Let $0<\alpha \leq 1$ and let ν be a real number such that $\nu>-\frac{n}{2 \alpha}$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multi-index. Then, the following statements hold.
(1) The derivatives $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)$ and $\mathcal{D}_{t}^{\nu} \partial_{x}^{\gamma} W^{(\alpha)}(x, t)$ can be defined, and the equation $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)=\mathcal{D}_{t}^{\nu} \partial_{x}^{\gamma} W^{(\alpha)}(x, t)$ holds. Furthermore, there exists a constant $C=C(n, \alpha, \gamma, \nu)>0$ such that

$$
\left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)\right| \leq C\left(t+|x|^{2 \alpha}\right)^{-\left(\frac{n+|\gamma|}{2 \alpha}+\nu\right)}
$$

for all $(x, t) \in H$.
(2) If a real number κ satisfies the condition $\kappa+\nu>-\frac{n}{2 \alpha}$, then the derivative $\mathcal{D}_{t}^{\kappa} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)$ is well defined, and

$$
\mathcal{D}_{t}^{\kappa} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)=\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(x, t)
$$

(3) The derivative $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)$ is $L^{(\alpha)}$-harmonic on H.
(4) The derivative $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)$ satisfies the homogeneous property, that $i s$,

$$
\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)=t^{-\left(\frac{n+|\gamma|}{2 \alpha}+\nu\right)}\left(\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}\right)\left(t^{-\frac{1}{2 \alpha}} x, 1\right)
$$

for all $(x, t) \in H$.
We note that $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(-x, t)=(-1)^{|\gamma|} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x, t)$ by the definition of $W^{(\alpha)}$. We also describe basic properties of fractional derivatives of functions in $\mathcal{B}_{\alpha}(\sigma)$.

Lemma 2.2 ([8, Proposition 5.4]) Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and let κ be a real number such that $\kappa=0$ or $\kappa>\max \{0,-\sigma\}$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multi-index. If $u \in \mathcal{B}_{\alpha}(\sigma)$, then the following statements hold.
(1) The derivatives $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)$ and $\mathcal{D}_{t}^{\kappa} \partial_{x}^{\gamma} u(x, t)$ can be defined, and the equation $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)=\mathcal{D}_{t}^{\kappa} \partial_{x}^{\gamma} u(x, t)$ holds. Furthermore, if $(\gamma, \kappa) \neq$ $(0,0)$, then there exists a constant $C=C(n, \alpha, \sigma, \gamma, \kappa)>0$ such that

$$
\left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)\right| \leq C t^{-\left(\frac{|\gamma|}{2 \alpha}+\kappa+\sigma\right)}\|u\|_{\mathcal{B}_{\alpha}(\sigma)}
$$

for all $(x, t) \in H$.
(2) If $\nu=0$ or $\nu>\max \{0,-\sigma\}$, then

$$
\begin{equation*}
\mathcal{D}_{t}^{\nu} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)=\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu+\kappa} u(x, t) \tag{2.7}
\end{equation*}
$$

Furthermore, if $\nu<0$, then (2.7) also holds when $\nu<\sigma$ and $\nu+\kappa>$ $\max \{0,-\sigma\}$.
(3) The derivative $\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u$ is $L^{(\alpha)}$-harmonic on H.

We give the definition of the kernel function, which is generalization of (1.3). Let $I_{\alpha, n}$ be an interval $\left(-\frac{n}{2 \alpha}, \infty\right)$. Then, for $(\gamma, \kappa) \in \mathbb{N}_{0}^{n} \times I_{\alpha, n}$, in view of Lemma 2.1, we define a function $\omega_{\alpha}^{\gamma, \nu}$ on $H \times H$ by

$$
\begin{align*}
\omega_{\alpha}^{\gamma, \nu}(X ; Y) & =\omega_{\alpha}^{\gamma, \nu}(x, t ; y, s) \\
& :=\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x-y, t+s)-\partial_{x}^{\gamma} \mathcal{D}_{t}^{\nu} W^{(\alpha)}(-y, 1+s) \tag{2.8}
\end{align*}
$$

for all $X=(x, t), Y=(y, s) \in H$. We may write $\omega_{\alpha}^{\nu}=\omega_{\alpha}^{0, \nu}$. We describe the following lemma. In particular, Lemma 2.3 (1) is [5, Proposition 3.1 (1)]. The result Lemma 2.3 (2) is an immediate consequence of Lemma 2.3 (1).

Lemma 2.3 Let $0<\alpha \leq 1$ and $(\gamma, \kappa) \in \mathbb{N}_{0}^{n} \times I_{\alpha, n}$. Then, the following statements hold.
(1) For any compact set $E \subset \mathbb{R}^{n}$ and any real number $T>1$, there exist constants $C_{1}, C_{2}>0$ such that

$$
\left|\omega_{\alpha}^{\gamma, \kappa}(x, t ; y, s)\right| \leq \frac{C_{1}|x|}{\left(1+s+|y|^{2 \alpha}\right)^{\frac{n+|\gamma|+1}{2 \alpha}+\kappa}}+\frac{C_{2}|t-1|}{\left(1+s+|y|^{2 \alpha}\right)^{\frac{n+|\gamma|}{2 \alpha}+\kappa+1}}
$$

for all $(x, t) \in E \times\left[T^{-1}, T\right]$ and $(y, s) \in H$.
(2) For any compact set $K \subset H$, there exists a constant $C>0$ such that

$$
\left|\omega_{\alpha}^{\gamma, \kappa}(x, t ; y, s)\right| \leq \frac{C}{\left(1+s+|y|^{2 \alpha}\right)^{\frac{n+|\gamma|}{2 \alpha}+\kappa+m(\alpha)}}
$$

for all $(x, t) \in K$ and $(y, s) \in H$.
We give definitions of some function spaces, which are closely related to parabolic Bloch type spaces. For $1 \leq p<\infty$ and $\lambda>-1$, the Lebesgue space $L^{p}(\lambda):=L^{p}\left(H, t^{\lambda} d V\right)$ is defined to be the Banach space of all Lebesgue measurable functions u on H with

$$
\|u\|_{L^{p}(\lambda)}:=\left(\int_{H}|u(x, t)|^{p} t^{\lambda} d V(x, t)\right)^{1 / p}<\infty
$$

The α-parabolic Bergman space $\boldsymbol{b}_{\alpha}^{p}(\lambda)$ is the set of all $L^{(\alpha)}$-harmonic functions u on H with $u \in L^{p}(\lambda)$. Furthermore, $L^{\infty}:=L^{\infty}(H, d V)$ is defined to be the Banach space of all Lebesgue measurable functions u on H with

$$
\|u\|_{L^{\infty}}:=\operatorname{ess} \sup \{|u(x, t)| ;(x, t) \in H\}<\infty
$$

and let $\boldsymbol{b}_{\alpha}^{\infty}$ be the set of all $L^{(\alpha)}$-harmonic functions u on H with $u \in L^{\infty}$. We also consider the subspace of $\mathcal{B}_{\alpha}(\sigma)$. The α-parabolic little Bloch type space $\mathcal{B}_{\alpha, 0}(\sigma)$ is the set of all functions $u \in \mathcal{B}_{\alpha}(\sigma)$ with

$$
\begin{equation*}
\lim _{(x, t) \rightarrow \partial H \cup\{\infty\}} t^{\sigma}\left\{t^{1 /(2 \alpha)}\left|\nabla_{x} u(x, t)\right|+t\left|\partial_{t} u(x, t)\right|\right\}=0 . \tag{2.9}
\end{equation*}
$$

Furthermore, let $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ be the set of all functions $u \in \mathcal{B}_{\alpha, 0}(\sigma)$ with
$u(0,1)=0$. Clearly, $\mathcal{B}_{\alpha, 0}(\sigma)$ and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ are, respectively, the closed subspaces of $\mathcal{B}_{\alpha}(\sigma)$ and $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ by definition. We describe reproducing formulae by fractional derivatives on $\boldsymbol{b}_{\alpha}^{p}(\lambda)$ and $\mathcal{B}_{\alpha}(\sigma)$. We note that Lemma 2.4 (1) is [4, Theorem 5.2] and Lemma $2.4(2)$ is [8, Theorem 5.7], respectively.

Lemma 2.4 Let $0<\alpha \leq 1$. Then, the following statements hold.
(1) Let $1 \leq p<\infty$ and $\lambda>-1$. If real numbers κ and ν satisfy $\kappa>-\frac{\lambda+1}{p}$ and $\nu>\frac{\lambda+1}{p}$, then

$$
\begin{equation*}
u(x, t)=\frac{2^{\kappa+\nu}}{\Gamma(\kappa+\nu)} \int_{H} \mathcal{D}_{t}^{\kappa} u(y, s) \mathcal{D}_{t}^{\nu} W^{(\alpha)}(x-y, t+s) s^{\kappa+\nu-1} d V(y, s) \tag{2.10}
\end{equation*}
$$

for all $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$ and $(x, t) \in H$. Furthermore, (2.10) also holds for $\nu=\lambda+1$ when $p=1$.
(2) Let $\sigma>-m(\alpha)$. If real numbers $\kappa \in \mathbb{R}_{+}$and $\nu \in \mathbb{R}$ satisfy $\kappa>-\sigma$ and $\nu>\sigma$, then

$$
\begin{equation*}
u(x, t)-u(0,1)=\frac{2^{\kappa+\nu}}{\Gamma(\kappa+\nu)} \int_{H} \mathcal{D}_{t}^{\kappa} u(y, s) \omega_{\alpha}^{\nu}(x, t ; y, s) s^{\kappa+\nu-1} d V(y, s) \tag{2.11}
\end{equation*}
$$

for all $u \in \mathcal{B}_{\alpha}(\sigma)$ and $(x, t) \in H$. Furthermore, (2.11) also holds for $\nu>\max \{0, \sigma\}$ when $\kappa=0$.

We also describe the following duality theorems. In the following lemma, Lemma 2.5 (1) is [8, Theorem 3] and Lemma 2.5 (2) is [8, Theorem 4], respectively.

Lemma 2.5 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $\lambda>-1$. Then, the following statements hold.
(1) The duality $\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*} \cong \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ holds under the pairing $\langle\cdot, \cdot\rangle_{\lambda, \sigma}$, where

$$
\left.\begin{array}{r}
\langle u, v\rangle_{\lambda, \sigma}:=\frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \int_{H} u(y, s) \mathcal{D}_{t} v(y, s) s^{\lambda+\sigma+1} d V(y, s), \\
u \in \boldsymbol{b}_{\alpha}^{1}(\lambda), v \tag{2.12}
\end{array}\right) \widetilde{\mathcal{B}}_{\alpha}(\sigma) .
$$

(2) The duality $\boldsymbol{b}_{\alpha}^{1}(\lambda) \cong\left(\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)\right)^{*}$ holds under the pairing (2.12), that is,

$$
\langle u, v\rangle_{\lambda, \sigma} \text { with } u \in \boldsymbol{b}_{\alpha}^{1}(\lambda) \text { and } v \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma) \text {. }
$$

Lemma 2.6 ([11, Lemma 5]) Let $\theta, c \in \mathbb{R}$. If $\theta>-1$ and $\theta-c+\frac{n}{2 \alpha}+1<0$, then there exists a constant $C=C(n, \alpha, \theta, c)>0$ such that

$$
\int_{H} \frac{s^{\theta}}{\left(t+s+|x-y|^{2 \alpha}\right)^{c}} d V(y, s)=C t^{\theta-c+\frac{n}{2 \alpha}+1}
$$

for all $(x, t) \in H$.
We also need the following lemma.
Lemma 2.7 ([7, Theorem 3.1]) Let $0<\alpha \leq 1,1 \leq p<\infty$, and $\lambda \in \mathbb{R}$. Suppose that a multi-index $\gamma \in \mathbb{N}_{0}^{n}$, and real numbers $\kappa, \rho \in \mathbb{R}$ with $\kappa>-\frac{n}{2 \alpha}$ satisfy

$$
\lambda-\rho p<p-1<\left(\frac{|\gamma|}{2 \alpha}+\kappa\right) p+\lambda-\rho p .
$$

Then, for every $f \in L^{p}(\lambda)$,

$$
v(x, t):=\int_{H} f(y, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}(x-y, t+s) s^{\rho} d V(y, s)
$$

is well defined for every $(x, t) \in H$. Furthermore, let $\beta \in \mathbb{N}_{0}^{n}$ be a multiindex. If a real number $\nu \in \mathbb{R}$ satisfies

$$
\nu+\kappa>-\frac{n}{2 \alpha} \text { and } p-1<\left(\frac{|\gamma|}{2 \alpha}+\nu+\kappa\right) p+\lambda-\rho p,
$$

then

$$
\partial_{x}^{\beta} \mathcal{D}_{t}^{\nu} v(x, t)=\int_{H} f(y, s) \partial_{x}^{\beta+\gamma} \mathcal{D}_{t}^{\nu+\kappa} W^{(\alpha)}(x-y, t+s) s^{\rho} d V(y, s) .
$$

Now, we recall the definition of α-parabolic cylinders, which are introduced in [12]. The α-parabolic cylinders will be used to define separated sequences below. For $Y=(y, s) \in H$ and $0<\delta<1$, an α-parabolic cylinder $S_{\delta}^{(\alpha)}(Y)=S_{\delta}^{(\alpha)}(y, s)$ is defined by
$S_{\delta}^{(\alpha)}(y, s):=\left\{(x, t) \in H ;|x-y|<\left(\frac{2 \delta}{1-\delta^{2}} s\right)^{1 / 2 \alpha}, \frac{1-\delta}{1+\delta} s<t<\frac{1+\delta}{1-\delta} s\right\}$.
Clearly, $\lim _{\delta \rightarrow 1} S_{\delta}^{(\alpha)}(Y)=H$ and $S_{\delta}^{(\alpha)}(y, s)=\Phi_{Y}^{(\alpha)}\left(S_{\delta}^{(\alpha)}(0,1)\right)$ for each $Y \in$ H, where $\Phi_{Y}^{(\alpha)}(X)$ is the function defined by

$$
\Phi_{Y}^{(\alpha)}(X):=\left(s^{1 / 2 \alpha} x+y, s t\right), \quad X=(x, t) \in H
$$

Also, $V\left(S_{\delta}^{(\alpha)}(y, s)\right)=2 B_{n}\left(2 \delta s /\left(1-\delta^{2}\right)\right)^{n /(2 \alpha)+1}$, where B_{n} is the volume of the unit ball in \mathbb{R}^{n}. For $0<\delta<1$, we say that a sequence $\left\{X_{j}\right\} \subset H$ is δ-separated in the α-parabolic sense if α-parabolic cylinders $S_{\delta}^{(\alpha)}\left(X_{j}\right)$ are pairwise disjoint. We also need the following lemma.

Lemma 2.8 ([6, Lemma 4.2]) Let $0<\alpha \leq 1$. For every $\theta>-1$ and $c>0$, there exists a constant $C>0$ such that

$$
\frac{s^{\theta}}{\left(t+s+|x-y|^{2 \alpha}\right)^{c}} \leq C \frac{F(\delta)}{s^{n /(2 \alpha)+1}} \int_{S_{\delta}^{(\alpha)}(y, s)} \frac{r^{\theta}}{\left(t+r+|x-z|^{2 \alpha}\right)^{c}} d V(z, r)
$$

for all $0<\delta<1$ and $(x, t),(y, s) \in H$, where

$$
F(\delta)=\frac{\left(1-\delta^{2}\right)^{n /(2 \alpha)+\theta+1-c}}{\delta^{n /(2 \alpha)}\left\{(1+\delta)^{2(\theta+1)}-(1-\delta)^{2(\theta+1)}\right\}}
$$

We describe representing and interpolating operators, which are studied in [6]. Let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. First, we give the definition of the representing operators. Let $(\gamma, \kappa) \in \mathbb{N}_{0}^{n} \times I_{\alpha, n}$. For $\left\{\lambda_{j}\right\} \in \ell^{p}$, let

$$
\begin{equation*}
U_{p, \lambda, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}(X):=\sum_{j} \lambda_{j} t_{j}^{\frac{n+|\gamma|}{2 \alpha}+\kappa-\left(\frac{n}{2 \alpha}+1+\lambda\right) \frac{1}{p}} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right) \tag{2.13}
\end{equation*}
$$

for all $X=(x, t) \in H$. We call $U_{p, \lambda, \mathbb{X}}^{\gamma, \kappa}$ the representing operator of order (γ, κ). The following result is also given in [6].

Lemma 2.9 ([6, Theorem 4.3]) Let $0<\alpha \leq 1,1<p<\infty, \lambda>-1$, and let κ be a real number such that $\kappa>\frac{\lambda+1}{p}$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multi-
index. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Then, $U_{p, \lambda, \mathbb{X}}^{\gamma, \kappa}: \ell^{p} \rightarrow \boldsymbol{b}_{\alpha}^{p}(\lambda)$ is bounded if and only if for any $0<\delta<1$, there exists $M \in \mathbb{N}$ such that $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense. When $p=1$, the "if" part also holds.

Next, we give the definition of the interpolating operators. Let $\gamma \in \mathbb{N}_{0}^{n}$ and let κ be a real number such that $\kappa>-\left(\frac{n}{2 \alpha}+1+\lambda\right)$. Then, for $u \in \boldsymbol{b}_{\alpha}^{p}(\lambda)$, we define a sequence of real numbers $T_{p, \lambda, \mathbb{X}}^{\gamma, \kappa} u$ by

$$
\begin{equation*}
T_{p, \lambda, \mathbb{X}}^{\gamma, \kappa} u:=\left\{t_{j}^{\left(\frac{n}{2 \alpha}+1+\lambda\right) \frac{1}{p}+\frac{|\gamma|}{2 \alpha}+\kappa} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u\left(X_{j}\right)\right\} \tag{2.14}
\end{equation*}
$$

We call $T_{p, \lambda, X}^{\gamma, \kappa}$ the interpolating operator of order (γ, κ). The boundedness of the operator $T_{p, \lambda, \mathbb{X}}^{\gamma, \kappa}: \boldsymbol{b}_{\alpha}^{p}(\lambda) \rightarrow \ell^{p}$ is characterized by the following lemma.

Lemma 2.10 ([6, Lemma 4.1]) Let $0<\alpha \leq 1,1 \leq p<\infty, \lambda>-1$, and κ be a real number such that $\kappa>-\frac{\lambda+1}{p}$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multiindex. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Then, $T_{p, \lambda, \mathbb{X}}^{\gamma, \kappa}: \boldsymbol{b}_{\alpha}^{p}(\lambda) \rightarrow \ell^{p}$ is bounded if and only if for any $0<\delta<1$, there exists $M \in \mathbb{N}$ such that $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense.

3. The $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing operator

In this section, we define the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing operators, and study their properties. First, we give the definition of the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing operators. Let $\sigma>-m(\alpha)$ and $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Furthermore, let $(\gamma, \kappa) \in \mathbb{N}_{0}^{n} \times I_{\alpha, n}$. For $\left\{\lambda_{j}\right\} \in \ell^{\infty}$, put

$$
\begin{equation*}
U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}(X):=\sum_{j} \lambda_{j} t_{j}^{\frac{n+|\gamma|}{2 \alpha}+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right), \quad X \in H \tag{3.1}
\end{equation*}
$$

We call $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing operator of order (γ, κ). Let c_{0} be the totality of sequences convergent to 0 , which is a closed subspace of ℓ^{∞}, and we may regard a finite sequence as an element of c_{0}. Now, we give a necessary and sufficient condition for a sequence $\left\{X_{j}\right\}$ which ensures that $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and also that $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$,

Theorem 3.1 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and let κ be a real number
such that $\kappa>\sigma$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multi-index. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=$ $\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Then, $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ if and only if for any $0<\delta<1$, there exists $M \in \mathbb{N}$ such that $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense.

Proof. First, suppose that $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $U_{\sigma, \widetilde{\mathbb{B}}}^{\gamma, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Then, the restriction operator $S:=U_{\sigma, \mathbb{X}}^{\gamma, \kappa} \mid c_{0}: c_{0} \rightarrow \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ is bounded. Therefore, there exists the adjoint operator S^{*} of S such that $S^{*}:\left(\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)\right)^{*} \rightarrow\left(c_{0}\right)^{*}$ is bounded. Let $\lambda>-1$. Then, Lemma 2.5 (2) implies that $S^{*}: \boldsymbol{b}_{\alpha}^{1}(\lambda) \rightarrow \ell^{1}$ is bounded. Let (\cdot, \cdot) be the usual pairing of ℓ^{1} and ℓ^{∞}, and recall that $\langle\cdot, \cdot\rangle_{\lambda, \sigma}$ is the pairing of $\boldsymbol{b}_{\alpha}^{1}(\lambda)$ and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ described in Lemma 2.5. Furthermore, let $\left\{e_{j}\right\}$ be the standard basis of ℓ^{∞}. (We note that $e_{j} \in c_{0}$.) Then, for $u \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$, we have

$$
\begin{align*}
\left(S^{*} u, e_{j}\right)= & \left\langle u, S e_{j}\right\rangle_{\lambda, \sigma}=\left\langle u, U_{\sigma, \mathbb{X}}^{\gamma, \kappa} e_{j}\right\rangle_{\lambda, \sigma} \\
= & t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \\
& \times \int_{H} u(y, s) \mathcal{D}_{t} \omega_{\alpha}^{\gamma, \kappa}\left(y, s ; x_{j}, t_{j}\right) s^{\lambda+\sigma+1} d V(y, s) \\
= & t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \\
& \times \int_{H} u(y, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+1} W^{(\alpha)}\left(y-x_{j}, s+t_{j}\right) s^{\lambda+\sigma+1} d V(y, s) \tag{3.2}
\end{align*}
$$

Making a change of variable $y=2 x_{j}-z$, we find that the right-hand side of (3.2) is equal to

$$
\begin{aligned}
& t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \frac{2^{\lambda+\sigma+2}}{\Gamma(\lambda+\sigma+2)} \\
& \quad \times \int_{H} v(z, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+1} W^{(\alpha)}\left(x_{j}-z, t_{j}+s\right) s^{\lambda+\sigma+1} d V(z, s)
\end{aligned}
$$

where $v(z, s)=u\left(2 x_{j}-z, s\right)$. Furthermore, Lemma 2.7 and Lemma 2.4 (1) imply that

$$
\begin{aligned}
& \left.\int_{H} v(z, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+1}\left(W^{(\alpha)}(x-z, t+s)\right)\right|_{(x, t)=\left(x_{j}, t_{j}\right)} s^{\lambda+\sigma+1} d V(z, s) \\
& =\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa-(\lambda+\sigma+1)}\left(\int_{H} v(z, s)\right. \\
& \left.\quad \times \mathcal{D}_{t}^{\lambda+\sigma+2} W^{(\alpha)}(x-z, t+s) s^{\lambda+\sigma+1} d V(z, s)\right)\left.\right|_{(x, t)=\left(x_{j}, t_{j}\right)} \\
& =\left.\frac{\Gamma(\lambda+\sigma+2)}{2^{\lambda+\sigma+2}} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa-(\lambda+\sigma+1)} v(x, t)\right|_{(x, t)=\left(x_{j}, t_{j}\right)} \\
& =(-1)^{|\gamma|} \frac{\Gamma(\lambda+\sigma+2)}{2^{\lambda+\sigma+2}} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa-(\lambda+\sigma+1)} u\left(x_{j}, t_{j}\right)
\end{aligned}
$$

Hence, we obtain

$$
\left(S^{*} u, e_{j}\right)=(-1)^{|\gamma|} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa-(\lambda+\sigma+1)} u\left(x_{j}, t_{j}\right),
$$

that is,

$$
\begin{aligned}
S^{*} u & =(-1)^{|\gamma|}\left\{t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa-(\lambda+\sigma+1)} u\left(X_{j}\right)\right\} \\
& =(-1)^{|\gamma|} T_{1, \lambda, \mathbb{X}}^{\gamma, \kappa-(\lambda+\sigma+1)} u
\end{aligned}
$$

Since S^{*} is bounded, the operator $T_{1, \lambda, \mathbb{X}}^{\gamma, \kappa-(\lambda+\sigma+1)}$ is also bounded. Therefore, by Lemma 2.10, for any $0<\delta<1$, there exists $M \in \mathbb{N}$ such that $\mathbb{X}=$ $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense.

Next, we show the "only if" part. It is sufficient to prove that if \mathbb{X} is δ-separated in the α-parabolic sense for some $0<\delta<1$ then $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow$ $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Thus, we suppose that $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ is δ-separated in the α-parabolic sense. Let $\left\{\lambda_{j}\right\} \in$ ℓ^{∞}. We begin with showing that the series in (3.1) converges uniformly on compact subsets of H (we only use the pointwise convergence of this series later). Let K be a compact subset of H. Then, Lemma 2.3 (2) and Lemma 2.8 imply that there exists a constant $C=C(K)>0$ such that

$$
\begin{aligned}
& \left|\lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right)\right| \\
& \quad \leq C\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \frac{t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}}{\left(1+t_{j}+\left|x_{j}\right|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+m(\alpha)}} \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{S_{\delta}^{(\alpha)}\left(X_{j}\right)} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(1+r+|z|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+m(\alpha)}} d V(z, r)
\end{aligned}
$$

for all $0<\delta<1, j$, and $(x, t) \in K$, where $F(\delta)$ is the function defined in Lemma 2.8. Therefore, Lemma 2.6 shows that

$$
\begin{aligned}
& \sum_{j}\left|\lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right)\right| \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \sum_{j} \int_{S_{\delta}^{(\alpha)}\left(X_{j}\right)} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(1+r+|z|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+m(\alpha)}} d V(z, r) \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{H} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(1+r+|z|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+m(\alpha)}} d V(z, r) \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty}
\end{aligned}
$$

for all $(x, t) \in K$, that is, the series in (3.1) converges uniformly on K. Put

$$
u_{N}(x, t)=\sum_{j=1}^{N} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right), \quad(x, t) \in H
$$

Then, we claim that $\left\{u_{N}\right\}$ is bounded in $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. In fact, for each $(\beta, m) \in$ $\mathbb{N}_{0}^{n} \times \mathbb{N}_{0} \backslash\{(0,0)\}$, Lemma 2.1 (1) and Lemma 2.8 imply that

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x}^{\beta} \mathcal{D}_{t}^{m} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right)\right| \\
& \quad=\sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x}^{\beta+\gamma} \mathcal{D}_{t}^{m+\kappa} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right)\right| \\
& \quad \leq C\left(\sup _{1 \leq j \leq N}\left|\lambda_{j}\right|\right) \sum_{j=1}^{N} \frac{t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}}{\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)^{(n+|\beta|+|\gamma|) /(2 \alpha)+m+\kappa}}
\end{aligned}
$$

$$
\begin{align*}
\leq & C F(\delta)\left(\sup _{1 \leq j \leq N}\left|\lambda_{j}\right|\right) \\
& \times \sum_{j=1}^{N} \int_{S_{\delta}^{(\alpha)}\left(X_{j}\right)} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(t+r+|x-z|^{2 \alpha}\right)^{(n+|\beta|+|\gamma|) /(2 \alpha)+m+\kappa}} d V(z, r) \tag{3.3}
\end{align*}
$$

for all $X=(x, t) \in H$. Therefore, (3.3) and Lemma 2.6 also imply that

$$
\begin{align*}
& \sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x_{\ell}} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right)\right| \\
& \leq C t^{-\sigma-1 /(2 \alpha)}\left(\sup _{1 \leq j \leq N}\left|\lambda_{j}\right|\right) \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{t} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right)\right| \leq C t^{-\sigma-1}\left(\sup _{1 \leq j \leq N}\left|\lambda_{j}\right|\right) \tag{3.5}
\end{equation*}
$$

for all $X=(x, t) \in H$. Thus, (3.4) and (3.5) show $\left\|u_{N}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left\|\left\{\lambda_{j}\right\}\right\|_{\infty}$ for all $N \in \mathbb{N}$. Let $\lambda>-1$, and we recall the fact $\left(\boldsymbol{b}_{\alpha}^{1}(\lambda)\right)^{*} \cong \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ under the pairing $\langle\cdot, \cdot\rangle_{\lambda, \sigma}$ defined in Lemma 2.5. Furthermore, since $L^{1}(\lambda)$ is separable, the subspace $\boldsymbol{b}_{\alpha}^{1}(\lambda)$ of $L^{1}(\lambda)$ is also separable. Therefore, the Banach-Alaoglu theorem implies that there exist a subsequence $\left\{u_{N_{i}}\right\} \subset$ $\left\{u_{N}\right\}$ and a function $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ such that $\left\{u_{N_{i}}\right\}$ converges to u in the w^{*} topology. By Lemma 2.3 (2) and Lemma 2.6, we have $\omega_{\alpha}^{\lambda+\sigma+1}(X ; \cdot)=$ $\omega_{\alpha}^{0, \lambda+\sigma+1}(X ; \cdot) \in \boldsymbol{b}_{\alpha}^{1}(\lambda)$ for each $X \in H$. Hence, Lemma 2.4 (2) with $\kappa=1$ shows that

$$
\begin{aligned}
u(X) & =\left\langle\omega_{\alpha}^{\lambda+\sigma+1}(X ; \cdot), u\right\rangle_{\lambda, \sigma} \\
& =\lim _{i}\left\langle\omega_{\alpha}^{\lambda+\sigma+1}(X ; \cdot), u_{N_{i}}\right\rangle_{\lambda, \sigma}=\lim _{i} u_{N_{i}}(X)=U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}(X)
\end{aligned}
$$

This implies $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\} \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ and $\left\|U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq \liminf _{i}\left\|u_{N_{i}}\right\|_{\mathcal{B}_{\alpha}(\sigma)}$ $\leq C\left\|\left\{\lambda_{j}\right\}\right\|_{\infty}$, that is, the operator $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded. Next, let $\left\{\eta_{j}\right\} \in c_{0}$, and put

$$
v_{N}(X)=\sum_{j=1}^{N} \eta_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right), \quad X \in H .
$$

Then, by (3.3), we have $v_{N} \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Furthermore, (3.4) and (3.5) show that

$$
\left\|v_{M}-v_{N}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left(\sup _{N+1 \leq j \leq M}\left|\eta_{j}\right|\right) \rightarrow 0 \quad(M>N \rightarrow \infty)
$$

Hence, there exists a function $v \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ such that $\left\{v_{N}\right\}$ converges to v in $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. Thus, $\left\{v_{N}\right\}$ also converges to v in the w^{*}-topology. Therefore, Lemma 2.4 (2) with $\kappa=1$ also implies that

$$
\begin{aligned}
v(X) & =\left\langle\omega_{\alpha}^{\lambda+\sigma+1}(X ; \cdot), v\right\rangle_{\lambda, \sigma} \\
& =\lim _{N}\left\langle\omega_{\alpha}^{\lambda+\sigma+1}(X ; \cdot), v_{N}\right\rangle_{\lambda, \sigma}=\lim _{N} v_{N}(X)=U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\eta_{j}\right\}(X)
\end{aligned}
$$

It follows that $U_{\sigma, \mathrm{X}}^{\gamma, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$.

4. The $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating operator

In this section, we define $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating operators, and study their properties. First, we give the definition of the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating operators. Let $\sigma>-m(\alpha)$ and put $\Sigma_{\sigma}:=\{0\} \cup\{\kappa \in \mathbb{R}: \kappa>\max \{0,-\sigma\}\}$. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H, and let $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash\{(0,0)\}$. Then, for $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$, we define a sequence of real numbers $T_{\sigma, \mathbb{X}}^{\gamma, \kappa} u$ by

$$
\begin{equation*}
T_{\sigma, \mathbb{X}}^{\gamma, \kappa} u:=\left\{t_{j}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u\left(X_{j}\right)\right\} . \tag{4.1}
\end{equation*}
$$

By Lemma 2.2 (1), the linear operator $T_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is always bounded, and we call $T_{\sigma, X}^{\gamma, \kappa}$ the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating operator of order (γ, κ). We also consider the operator $T_{\sigma, X}^{\gamma, \kappa}$ on the subspace $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ of $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. We give sufficient conditions for a sequence $\left\{X_{j}\right\}$ which ensures that $T_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ maps $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ into c_{0}. We give the following theorem.

Theorem 4.1 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash$ $\{(0,0)\}$. Then, the following statements hold.
(1) If $u \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$, then $\lim _{(x, t) \rightarrow \partial H \cup\{\infty\}} t^{|\gamma| /(2 \alpha)+\kappa+\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)=0$.
(2) If a sequence $\mathbb{X}=\left\{X_{j}\right\} \subset H$ satisfies $X_{j} \rightarrow \partial H \cup\{\infty\}(j \rightarrow \infty)$, then $T_{\sigma, \mathrm{X}}^{\gamma, \kappa}$ maps $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ into c_{0}.
(3) If for any $0<\delta<1$, there exists $M \in \mathbb{N}$ such that $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense, then $T_{\sigma, \mathbb{X}}^{\gamma, \kappa}$ maps $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ into c_{0}.
Proof. (1) Let $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$. Then, by Lemma 2.4 (2) with $\kappa=1$ and $\nu=\sigma+1$, we have

$$
\begin{equation*}
u(x, t)=\frac{2^{\sigma+2}}{\Gamma(\sigma+2)} \int_{H} \mathcal{D}_{t} u(y, s) \omega_{\alpha}^{\sigma+1}(x, t ; y, s) s^{\sigma+1} d V(y, s) \tag{4.2}
\end{equation*}
$$

for all $(x, t) \in H$. Let $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash\{(0,0)\}$. If $\kappa \notin \mathbb{N}_{0}$, then differentiating through the integral (4.2), we obtain

$$
\begin{aligned}
& \partial_{x}^{\gamma} \mathcal{D}_{t}^{\lceil\kappa\rceil} u(x, t) \\
& \quad=\frac{2^{\sigma+2}}{\Gamma(\sigma+2)} \int_{H} \mathcal{D}_{t} u(y, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\lceil\kappa\rceil+\sigma+1} W^{(\alpha)}(x-y, t+s) s^{\sigma+1} d V(y, s)
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)= & \frac{2^{\sigma+2}}{\Gamma(\sigma+2)} \frac{1}{\Gamma(\lceil\kappa\rceil-\kappa)} \int_{0}^{\infty} \tau^{\lceil\kappa\rceil-\kappa-1} \int_{H} \mathcal{D}_{t} u(y, s) \\
& \times \partial_{x}^{\gamma} \mathcal{D}_{t}^{\lceil\kappa\rceil+\sigma+1} W^{(\alpha)}(x-y, t+s+\tau) s^{\sigma+1} d V(y, s) d \tau
\end{aligned}
$$

Here, Lemma 2.1 (1) and Lemma 2.6 imply that

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{\lceil\kappa\rceil-\kappa-1} \\
& \times \int_{H}\left|\mathcal{D}_{t} u(y, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\lceil\kappa\rceil+\sigma+1} W^{(\alpha)}(x-y, t+s+\tau)\right| s^{\sigma+1} d V(y, s) d \tau
\end{aligned}
$$

$$
\begin{aligned}
\leq & C\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{0}^{\infty} \tau^{\lceil\kappa\rceil-\kappa-1} \\
& \times \int_{H} \frac{1}{\left(t+s+\tau+|x-y|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\lceil\kappa\rceil+\sigma+1}} d V(y, s) d \tau \\
= & C\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{0}^{\infty} \frac{\tau^{\lceil\kappa\rceil-\kappa-1}}{(t+\tau)^{|\gamma| /(2 \alpha)+\lceil\kappa\rceil+\sigma}} d \tau<\infty
\end{aligned}
$$

because $|\gamma| /(2 \alpha)+\kappa+\sigma>0$. Therefore, the Fubini theorem shows

$$
\begin{align*}
& \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t) \\
& \quad=\frac{2^{\sigma+2}}{\Gamma(\sigma+2)} \int_{H} \mathcal{D}_{t} u(y, s) \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+\sigma+1} W^{(\alpha)}(x-y, t+s) s^{\sigma+1} d V(y, s) \tag{4.3}
\end{align*}
$$

If $\kappa \in \mathbb{N}_{0}$, then clearly we also obtain (4.3). Hence, we conclude that Equation (4.3) holds for every $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash\{(0,0)\}$. Let $u \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ and let $\eta>0$ be a real number such that $|\gamma| /(2 \alpha)+\kappa+\sigma>\eta$. Then, given $\varepsilon>0$, there exists a compact set $K \subset H$ such that $s^{\sigma+1}\left|\mathcal{D}_{t} u(y, s)\right|<\varepsilon$ for all $(y, s) \in K^{c}$, because $u \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Hence, Lemma 2.1 (1) and Lemma 2.6 again imply that

$$
\begin{aligned}
& t^{|\gamma| /(2 \alpha)+\kappa+\sigma}\left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)\right| \\
& \leq C t^{|\gamma| /(2 \alpha)+\kappa+\sigma} \int_{H} \frac{s^{\sigma+1}\left|\mathcal{D}_{t} u(y, s)\right|}{\left(t+s+|x-y|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+\sigma+1}} d V(y, s) \\
& \leq C t^{\eta} \int_{H} \frac{s^{\sigma+1}\left|\mathcal{D}_{t} u(y, s)\right|}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\eta+1}} d V(y, s) \\
& \leq C \varepsilon t^{\eta} \int_{K^{c}} \frac{1}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\eta+1}} d V(y, s) \\
&+C\|u\|_{\mathcal{B}_{\alpha}(\sigma)} t^{\eta} \int_{K} \frac{1}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\eta+1}} d V(y, s) \\
& \leq C \varepsilon+C\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \frac{t^{\eta}}{\left(1+t+|x|^{2 \alpha}\right)^{n /(2 \alpha)+\eta+1}} \\
& \leq C \varepsilon+C\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \frac{1}{\left(1+t+|x|^{2 \alpha}\right)^{n /(2 \alpha)+1}}
\end{aligned}
$$

for all $(x, t) \in H$. Thus, we obtain

$$
\lim _{(x, t) \rightarrow \partial H \cup\{\infty\}} t^{|\gamma| /(2 \alpha)+\kappa+\sigma}\left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)\right| \leq C \varepsilon .
$$

(2) The desired result immediately follows from Theorem 4.1 (1).
(3) Let $\mathbb{X}=\left\{X_{j}\right\}$ and $0<\delta<1$. Suppose that there exists $M \in \mathbb{N}$ such that $\mathbb{X}=\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{M}$ and each sequence \mathbb{X}_{i} is δ-separated in the α-parabolic sense. Then clearly, for any compact set $K \subset H$, there exists $j_{0} \in \mathbb{N}$ such that $X_{j} \in K^{c}$ for all $j \geq j_{0}$, that is, $X_{j} \rightarrow \partial H \cup\{\infty\}(j \rightarrow \infty)$.

5. The $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing theorem

In this section, we give a representing theorem for $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. Let $\sigma>$ $-m(\alpha)$ and $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Furthermore, let $(\gamma, \kappa) \in \mathbb{N}_{0}^{n} \times I_{\alpha, n}$. For $\left\{\lambda_{j}\right\} \in \ell^{\infty}$, we recall the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing operator

$$
\begin{equation*}
U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}(X)=\sum_{j} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right), \quad X \in H \tag{5.1}
\end{equation*}
$$

We say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing sequence of order (γ, κ) if $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\} \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ for all $\left\{\lambda_{j}\right\} \in \ell^{\infty}$ and the operator $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and onto. We also say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-representing sequence of order (γ, κ) if $U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\} \in \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ for all $\left\{\lambda_{j}\right\} \in c_{0}$ and the operator $U_{\sigma, X}^{\gamma, \kappa}: c_{0} \rightarrow \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ is bounded and onto. In this section, we give a representing theorem for $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$, that is, we give a sufficient condition for a sequence $\left\{X_{j}\right\}$ to be the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-representing sequence. We need the following lemma.

Lemma 5.1 ([6, Lemma 5.2]) Let $0<\alpha \leq 1, \gamma \in \mathbb{N}_{0}^{n}, \kappa>-n /(2 \alpha)$, and $\theta \in \mathbb{R}$. Then, there exists a constant $C=C(n, \alpha, \gamma, \kappa, \theta)>0$ such that

$$
\begin{aligned}
& \left|s^{\theta} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}(x-y, t+s)-r^{\theta} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}(x-z, t+r)\right| \\
& \quad \leq C \frac{\left(\delta+\delta^{1 /(2 \alpha)}\right) r^{\theta}}{\left(t+r+|x-z|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa}}
\end{aligned}
$$

for all $(x, t),(y, s) \in H,(z, r) \in S_{\delta}^{(\alpha)}(y, s)$, and $0<\delta \leq 1 / 3$.

We also give the Lipschitz type estimates of functions in $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$.
Proposition 5.2 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times\right.$ $\left.\Sigma_{\sigma}\right) \backslash\{(0,0)\}$. Then, there exists a constant $C=C(n, \alpha, \sigma, \gamma, \kappa)>0$ such that

$$
\begin{equation*}
\left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(y, s)-\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)\right| \leq C\left(\delta+\delta^{\frac{1}{2 \alpha}}\right) s^{-(|\gamma| /(2 \alpha)+\kappa+\sigma)}\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \tag{5.2}
\end{equation*}
$$

for all $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma),(x, t) \in H,(y, s) \in S_{\delta}^{(\alpha)}(x, t)$, and $0<\delta \leq 1 / 3$.
Proof. Let $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma),(x, t) \in H,(y, s) \in S_{\delta}^{(\alpha)}(x, t)$, and $0<\delta \leq 1 / 3$. Then, by (4.3) and Lemma 5.1, we have

$$
\begin{aligned}
& \left|\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(y, s)-\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u(x, t)\right| \\
& \leq C \int_{H}\left|\mathcal{D}_{t} u(z, r)\right| \mid \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+\sigma+1} W^{(\alpha)}(y-z, s+r) \\
& -\partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa+\sigma+1} W^{(\alpha)}(x-z, t+r) \mid r^{\sigma+1} d V(z, r) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right) \int_{H} \frac{\left|\mathcal{D}_{t} u(z, r)\right| r^{\sigma+1}}{\left(r+s+|z-y|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+\sigma+1}} d V(z, r) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \\
& \times \int_{H} \frac{1}{\left(r+s+|z-y|^{2 \alpha}\right)^{(n+|\gamma|) /(2 \alpha)+\kappa+\sigma+1}} d V(z, r) .
\end{aligned}
$$

Hence, (5.2) follows from Lemma 2.6, where C is independent of δ.
Given $0<\delta<1$, we say that a sequence $\left\{X_{j}\right\} \subset H$ is a δ-lattice in the α-parabolic sense if $H=\bigcup_{j} S_{\delta}^{(\alpha)}\left(X_{j}\right)$ and $\left\{X_{j}\right\}$ is ε-separated in the α-parabolic sense for some $\varepsilon, 0<\varepsilon<\delta$. The notion of the δ-lattice in the α-parabolic sense is introduced in [13] and an example of the δ-lattice is given in [13, Remark 4.3].

Let $0<\delta \leq 1 / 3$ and $\left\{X_{j}\right\}$ be a δ-lattice in the α-parabolic sense $(\varepsilon$ separated for some $0<\varepsilon<\delta$). Then, we take a pairwise disjoint covering $\left\{S_{j}\right\}$ of H as follows:

$$
S_{1}=S_{\delta}^{(\alpha)}\left(X_{1}\right) \backslash \bigcup_{k \geq 2} S_{\varepsilon}^{(\alpha)}\left(X_{k}\right)
$$

$$
\begin{equation*}
S_{j}=S_{\delta}^{(\alpha)}\left(X_{j}\right) \backslash\left\{\left(\bigcup_{m \leq j-1} S_{m}\right) \bigcup\left(\bigcup_{k \geq j+1} S_{\varepsilon}^{(\alpha)}\left(X_{k}\right)\right)\right\}, \quad(j \geq 2) \tag{5.3}
\end{equation*}
$$

It is easy to see that $S_{\varepsilon}^{(\alpha)}\left(X_{j}\right) \subset S_{j} \subset S_{\delta}^{(\alpha)}\left(X_{j}\right) \subset S_{1 / 3}^{(\alpha)}\left(X_{j}\right)$, and there exists a constant $C>0$ independent of δ such that $V\left(S_{j}\right) \leq C t_{j}^{n / 2 \alpha+1}$ for all $j \geq 1$. We show the main theorem of this section.

Theorem 5.3 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and κ be a real number such that $\kappa>\sigma$. Then, there exists $0<\delta_{0}<1$ such that if a sequence $\left\{X_{j}\right\}$ in H is the δ-lattice in the α-parabolic sense with $0<\delta \leq \delta_{0}$, then $\left\{X_{j}\right\}$ is the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-representing and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-representing sequence of order $(0, \kappa)$.

Proof. Suppose that $0<\delta \leq 1 / 3$ and $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ is the δ-lattice in the α-parabolic sense (ε-separated for some $0<\varepsilon<\delta$). Here constraints of δ will be imposed later. Theorem 3.1 implies that $U_{\sigma, \mathbb{X}}^{0, \kappa}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $U_{\sigma, \mathrm{X}}^{0, \kappa}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Let $\left\{S_{j}\right\}$ be a pairwise disjoint covering of H defined in (5.3). Then, we define an operator $B_{\sigma, \mathbb{X}}$ on $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ by

$$
B_{\sigma, \mathbb{X}} u:=\left\{t_{j}^{1+\sigma-(n /(2 \alpha)+1)} \mathcal{D}_{t} u\left(X_{j}\right) V\left(S_{j}\right)\right\}=\left\{t_{j}^{\sigma-n /(2 \alpha)} \mathcal{D}_{t} u\left(X_{j}\right) V\left(S_{j}\right)\right\} .
$$

We note that $B_{\sigma, \mathbb{X}}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is bounded and $B_{\sigma, \mathbb{X}}$ maps $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ into c_{0}, because $V\left(S_{j}\right) \leq C t_{j}^{n /(2 \alpha)+1}$ and $\left\{X_{j}\right\}$ is ε-separated for some $0<\varepsilon<\delta$. Thus, we define an operator $A_{\sigma, \mathbb{X}}^{\kappa}$ on $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ by

$$
\begin{aligned}
A_{\sigma, \mathbb{X}}^{\kappa} u(x, t): & =\frac{2^{\kappa+1}}{\Gamma(\kappa+1)} U_{\sigma, \mathbb{X}}^{0, \kappa} B_{\sigma, \mathbb{X}} u(x, t) \\
& =\frac{2^{\kappa+1}}{\Gamma(\kappa+1)} \sum_{j} t_{j}^{\kappa} \mathcal{D}_{t} u\left(x_{j}, t_{j}\right) \omega_{\alpha}^{\kappa}\left(x, t ; x_{j}, t_{j}\right) V\left(S_{j}\right)
\end{aligned}
$$

Then, $A_{\sigma, \mathbb{X}}^{\kappa}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $A_{\sigma, \mathbb{X}}^{\kappa}$ maps $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$ into itself. It suffices to show that $A_{\sigma, \mathbb{X}}^{\kappa}$ is invertible on $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ for all δ sufficiently small.

We shall show that $\left\|I-A_{\sigma, \mathrm{X}}^{\kappa}\right\|<1$ for all δ sufficiently small, where I is the identity operator on $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$. In fact, Lemma 2.4 (2) implies that for $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ and $(x, t) \in H$,

$$
\begin{aligned}
u(x, t) & =\frac{2^{\kappa+1}}{\Gamma(\kappa+1)} \int_{H} \mathcal{D}_{t} u(y, s) \omega_{\alpha}^{\kappa}(x, t ; y, s) s^{\kappa} d V(y, s) \\
& =\frac{2^{\kappa+1}}{\Gamma(\kappa+1)} \sum_{j} \int_{S_{j}} \mathcal{D}_{t} u(y, s) \omega_{\alpha}^{\kappa}(x, t ; y, s) s^{\kappa} d V(y, s) .
\end{aligned}
$$

Hence, we obtain

$$
\left(I-A_{\sigma, \mathbb{X}}^{\kappa}\right) u(x, t)=\frac{2^{\kappa+1}}{\Gamma(\kappa+1)}\left(\Pi_{1}(x, t)+\Pi_{2}(x, t)\right)
$$

where

$$
\Pi_{1}(x, t)=\sum_{j} \int_{S_{j}} \mathcal{D}_{t} u(y, s)\left(s^{\kappa} \omega_{\alpha}^{\kappa}(x, t ; y, s)-t_{j}^{\kappa} \omega_{\alpha}^{\kappa}\left(x, t ; x_{j}, t_{j}\right)\right) d V(y, s)
$$

and

$$
\left.\Pi_{2}(x, t)=\sum_{j} \int_{S_{j}}\left(\mathcal{D}_{t} u(y, s)-\mathcal{D}_{t} u\left(x_{j}, t_{j}\right)\right) t_{j}^{\kappa} \omega_{\alpha}^{\kappa}\left(x, t ; x_{j}, t_{j}\right)\right) d V(y, s)
$$

First, we shall show that there exists a constant $C>0$ independent of δ and u such that $\left\|\Pi_{1}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)}$. By Lemmas 5.1 and 2.6 , we have for each $1 \leq \ell \leq n$,

$$
\begin{aligned}
& \left|\partial_{x_{\ell}} \Pi_{1}(x, t)\right| \\
& \leq \sum_{j} \int_{S_{j}}\left|\mathcal{D}_{t} u(y, s)\right| \mid s^{\kappa} \partial_{x_{\ell}} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}(x-y, t+s) \\
& \quad-t_{j}^{\kappa} \partial_{x_{\ell}} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right) \mid d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right) \sum_{j} \int_{S_{j}} \frac{\left|\mathcal{D}_{t} u(y, s)\right| s^{\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{H} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \cdot t^{-\sigma-1 /(2 \alpha)},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\partial_{t} \Pi_{1}(x, t)\right| \\
& \leq \sum_{j} \int_{S_{j}}\left|\mathcal{D}_{t} u(y, s)\right| \mid s^{\kappa} \mathcal{D}_{t}^{\kappa+1} W^{(\alpha)}(x-y, t+s) \\
& \\
& \quad-t_{j}^{\kappa} \mathcal{D}_{t}^{\kappa+1} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right) \mid d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right) \sum_{j} \int_{S_{j}} \frac{\left|\mathcal{D}_{t} u(y, s)\right| s^{\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{H} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \cdot t^{-\sigma-1} .
\end{aligned}
$$

Therefore, we obtain $\left\|\Pi_{1}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)}$, where the constant C is independent of δ and u.

Next, we shall show that there exists a constant $C>0$ independent of δ and u such that $\left\|\Pi_{2}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)}$. By Lemma 2.1 (1) and Proposition 5.2, we have for each $1 \leq \ell \leq n$,

$$
\begin{aligned}
& \left|\partial_{x_{\ell}} \Pi_{2}(x, t)\right| \\
& \quad \leq \sum_{j} \int_{S_{j}}\left|\mathcal{D}_{t} u(y, s)-\mathcal{D}_{t} u\left(x_{j}, t_{j}\right)\right| t_{j}^{\kappa}\left|\partial_{x_{\ell}} \mathcal{D}_{t}^{\kappa} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right)\right| d V(y, s) \\
& \leq \\
& \leq \sum_{j} \int_{S_{j}} \frac{\left|\mathcal{D}_{t} u(y, s)-\mathcal{D}_{t} u\left(x_{j}, t_{j}\right)\right| t_{j}^{\kappa}}{\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \\
& \quad \times \sum_{j} \int_{S_{j}} \frac{s^{-1-\sigma} t_{j}^{\kappa}}{\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\partial_{t} \Pi_{2}(x, t)\right| \\
& \quad \leq \sum_{j} \int_{S_{j}}\left|\mathcal{D}_{t} u(y, s)-\mathcal{D}_{t} u\left(x_{j}, t_{j}\right)\right| t_{j}^{\kappa}\left|\mathcal{D}_{t}^{\kappa+1} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right)\right| d V(y, s)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{j} \int_{S_{j}} \frac{\left|\mathcal{D}_{t} u(y, s)-\mathcal{D}_{t} u\left(x_{j}, t_{j}\right)\right| t_{j}^{\kappa}}{\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s) \\
& \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \sum_{j} \int_{S_{j}} \frac{s^{-1-\sigma} t_{j}^{\kappa}}{\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s)
\end{aligned}
$$

Since $S_{j} \subset S_{\delta}^{(\alpha)}\left(X_{j}\right) \subset S_{1 / 3}^{(\alpha)}\left(X_{j}\right)$, there exists a constant $C>0$ independent of δ such that

$$
C^{-1} s \leq t_{j} \leq C s, \quad t+s+|x-y|^{2 \alpha} \leq C\left(t+t_{j}+\left|x-x_{j}\right|^{2 \alpha}\right)
$$

for all $(y, s) \in S_{j}$ and j. Therefore, Lemma 2.6 implies that there exists a constant $C>0$ independent of δ such that for each $1 \leq \ell \leq n$,

$$
\begin{aligned}
& \left|\partial_{x_{\ell}} \Pi_{2}(x, t)\right| \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \sum_{j} \int_{S_{j}} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s) \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{H} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{(n+1) /(2 \alpha)+\kappa}} d V(y, s) \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \cdot t^{-\sigma-1 /(2 \alpha)},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\partial_{t} \Pi_{2}(x, t)\right| \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \sum_{j} \int_{S_{j}} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s) \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \int_{H} \frac{s^{-1-\sigma+\kappa}}{\left(t+s+|x-y|^{2 \alpha}\right)^{n /(2 \alpha)+\kappa+1}} d V(y, s) \\
& \quad \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)} \cdot t^{-\sigma-1}
\end{aligned}
$$

Hence, we obtain $\left\|\Pi_{2}\right\|_{\mathcal{B}_{\alpha}(\sigma)} \leq C\left(\delta+\delta^{1 /(2 \alpha)}\right)\|u\|_{\mathcal{B}_{\alpha}(\sigma)}$, where the constant C is independent of δ and u.

6. The $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating theorem

In this section, we give a interpolating theorem for the α-parabolic Bloch type spaces. Let $\sigma>-m(\alpha)$ and $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be a sequence in H. Furthermore, let $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash\{(0,0)\}$. For $u \in \widetilde{\mathcal{B}}_{\alpha}(\sigma)$, we recall the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating operator

$$
\begin{equation*}
T_{\sigma, \mathbb{X}}^{\gamma, \kappa} u:=\left\{t_{j}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa} u\left(X_{j}\right)\right\} . \tag{6.1}
\end{equation*}
$$

We say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating sequence of order (γ, κ) if the operator $T_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is bounded and onto. Again, we remark that $T_{\sigma, X}^{\gamma, \kappa}: \widetilde{\mathcal{B}}_{\alpha}(\sigma) \rightarrow \ell^{\infty}$ is always bounded by Lemma 2.2 (1). We also say that $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-interpolating sequence of order (γ, κ) if $T_{\sigma, \mathbb{X}}^{\gamma, \kappa}: \widetilde{\mathcal{B}}_{\alpha, 0}(\sigma) \rightarrow$ c_{0} is bounded and onto. In this section, we give an interpolating theorem for $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$ and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$, that is, we give a sufficient condition for a sequence $\left\{X_{j}\right\}$ to be the $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-interpolating sequence. We need the following lemma.

Lemma 6.1 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and κ be a real number such that $\kappa>\sigma$. Let $\gamma \in \mathbb{N}_{0}^{n}$ be a multi-index. Furthermore, let $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ be δ-separated in the α-parabolic sense. If $(\beta, \nu) \in \mathbb{N}_{0}^{n} \times \Sigma_{\sigma} \backslash\{(0,0)\}$ and $\left\{\lambda_{j}\right\} \in \ell^{\infty}$, then

$$
\begin{align*}
& \partial_{x}^{\beta} \mathcal{D}_{t}^{\nu}\left(U_{\sigma, \mathbb{X}}^{\gamma, \kappa}\left\{\lambda_{j}\right\}\right)(x, t) \\
& \quad=\sum_{j=1}^{\infty} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \partial_{x}^{\beta+\gamma} \mathcal{D}_{t}^{\nu+\kappa} W^{(\alpha)}\left(x-x_{j}, t+t_{j}\right) \tag{6.2}
\end{align*}
$$

for all $(x, t) \in H$.
Proof. Let $(\beta, \nu) \in \mathbb{N}_{0}^{n} \times \Sigma_{\sigma} \backslash\{(0,0)\}$.
Suppose $\nu \in \mathbb{N}_{0}$. Put

$$
u_{N}(x, t)=\sum_{j=1}^{N} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right), \quad(x, t) \in H
$$

Then, $\left\{\partial_{x}^{\beta} \mathcal{D}_{t}^{\nu} u_{N}\right\}$ converges uniformly on $\mathbb{R}^{n} \times[\tau, \infty)$ for every $\tau>0$. In
fact, by (3.3), we have

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x}^{\beta} \mathcal{D}_{t}^{\nu} \omega_{\alpha}^{\gamma, \kappa}\left(x, t ; x_{j}, t_{j}\right)\right| \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \\
& \quad \times \sum_{j=1}^{N} \int_{S_{\delta}^{(\alpha)}\left(X_{j}\right)} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(t+r+|x-z|^{2 \alpha}\right)^{(n+|\beta|+|\gamma|) /(2 \alpha)+\nu+\kappa}} d V(z, r) \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{H} \frac{r^{|\gamma| /(2 \alpha)+\kappa-\sigma-1}}{\left(t+r+|x-z|^{2 \alpha}\right)^{(n+|\beta|+|\gamma|) /(2 \alpha)+\nu+\kappa}} d V(z, r)
\end{aligned}
$$

for all $X \in H$. Since $(\beta, \nu) \in \mathbb{N}_{0}^{n} \times \mathbb{N}_{0} \backslash\{(0,0)\}$, Lemma 2.6 implies

$$
\begin{aligned}
& \sum_{j=1}^{N}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x}^{\beta} \mathcal{D}_{t}^{\nu} \omega_{\alpha}^{\gamma, \kappa}\left(X ; X_{j}\right)\right| \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} t^{-(|\beta| /(2 \alpha)+\nu+\sigma)}
\end{aligned}
$$

Thus, we have $\left\{\partial_{x}^{\beta} \mathcal{D}_{t}^{\nu} u_{N}\right\}$ converges uniformly on $\mathbb{R}^{n} \times[\tau, \infty)$ for every $\tau>0$. It follows that we can differentiate term by term, so that (6.2) is obtained.

Suppose $\nu \notin \mathbb{N}_{0}$. Then, Lemma 2.6 also implies

$$
\begin{aligned}
& \int_{0}^{\infty} \tau^{\lceil\nu\rceil-\nu-1} \sum_{j=1}^{\infty}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\kappa-\sigma}\left|\partial_{x}^{\beta} \mathcal{D}_{t}^{\lceil\nu\rceil} \omega_{\alpha}^{\gamma, \kappa}\left(x, t+\tau ; x_{j}, t_{j}\right)\right| d \tau \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{0}^{\infty} \tau^{\lceil\nu\rceil-\nu-1} \\
& \quad \times \int_{H} \frac{r^{(|\gamma|) /(2 \alpha)+\kappa-\sigma-1}}{\left(t+\tau+r+|x-z|^{2 \alpha}\right)^{(n+|\beta|+|\gamma|) /(2 \alpha)+\lceil\nu\rceil+\kappa}} d V(z, r) d \tau \\
& \quad \leq C F(\delta)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{0}^{\infty} \frac{\tau^{\lceil\nu\rceil-\nu-1}}{(t+\tau)^{|\beta| /(2 \alpha)+\lceil\nu\rceil+\sigma}} d \tau<\infty
\end{aligned}
$$

because $\nu>\max \{0,-\sigma\}$. Hence, differentiating term by term, we obtain (6.2) from the Fubini theorem.

We show the main theorem of this section.
Theorem 6.2 Let $0<\alpha \leq 1, \sigma>-m(\alpha)$, and $(\gamma, \kappa) \in\left(\mathbb{N}_{0}^{n} \times \Sigma_{\sigma}\right) \backslash$ $\{(0,0)\}$. Then, there exists $0<\delta_{0}<1$ such that if a sequence $\left\{X_{j}\right\}$ in H is δ-separated in the α-parabolic sense with $\delta_{0} \leq \delta<1$, then $\left\{X_{j}\right\}$ is a $\widetilde{\mathcal{B}}_{\alpha}(\sigma)$-interpolating and $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$-interpolating sequence of order (γ, κ).

Proof. Let ν be a real number such that $\nu>\sigma$. We note that the function

$$
s^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,2 s)
$$

is constant on H. In fact, by Lemma 2.1 (4), we have

$$
\begin{aligned}
& \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,2 s) \\
& \quad=2^{-((n+2|\gamma|) /(2 \alpha)+\kappa+\nu)} s^{-((n+2|\gamma|) /(2 \alpha)+\kappa+\nu)} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,1)
\end{aligned}
$$

Thus, $s^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,2 s)$ is constant on H. Put

$$
\begin{aligned}
c_{\gamma, \kappa, \nu} & :=s^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,2 s) \\
& =2^{-((n+2|\gamma|) /(2 \alpha)+\kappa+\nu)} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,1) .
\end{aligned}
$$

Then, as in the proof of [14, Proposition 1 (2)], it is easy to see that $\partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}(0,1) \neq 0$. Therefore, we obtain $c_{\gamma, \kappa, \nu} \neq 0$.

Suppose that $\mathbb{X}=\left\{X_{j}\right\}=\left\{\left(x_{j}, t_{j}\right)\right\}$ is δ-separated in the α-parabolic sense. Here constraints of δ will be imposed later. By Theorem 3.1, the operator $U_{\sigma, \mathbb{X}}^{\gamma, \nu}: \ell^{\infty} \rightarrow \widetilde{\mathcal{B}}_{\alpha}(\sigma)$ is bounded and $U_{\sigma, \mathbb{X}}^{\gamma, \nu}$ maps c_{0} into $\widetilde{\mathcal{B}}_{\alpha, 0}(\sigma)$. Therefore, $T_{\sigma, \mathbb{X}}^{\gamma, \kappa} U_{\sigma, \mathbb{X}}^{\gamma, \nu}: \ell^{\infty} \rightarrow \ell^{\infty}$ is bounded and $T_{\sigma, \mathbb{X}}^{\gamma, \kappa} U_{\sigma, \mathbb{X}}^{\gamma, \nu}$ maps c_{0} into c_{0} by Theorem 4.1 (3). As in the proof of Theorem 5.3, it suffices to show that there exists $0<\delta_{0}<1$ such that if $\delta_{0} \leq \delta<1$ then $\left\|I-S_{\sigma, X}^{\gamma, \kappa, \nu}\right\|<1$, where I is the identity operator on ℓ^{∞} and $S_{\sigma, \mathbb{X}}^{\gamma, \kappa, \nu}=c_{\gamma, \kappa, \nu}^{-1} T_{\sigma, \mathbb{X}}^{\gamma, \kappa} U_{\sigma, \mathbb{X}}^{\gamma, \nu}$. In fact, the operator $I-S_{\sigma, \mathbb{X}}^{\gamma, \kappa, \nu}$ maps a sequence $\left\{\lambda_{j}\right\}$ in ℓ^{∞} to a sequence $\left\{\xi_{m}\right\}$ in ℓ^{∞} given by

$$
\xi_{m}=\lambda_{m}-c_{\gamma, \kappa, \nu}^{-1} t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \partial_{x}^{\gamma} \mathcal{D}_{t}^{\kappa}\left(U_{\sigma, \mathbb{X}}^{\gamma, \nu}\left\{\lambda_{j}\right\}\right)\left(X_{m}\right)
$$

By Lemma 6.1, we have

$$
\begin{aligned}
\xi_{m}= & \lambda_{m}-c_{\gamma, \kappa, \nu}^{-1} \nu_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \\
& \times \sum_{j=1}^{\infty} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\nu-\sigma} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}\left(x_{m}-x_{j}, t_{m}+t_{j}\right) \\
= & c_{\gamma, \kappa, \nu}^{-1} t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \\
& \times \sum_{j \neq m} \lambda_{j} t_{j}^{(n+|\gamma|) /(2 \alpha)+\nu-\sigma} \partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}\left(x_{m}-x_{j}, t_{m}+t_{j}\right) .
\end{aligned}
$$

Thus, Lemma 2.1 (1) and Lemma 2.8 imply

$$
\begin{aligned}
\left|\xi_{m}\right| \leq & \left|c_{\gamma, \kappa, \nu}^{-1}\right| t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \\
& \times \sum_{j \neq m}\left|\lambda_{j}\right| t_{j}^{(n+|\gamma|) /(2 \alpha)+\nu-\sigma}\left|\partial_{x}^{2 \gamma} \mathcal{D}_{t}^{\kappa+\nu} W^{(\alpha)}\left(x_{m}-x_{j}, t_{m}+t_{j}\right)\right| \\
\leq & C\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \sum_{j \neq m} \frac{t_{j}^{(n+|\gamma|) /(2 \alpha)+\nu-\sigma}}{\left(t_{m}+t_{j}+\left|x_{m}-x_{j}\right|^{2 \alpha}\right)^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu}} \\
\leq & C F(\delta / 2)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \\
& \times \sum_{j \neq m} \int_{S_{\delta / 2}^{(\alpha)}\left(X_{j}\right)} \frac{r^{|\gamma| /(2 \alpha)+\nu-\sigma-1}}{\left(t_{m}+r+\left|x_{m}-z\right|^{2 \alpha}\right)^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu}} d V(z, r) \\
\leq & C F(\delta / 2)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} t_{m}^{|\gamma| /(2 \alpha)+\kappa+\sigma} \\
& \times \int_{H \backslash S_{\delta}^{(\alpha)}\left(X_{m}\right)} \frac{r r_{m}^{|\gamma| /(2 \alpha)+\nu-\sigma-1}}{\left(t_{m}+r+\left|x_{m}-z\right|^{2 \alpha}\right)^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu}} d V(z, r) \\
= & C F(\delta / 2)\left\|\left\{\lambda_{j}\right\}\right\|_{\infty} \int_{H \backslash S_{\delta}^{(\alpha)}(0,1)} \frac{t^{|\gamma| /(2 \alpha)+\nu-\sigma-1}}{\left(1+t+|x|^{2 \alpha}\right)^{(n+2|\gamma|) /(2 \alpha)+\kappa+\nu}} d V(z, r),
\end{aligned}
$$

where C is independent of δ. Since $F(\delta / 2)$ is bounded for all $1 / 2 \leq \delta<1$, Lemma 2.6 shows that there exists $0<\delta_{0}<1$ such that if $\delta_{0} \leq \delta<1$ then $\left\|I-S_{\sigma, \mathbb{X}}^{\gamma, \kappa, \nu}\right\|<1$.

References

[1] Carleson, L., An interpolation problem for bounded analytic functions. Amer. J. Math., 80 (1958), 921-930.
[2] Choe B. R. and Yi H., Representations and interpolations of harmonic Bergman functions on half-spaces. Nagoya Math. J., 151 (1998), 51-89.
[3] Coifman R. and Rochberg R., Representation theorems for holomorphic and harmonic functions in L^{p}. Astérisque, 77 (1980), 11-66.
[4] Hishikawa Y., Fractional calculus on parabolic Bergman spaces. Hiroshima Math. J., 38 (2008), 471-488.
[5] Hishikawa Y., The reproducing formula with fractional orders on the parabolic Bloch space. J. Math. Soc. of Japan, 62 (2010), 1219-1255.
[6] Hishikawa Y., Representing sequences on parabolic Bergman spaces, to appear in J. Korean Math. Soc.
[7] Hishikawa Y., Nishio M. and Yamada M., A conjugate system and tangential derivative norms on parabolic Bergman spaces. Hokkaido Math. J., 39 (2010), 85-114.
[8] Hishikawa Y. and Yamada M., Function spaces of parabolic Bloch type. Hiroshima Math. J., 41 (2011), 55-87.
[9] Nam K., Representations and interpolations of weighted harmonic Bergman functions. Rocky Mountain J. Math., 36 (2006), 237-263.
[10] Nishio M., Shimomura K. and Suzuki N., α-parabolic Bergman spaces. Osaka J. Math., 42 (2005), 133-162.
[11] Nishio M., Suzuki N. and Yamada M., Toeplitz operators and Carleson measures on parabolic Bergman spaces. Hokkaido Math. J., 36 (2007), 563583.
[12] Nishio M., Suzuki N. and Yamada M., Interpolating sequences of parabolic Bergman spaces. Potential Analysis, 28 (2008), 357-378.
[13] Nishio M., Suzuki N. and Yamada M., Carleson inequalities on parabolic Bergman spaces. Tohoku Math. J., 62 (2010), 269-286.
[14] Nishio M. and Yamada M., Carleson type measures on parabolic Bergman spaces. J. Math. Soc. Japan, 58 (2006), 83-96.

Y. Hishikawa
Department of General Education
Gifu National College of Technology
Kamimakuwa 2236-2
Motosu City, Gifu 501-0495, Japan
E-mail: yosuke-h@gifu-nct.ac.jp
M. Yamada
Department of Mathematics
Faculty of Education
Gifu University
Yanagido 1-1, Gifu 501-1193, Japan
E-mail: yamada33@gifu-u.ac.jp

