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Equinormalizable theory for plane curve singularities

with embedded points and the theory of equisingularity
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Abstract. In this paper we give some criteria for a family of generically reduced

plane curve singularities to be equinormalizable. The first criterion is based on the

δ-invariant of a (non-reduced) curve singularity which is introduced by Brücker-Greuel

([BG]). The second criterion is based on the I-equisingularity of a k-parametric family

(k ≥ 1) of generically reduced plane curve singularities, which is introduced by Nobile

([No]) for one-parametric families. The equivalence of some kinds of equisingularities

of a family of generically reduced plane curve singularities is also studied.
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1. Introduction

The theory of equinormalizable deformations has been initiated by
Teissier ([Tei1]) for deformations of reduced curve singularities over (C, 0). It
is generalized to higher dimensional base spaces by Teissier himself and Ray-
naud in 1980 ([Tei2]). Recently, it is developed by Chiang-Hsieh and Lipman
([Ch-Li]) for projective deformations of reduced complex spaces over normal
base spaces, and it is studied by Kollár for projective deformation of gener-
ically reduced algebraic schemes over semi-normal base spaces ([Ko]). The
theory of equinormalizable deformations of not necessarily reduced curve
singularity over (C, 0) is studied by Brücker and Greuel in 1990 ([BG]).
Some generalizations of the results of Brücker and Greuel to deformations
of (not necessarily reduced) curve singularities over normal base spaces are
given by Greuel and the author in the forthcoming paper [GL]. In this pa-
per we study the equinormalizable deformations of not necessarily reduced
plane curve singularities over smooth base spaces (Ck, 0) (k ≥ 0). We show
in Theorem 4.1 that the induced morphism on the pure-dimensional part of
the total space is equinormalizable if and only if the given deformation is
δ-constant. This result is generalized in [GL] to deformations of not neces-
sarily reduced curve singularities over normal spaces, however the technique
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used to prove it in the context of plane curve singularities (in C2) is quite
special, applying a consequence of the Hilbert-Burch Theorem (Lemma 4.1).
This technique cannot be used for deformations of curve singularities which
are not planar.

The theory of equisingularity for reduced plane curve singularities has
been introduced by Zariski (1970, [Za]), Wahl (1974, [Wa]). In [No] No-
bile defined three kinds of equisingularities for a one-parametric family of
generically reduced plane curve singularities: I-, T- and C-equisingularity.
He showed that I-equisingularity is equivalent to T-equisingularity, C-
equisingularity implies I-equisingularity, and gave a criterion for a family
to be C-equisingular. In this paper we generalize the results of Nobile to k-
parametric families (k ≥ 1) of generically reduced plane curve singularities,
and based on these equingularities we give a criterion for a deformation to
be equinormalizable (Theorem 5.3).

2. δ-invariant of (not necessarily reduced) curve singularities

Following Greuel and Brücker ([BG], for curves), Greuel and the author
([GL], for arbitrary complex spaces), we recall in this section the definition
of the δ-invariant of a curve which is not necessarily reduced, having an
isolated singularity1.

For a complex curve C, we denote by Cred its reduction and by i :
Cred → C the inclusion. For νred : C → Cred we mean the normalization of
the reduced curve Cred, and we call the composition ν := i ◦ νred : C → C

the normalization of the curve C. Then we have the induced map on the
structure sheaves

ν] : OC → ν∗OC .

We have Ker(ν]) = Nil(OC), the sheaf of nilpotent elements of OX , and
Coker(ν]) = ν∗OC/OCred . Since the map ν is finite, these sheaves are co-
herent OC-modules, whose supports are NRed(C) and Sing(C), respectively.
Thus, if x ∈ C is an isolated non-normal point then Ker(ν]) and Coker(ν])

1A point p in a curve C is said to be non-reduced (resp. singular) if the local ring at
p, OC,p is not reduced (resp. not regular). The set of all non-reduced (resp. singular)

points in C is denoted by NRed(C) (resp. Sing(C)), and called the non-reduced locus

(singular locus) of C. If p ∈ NRed(C) (resp. Sing(C)) is isolated then it is called an
isolated non-reduced point (resp. isolated singular point) of C.
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are finite dimensional C-vector spaces, and we have Ker(ν]) = H0
{x}(OC),

the local cohomology.

Definition 2.1 Let C be a complex curve and x ∈ C an isolated singular
point. The number

δ(Cred, x) := dimC(νred
∗ OC)x/OCred,x

is called the delta-invariant of Cred at x,

ε(C, x) := dimCH0
{x}(OC)

is called the epsilon-invariant of C at x, and

δ(C, x) := δ(Cred, x)− ε(C, x)

is called the delta-invariant of C at x.
If C has only finitely many singular points then the number

δ(C) :=
∑

x∈Sing(C)

δ(C, x)

is called the delta-invariant of C.

It is easy to see that δ(Cred, x) ≥ 0, and δ(Cred, x) = 0 if and only if x

is an isolated point of C or the germ (Cred, x) is smooth. Hence, if x ∈ C is
an isolated point of C then δ(C, x) = −dimCOC,x.

Example 2.1 We compute the δ-invariant of the curve singularity
(X0, 0) ⊆ (C2, 0) defined by the ideal

I0 =
〈
x2 − y3

〉 ∩ 〈y〉 ∩ 〈
x, y5

〉 ⊆ C{x, y}.

The curve singularity (X0, 0) is the union of a cusp C and a straight line L

with an embedded non-reduced point at the origin. We have

δ(Xred
0 , 0) = δ(C, 0) + δ(L, 0) + i(0,0)(C,L) = 1 + 0 + 2 = 3,

where i(0,0)(C, L) denotes the intersection multiplicity of C and L at the
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origin. Note that H0
{0}(OX0) = Nil(OX0,0) is the kernel of the surjection

p : OX0
∼= C{x, y}/I0 ³ OXred

0
∼= C{x, y}/ rad(I0).

Hence

ε(X0, 0) = dimC rad(I0)/I0 = 1,

where rad(I0) =
〈
x2 − y3

〉 ∩ 〈y〉. Therefore

δ(X0) = δ(X0, 0) = δ(Xred
0 , 0)− ε(X0, 0) = 2.

3. Simultaneous normalizations and equinormalizable mor-
phisms

Following Kollár ([Ko]) and Chiang-Hsieh-Lipman ([Ch-Li]), in [GL]
we gave the following definition of a simultaneous normalization of a map
between complex spaces, and we defined also equinormalizable maps between
complex spaces (or germs).

Definition 3.1 Let f : X −→ S be a morphism of complex spaces. A
simultaneous normalization of f is a morphism n : X̃ −→ X such that

(1) n is finite,
(2) f̃ := f ◦ n : X̃ → S is normal, i.e., for each z ∈ X̃, f̃ is flat at z and the

fiber X̃ ef(z) := f̃−1(f̃(z)) is normal,

(3) the induced map ns : X̃s := f̃−1(s) −→ Xs is bimeromorphic2 for each
s ∈ f(X).

The morphism f is called equinormalizable if the normalization ν : X → X

is a simultaneous normalization of f . It is called equinormalizable at x ∈ X

if the restriction of f to some neighborhood of x is equinormalizable.
If f : (X, x) −→ (S, s) is a morphism of germs, then a simultaneous

normalization of f is a morphism n from a multi-germ (X̃, n−1(x)) to (X, x)
such that some representative of n is a simultaneous normalization of a

2A map f : X → S is called bimeromorphic if there exists a nowhere dense analytic

subset A of S such that f−1(A) is nowhere dense in X and the induced map X\f−1(A) →
S \A is an isomorphism.
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representative of f . The germ f is equinormalizable if some representative
of f is equinormalizable.

Remark 3.1 Our definition of simultaneous normalizations of a map does
not require the flatness of the map. We do also not require the reducedness
of the fibers (however, all non-empty fibers are generically reduced if the
map admits a simultaneous normalization, see [GL]). The total space of
the map is also not required to be pure-dimensional. One may see [Ch-Li],
[Ko] and [GL] for more disscussions about simultaneous normalizations and
equinormalizability.

In this paper we consider flat deformations of plane curve singularities,
find a criterion for such a deformation to be equinormalizable. First of all
we give an example of a deformation of a plane curve singularity that is
equinormalizable.

Example 3.1 We consider again the curve singularity (X0, 0) ⊆ (C2, 0)
given in Example 2.1. Let

f : (X, 0) −→ (C2, 0), (x, y, u, v) 7→ (u, v),

be the restriction to (X, 0) ⊆ (C4, 0) of the projection π : (C4, 0) → (C2, 0),
where (X, 0) is defined by the ideal

I :=
〈
x2 − y3 + uy2

〉 ∩ 〈y − u〉 ∩ 〈x− v, y〉 ⊆ C{x, y, u, v}.

The map f is flat since u, v is an OX,0-regular sequence. Hence the map f

is a deformation of (X0, 0) over (C2, 0).
It is easy to see that the total space (X, 0) of the deformation f is re-

duced with two 3-dimensional irreducible components and one 2-dimensional
irreducible component. The normalization of these components are given by

ν1 : (C3, 0) −→ (X, 0)

(T1, T2, T3) 7→ (T 3
3 + T1T3, T

2
3 + T1, T1, T2),

ν2 : (C3, 0) −→ (X, 0)

(T1, T2, T3) 7→ (T1, T2, T2, T3),
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and

ν3 : (C2, 0) −→ (X, 0)

(T1, T2) 7→ (T2, 0, T1, T2).

For each i = 1, 2, 3, the morphism f̄i := f ◦ νi is given by the last two
components of νi and all of them are flat. The special fibers of f̄1 and f̄2

are straight lines in C3, while the special fiber of f̄3 is a (normal) point in
C2. It follows that the given deformation is equinormalizable.

4. Equinormalizability of deformations of curve singularities in
the plane with embedded non-reduced points

In this section we give a criterion for a deformation of an isolated curve
singularity in the plane with embedded non-reduced points over a smooth
base space of dimension k ≥ 1 to be equinormalizable. As a consequence
of the Hilbert-Burch theorem (cf. [Bur, Theorem 5] or [BG, Satz 6.1]), each
ideal defining a curve singularity in Cn can be factorized as a product of
an ideal defining a hypersurface singularity and an ideal defining a Cohen-
Macaulay singularity of codimension 2 in Cn. For n = 2, the hypersurface
singularity is the pure 1-dimensional part of the curve singularity and the
Cohen-Macaulay singularity becomes a (non-reduced) point.

The following result is one of the main ideas in the proof of the numerical
criterion for the equinormalizability.

Lemma 4.1 (cf. [BG], Prop. 6.3) Let (X0, 0) ⊆ (Cn, 0) be a curve
singularity defined by the ideal 〈g1, . . . , gm〉 = 〈g〉 . 〈p1, . . . , pm〉. Let f :
(X, 0) −→ (Ck, 0) be a deformation of (X0, 0), where (X, 0) is given by the
ideal I(X, 0) =

〈
gi +

∑k
j=1 tj ḡij

〉
1≤i≤m

⊆ OCn,0{t}, t := (t1, . . . , tk). Then
there exist functions ḡj and p̄ij in OCn,0{t} such that

〈
gpi +

k∑

j=1

tj ḡij

〉

1≤i≤m

=

〈
g +

k∑

j=1

tj ḡj

〉
·
〈

pi +
k∑

j=1

tj p̄ij

〉

1≤i≤m

,

where fG : (G, 0) −→ (Ck, 0) with I(G, 0) =
〈
g +

∑k
j=1 tj ḡj

〉
is a defor-

mation of (G0, 0) defined by 〈g〉 ⊆ OCn,0, and fP : (P, 0) −→ (Ck, 0)
with I(P, 0) =

〈
pi +

∑k
j=1 tj p̄ij

〉
1≤i≤m

is a deformation of (P0, 0) defined
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by 〈p1, . . . , pm〉 ⊆ OCn,0.

Let f : X → S be a morphism of complex spaces whose fibers have
only finitely many non-normal points. It is called (locally) delta-constant if
the function s 7→ δ(Xs) is (locally) constant on S. A morphism of gemrs is
δ-constant if some of its representatives is δ-constant.

The following theorem is the first main result of this paper.

Theorem 4.1 Let (X0, 0) ⊆ (C2, 0) be an isolated (not necessarily re-
duced) curve singularity. Let f : (X, 0) −→ (Ck, 0), k ≥ 1, be a deformation
of (X0, 0). Denote by (Xu, 0) the unmixed subgerm3 of (X, 0). Then the
following holds:

(1) The restriction fu : (Xu, 0) −→ (Ck, 0) is flat.
(2) f is δ-constant if and only if fu : (Xu, 0) −→ (Ck, 0) is equinormaliz-

able.

Proof. (1) As a consequence of the Hilbert-Burch theorem, the germ
(X0, 0) is a union of a hypersurface (Xu

0 , 0) ⊆ (C2, 0) and an embedded
(non-reduced) point. More precisely, if (X0, 0) is defined by the ideal I0

then it can be factorized as

I0 = 〈g〉 · J0,

where 〈g〉 ⊆ OC2,0 defines (Xu
0 , 0) ⊆ (C2, 0) and the ideal J0 ⊆ OC2,0 defines

such a (non-reduced) point. By Lemma 4.1 we can write the ideal I defining
(X, 0) ⊆ (C2 × Ck, 0) as I = 〈G〉 · J , where 〈G〉 ⊆ OC2×Ck,0 defines a
deformation (H, 0) ⊆ (C2 × Ck, 0) of the hypersurface (Xu

0 , 0) given by 〈g〉
and J ⊆ OC2×Ck,0 defines a deformation (P, 0) ⊆ (C2 × Ck, 0) of the (non-
reduced) point given by J0.

Note that (H, 0) is reduced and pure (k + 1)-dimensional, because it is
the total space of a deformation of the reduced and pure 1-dimensional singu-

3Let R be a ring and I ⊆ R be an ideal of dimension m. Assume that I has an

irredundant primary decomposition I =
Tr

i=1 Qi. For an integer 0 ≤ k ≤ m, we define

the pure k-dimensional part I(k) of the ideal I to be the intersection of all Qi with
dim Qi = k. The ideal I(k) is well-defined for each 0 ≤ k ≤ m because this part of the

primary decomposition is uniquely determined. We define the unmixed part Iu of the

ideal I to be the pure m-dimensional part of the radical
√

I. If the germ (X, 0) ⊆ (Cn, 0)

is defined by an ideal I ⊆ OCn,0, the unmixed subgerm (Xu, 0) of (X, 0) is the one defined
by the unmixed part Iu of I.
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larity (Xu
0 , 0) ⊆ (C2, 0) over (Ck, 0) which is reduced and pure k-dimensional

(cf. [GLS, Theorem I. 1.85] and [GLS, Theorem I. 1.101]). Hence (H, 0) ≡
(Xu, 0). Therefore the restriction map fu : (Xu, 0) ≡ (H, 0) −→ (Ck, 0) is
flat and it is actually a deformation of (Xu

0 , 0) over (Ck, 0).
(2) First we prove the “only if” part. Let f : X −→ S be a

sufficiently small representative of the given deformation such that fu :
Xu −→ S is equinormalizable. Since (X0, 0) has isolated singularities, it
follows from the generic principle (cf. [BF, Theorem 2.2]) that there exists
an open dense subset U ⊆ S such that (Xu)s := (fu)−1(s) are reduced for
all s ∈ U .

We first show that f is δ-constant on U , i.e., δ(Xs) = δ(X0) for any s ∈
U . In fact, for any s ∈ U , there exist an irreducible reduced cure singularity
C ⊆ S passing through s. Let α : T −→ C ⊆ S be the normalization of
this curve singularity such that α(T \ {0}) ⊆ U,α(0) = s, where T ⊆ C is
a small disc with center at 0. Denote XT := X ×S T , Xu

T := Xu ×S T ,
XT := X ×S T , where νu : X → Xu is the normalization of Xu. Thus we
have the following Cartesian diagram:

XT

2

//

νu
T ²²

f̄T

$$

X

νu
²²

f̄

zz

(∆)

Xu
T

2

//
� _
iT²²

fu
T

##

Xu
� _

i ²²
fu

{{

XT

2fT²²

// X
f ²²

T // S

For any t ∈ T, s = α(t) ∈ S, we have

O(XT )t
:= Of−1

T (t)
∼= OXs

,

O(Xu
T )t

:= Ofu
T
−1(t)

∼= O(Xu)s
, O(XT )t

:= Of̄−1
T (t)

∼= OXs
.

In the diagram (∆), f is flat by hypothesis, f̄ is flat since fu is equinor-
malizable and fu is flat by (1). It follows from the preservation of flatness
under base change (cf. [GLS, Prop. I. 1.87]) that the induced morphisms
fT , f̄T and fu

T are also flat over T . Moreover, for any t ∈ T \ {0} we have
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s := α(t) ∈ U , hence (Xu
T )t

∼= (Xu)s is reduced. It follows from [BG, Prop.
3.1.1 (3)] that Xu

T is reduced. On the other hand, since Xu and Ck are pure
dimensional, the fiber of fu is pure dimensional. It implies that the fiber
of fu

T : Xu
T → T is also pure dimensional. Hence Xu

T is pure dimensional.
Thus Xu

T is the unmixed space (XT )u of XT .
Moreover, since (XT )t

∼= Xs for any t ∈ T , s = α(t), it implies that the
special fiber (XT )0 of f̄T is normal. Then f̄T is regular by the regularity
criterion for morphisms (cf. [GLS, Theorem I. 1.117]). It implies that XT

∼=
(XT )0 × T which is smooth, hence normal, and it is the normalization of
Xu

T ≡ (XT )u. Consider the morphism fu
T : Xu

T −→ T with Xu
T reduced

and pure 2-dimensional, hence Xu
T is unmixed. Since (Xu

T )0 ∼= (XT )0 ∼= X0

which is normal, it implies that the morphism fu
T is equinormalizable. It

follows from [BG, Korollar 2.3.5] that fT : XT −→ T is δ-constant, hence
f : X −→ S is δ-constant on U .

Let us now take s0 ∈ S \ U . Since U is dense in S, s0 ∈ S, there
exists always a point s1 ∈ U which is closed to s0. It follows from the
semi-continuity of the δ-function (Lemma 4.2) that

δ(X0) ≥ δ(Xs0) ≥ δ(Xs1).

Moreover, δ(X0) = δ(Xs1) as above. It implies that δ(Xs0) = δ(X0). Hence
f : X −→ S is δ-constant.

Now we show the “if” part. Let f : X −→ S be a sufficiently small
representative of the given deformation such that it is δ-constant. For each
s ∈ S, denote Xs := f−1(s) and for each xs ∈ Sing(Xs), consider the family

(Xs, xs)

²²

� � // (X, xs)

²²
{s} � � // (S, s)

Each germ (Xs, xs) ⊆ (C2, 0) is defined by an ideal of the form 〈gs〉 · Js ⊆
OC2×{s},xs

. We have

δ(Xs, xs) = δ(Xu
s , xs)− dimCOC2×{s},xs

/Js,

and
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δ(Xs) :=
∑

xs∈Sing(Xs)

δ(Xs, xs)

=
∑

xs∈Sing(Xs)

δ(Xu
s , xs)−

∑

xs∈Sing(Xs)

dimCOC2×{s},xs
/Js. (4.1)

Since (X0, 0) is isolated, it follows from the local finiteness theorem (cf.
[GLS, Theorem I.1.66]) that the restriction f : Sing(f) −→ S is finite and
Sing(X0) = Sing(f)∩X0 = {0}. Then f : P −→ S is also finite. Obviously,
it is flat. Therefore it follows from the semi-continuity of fibre functions
(cf. [GLS, Theorem I.1.81]) that for all s ∈ S, we have

dimCOC2×{0},0/J0 =
∑

xs∈Sing(Xs)

dimCOC2×{s},xs
/Js. (4.2)

Moreover, f is δ-constant by assumption, that is,

δ(X0) = δ(Xs) for all s ∈ S. (4.3)

It follows from (4.1), (4.2) and (4.3) that

δ(Xu
0 ) = δ(Xu

0 , 0) =
∑

xs∈Sing(Xs)

δ(Xu
s , xs) = δ(Xu

s ) for all s ∈ S,

i.e., δ(Xu
s ) is constant. Therefore we have a delta-constant family of reduced

curve singularities fu : Xu ≡ H −→ S. Then it is equinormalizable by
the criterion of Teissier, Raynaud, Chiang-Hsieh and Lipman (cf. [Ch-Li,
Theorem 5.6]). ¤

In the proof of the theorem above we used the following semi-continuity
of the delta-function.

Lemma 4.2 Let f : (X, 0) −→ (S, 0) be a deformation of an isolated
(not necessarily reduced) curve singularity (X0, 0) ⊆ (Cn, 0). Then the δ-
function, s 7→ δ(Xs), is upper semi-continuous in the following sense: there
exists a representative f : X −→ S of the given deformation such that
δ(Xs) ≤ δ(X0) for all s ∈ S.

Proof. Let f : X −→ S be a sufficiently small representative of the given
deformation. For any s ∈ S, there exists an irreducible reduced curve sin-
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gularity C ⊆ S passing through 0 and s and let α : T −→ C ⊆ S be the
normalization of this curve singularity, where T ⊆ C is a small disc. De-
note XT := X ×S T . Let fT : XT → T be the morphism induced by f .
The morphism fT is flat by the preservation of flatness under base change
(cf. [GLS, Prop. I.1.85]). Moreover, for any t ∈ T, s := α(t) ∈ S, we have
O(XT )t

:= Of−1
T (t)

∼= Of−1(s) =: OXs
. It follows from [BG, Satz 3.1.2 (iii)]

that, for t ∈ T such that α(t) = s, we have

δ(X0)− δ(Xs) = δ((XT )0)− δ((XT )t) ≥ 0. ¤

Example 4.1 Let us consider again the deformation f : (X, 0) → (C2, 0)
of the plane curve singularity (X0, 0) given in Example 3.1. As we have
shown there, this deformation is equinormalizable. The δ-invariant of the
special fiber (X0, 0) is equal to 2 (Example 2.1). Moreover, for each u 6= 0,
v 6= 0 close to 0, the reduced fiber Xuv = f−1(u, v) consists of a cubic curve
C, a straight line L and a reduced point (v, 0). We can compute δ(Xuv) = 2.

Furthermore, the fibers X0u and Xv0 are non-reduced and their delta-
invariants are also 2. Hence the given deformation is δ-constant.

Remark 4.1 With the above notations, if the total space (X, 0) of the
deformation f : (X, 0) −→ (Ck, 0) of the plane curve singularity (X0, 0) is
reduced and pure (k + 1)-dimensional then (X0, 0) is necessarily reduced.
In fact, since (X, 0) is reduced, the ideal I defining (X, 0) is radical, i.e.,
I =

√
I. Moreover, since (H, 0) is pure (k+1)-dimensional and (P, 0) is pure

k-dimensional, it follows that (P, 0) ⊆ (H, 0). Then (X, 0) = (H, 0)∪(P, 0) =
(H, 0), i.e., V (I) = V (G). It follows from Hilbert-Rückert’s Nullstellensatz
(cf. [GLS, Theorem I.1.72]) that

〈G〉 · J = I =
√

I = I(V (I)) = I(V (G)) =
√
〈G〉 = 〈G〉 .

Hence G ∈ 〈G〉·J . Then there exists h ∈ J such that G = Gh, or G(1−h) =
0. Since G is a non-zerodivisor of OC2×Ck,0 we get h = 1. Hence 1 ∈ J and
we have J = 〈1〉. This implies I = 〈G〉 and hence I0 = 〈g〉. It means that
(X0, 0) is reduced.

Thus, if the plane curve singularity (X0, 0) is not reduced then the total
spaces of deformations over smooth base spaces are either not reduced or
not pure dimensional. However this fact is not true for deformations of
non-plane curve singularities. We show in the following example that there
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exists a deformation of a non-reduced curve singularity in a 4-dimensional
complex space which has a reduced and pure dimensional total space.

Example 4.2 Let us consider the curve singularity (X0, 0) ⊆ (C4, 0) de-
fined by the ideal

I0 :=
〈
x2 − y3, z, w

〉 ∩ 〈x, y, w〉 ∩ 〈
x, y, z, w2

〉 ⊆ C{x, y, z, w},

which was considered by Steenbrink ([St]). The curve singularity (X0, 0) is a
union of a cusp C in the plane z = w = 0, a straight line L = {x = y = w =
0} and an embedded non-reduced point O = (0, 0, 0, 0). Now we consider
the restriction f : (X, 0) → (C2, 0) of the projection π : (C6, 0) → (C2, 0),
(x, y, z, w, u, v) 7→ (u, v), to the complex space (X, 0) which is defined by the
ideal

I =
〈
x2 − y3 + uy2, z, w

〉 ∩ 〈x, y, w − v〉 ⊆ C{x, y, z, w, u, v}.

It is easy to show that the total space (X, 0) is reduced and pure 3-
dimensional. Moreover, by a similar way to Example 3.1 and Example 4.1
we can show that this deformation is equinormalizable and delta-constant
(with δ = 1).

5. The theory of equisingularity

In this section we study the theory of equisingularity for plane curve
singularities with embedded points which is introduced in [No] (for one-
parametric family), where the author formulated and proved the equivalence
between I-equisingularity and T-equisingularity, also the relation between I-
equisingularity and C-equisingularity.

Definition 5.1 A k-parametric family (k ∈ N∗) of generically reduced
plane curve singularities is a diagram

(X, 0) � � i //

f
%%LLL

L
(Ck+2, 0)

πwwppp
p

(Ck, 0),

where π is smooth and surjective, f is flat, Xt := p−1(t) is a generically
plane curve singularity for each t ∈ Ck closed to 0. We denote this family
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shortly by (X, f, π). As we have seen in the previous sections, this family
is a deformation of the generically reduced plane curve singularity (X0, 0),
which is the special fiber of the deformation. Throughout this section we
restrict our attention to the families whose restriction of f on its singular
locus4 Sing(f) is finite.

Assume that the germ (X, 0) is defined by the ideal

I := I(X, 0) ⊆ C{x, y, u1, . . . , uk},

where x, y (resp. u1, . . . , uk) are local coordinates in C2 (resp. Ck). Then a
k-parametric family of plane curve singularities induces a k-parametric flat
family of plane ideals (I, π) (compare to [No, Definition 3.3]).

We associate to each ideal J ⊆ C{x, y} a weighted directed tree τ(J)
as defined in [No, Section 1.2]. The induced family of plane ideals (I, π)
mentioned above is called equisingular if τ(I(t)) ≈ τ(I(0)) for all t ∈ Ck

closed to 0, where I(t) := IOXt,0 ⊆ C{x, y}.
Definition 5.2 A k-parametric family of generically reduced plane curve
singularities (X, f, π) is said to be I-equisingular if the induced family of
plane ideals (I := I(X), π) is equisingular in the sense of weighted directed
tree.

We also associate to each generically reduced plane curve C ⊆ C2 a
bi-weighted directed tree T2(C, γ) as defined in [No, Section 2.4], where γ is
an ordering of the branches of the reduction Cred of C.

Definition 5.3 A k-parametric family of generically reduced plane curve
singularities is said to be T-equisingular if for any pair of points t, t′ in
the same connected component of Ck, closed to 0, we can choose suitable
orderings γ, γ′ on the reduction Xred

t and Xred
t′ of the fibers Xt, Xt′ respec-

tively such that the corresponding bi-weighted directed trees T2(Xt, γt) and
T2(Xt′ , γt′) are isomorphic.

Definition 5.4 A k-parametric family of generically reduced plane curve
singularities is said to be C-equisingular if it is I-equisingular and if we

4The singular locus of a flat map f : X → S is the set of all points x ∈ X such that the
fiber Xf(x) := f−1(f(x)) is singular. If S is regular and f is flat then Sing(X) ⊆ Sing(f)

([GLS, Theorem I.1.117]).
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denote by πi : Zi → Zi−1 (i ≥ 1) the blowing up of Zi−1 with the center
Sing(Xi), where Xi denotes the proper transform of X under π(i) := π ◦
π1 ◦ · · · ◦ πi : Zi → Z0 = Z, then the induced morphism (Xi, pi) → (Ck, 0)
is flat, pi ∈ (π(i))−1(0).

The following theorem gives an equivalence of three kinds of equisingu-
larity mentioned above for a k-parametric family of plane curve singularities.
A similar result for one-parametric families is given by Nobile ([No, Theorem
5.5 and Prop. 5.8]).

Theorem 5.1 Let (X, f, π) be a k-parametric family of generically reduced
plane curve singularities. Then

( i ) I-equisingularity is equivalent to T-equisingularity.
( ii ) C-equisingularity implies I-equisingularity. Conversely, if the given

family is I-equisingular and all the fibers Xt, t ∈ Ck close to 0, are
smooth, then the family is C-equisingular.

Proof. It suffices to prove the theorem for a sufficiently small representative

X
� � i //

f
ÃÃA

AA
Z

πÄÄ~~~

S,

of the given family, where X, Z and S are sufficiently small neighborhoods
of 0.

For each s ∈ S, there exists an irreducible reduced curve singularity
C ⊆ S passing through s. Let α : T → S be the normalization of this
reduced curve singularity, where T ⊆ C is a small disc with center at 0 ∈ C.
Denote by XT := X ×S T , the Castesian product of X and T over S, and
by fT : XT → T the induced morphism of f . By the preservation of flatness
under base change (cf. [GLS, Prop. I.1.87]), fT is flat. Moreover, for each
t ∈ T , s = α(t), we have

O(XT )t
= OXT

⊗OT,t
C = (OX ⊗OS ,s OT,t)⊗OT,t

C) ∼= OX ⊗OS,s
C ∼= OXs .

Hence the fiber of f over each s ∈ S is isomorphic to the fiber of fT over
t ∈ T, α(t) = s.

(i) The family (X, f, π) is I-equisingular if and only if τ(I(s)) ≈ τ(I(0))
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for all s ∈ S. Hence the trees τ(IT (t)) and τ(IT (0)) are isomorphic for
all t ∈ T , where IT := IT (XT ) ⊆ C{x, y, t} denotes the ideal defining
XT . Equivalently, the induced family (XT , fT , πT ) is I-equisingular (by a
theorem of Risler, cf. [No, Theorem 3.7]). Thus the family (XT , fT , πT ) is
T-equisingular. It means that the tree T2((XT )t, γt) is isomorphic to the
tree T2((XT )t′ , γt′) for each pair t, t′ in the same connected component of T .
Hence, for each pair s, s′ in the same connected component of S, α(t) = s,
α(t′) = s′, the trees T2(Xs, γs) and T2(Xs′ , γs′) are isomorphic. This is
equivalent to the T-equisingularity of the family (X, f, π).

(ii) It is clear that C-equisingularity implies I-equisingularity. Now we
assume that the family is I-equisingular and all fibers Xs, s ∈ S, are smooth.
Since f : X → S is flat, S is smooth, it follows that X is smooth (cf. [GLS,
Theorem I.1.117]). Therefore, for each i ∈ N∗, the proper transform Xi

of X under π(i) := π ◦ π1 ◦ · · · ◦ πi : Zi → Z0 = Z is smooth, of pure
(k + 1)-dimensional. Moreover, each fiber (Xi)s := (π(i) |Xi

)−1(s) is a
proper transform of the smooth fiber Xs, hence (Xi)s is smooth of pure
1-dimensional. Thus we have the dimension formula

dim(Xi, x) = dim((Xi)s, x) + dim(S, s), π(i)(x) = s.

It follows that π(i) |Xi is open (cf. [Fi, Section 3.10, Theorem, p. 145]).
Moreover, Xi is smooth, hence Cohen-Macaulay. It follows that π(i) |Xi

is flat ([Fi, Section 3.20, Proposition, p. 158]). Hence the given family is
C-equisingular. ¤

In the following we may induce an I-equisingular (hence T-equisingular)
family of reduced plane curve singularities from a given I-equisingular family
of generically reduced plane curve singularities.

Theorem 5.2 Let (X, f, π) be a k-parametric family of generically reduced
plane curve singularities which is I-equisingular. Then all the fibers of the
restriction fu : (Xu, 0) → (Ck, 0) are reduced and the induced family

(Xu, 0) � � i //

fu &&MMM
M

(Ck+2, 0)

πwwppp
p

(Ck, 0),

is I-equisingular.
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Proof. Let f : X → S be a sufficiently small representative of the germ
f : (X, 0) → (Ck, 0). Suppose f is a deformation of the generically reduced
plane curve singularity X0 ⊆ C2 which is defined by the ideal I0. As a
consequence of the Hilbert-Burch theorem, I0 = 〈g〉 · J0, where 〈g〉 defines
the unmixed part Xu

0 of X0 and J0 defines the embedded non-reduced point
0 ∈ X0. It follows from Lemma 4.1 and the proof of Theorem 4.1 that the
restriction fu : Xu → S is a deformation of the reduction Xu

0 , which is
reduced and pure 1-dimensional. Hence the special fiber and the nearby
fibers of fu are all reduced.

Now we consider the induced family

(Xu, 0) � � i //

fu &&MMM
M

(Ck+2, 0)

πwwppp
p

(Ck, 0).

Let fu : Xu → S be a sufficiently small representative of the restriction map-
germ fu in the family. By the same notation as in the proof of Theorem 5.1
we have the following diagram

(Xu)T
//

(fu)T ²²

Xu

fu

²²

T
α // S,

where the induced map fu
T : (Xu)T → T is flat by the preservation of flatness

under base change. We have already showed in the proof of Theorem 4.1 that
(Xu)T = (XT )u. Since the induced family (XT , fT , πT ) is I-equisingular, it
follows from [No, Theorem 5.11] that the family ((XT )u = (Xu)T , fT , πT )
is I-equisingular with reduced fibers. On the other hand, the fibers of
fu

T : (Xu)T → T and fu : Xu → S are isomorphic. Therefore the fam-
ily (Xu, fu, π) is I-equisingular. ¤

As a consequence we have the following equivalence of I-equisingularity
and the delta-constancy of a family of generically reduced plane curve sin-
gularities. A family (X, f, π) is said to be δ-constant if the morphism
f : (X, 0) → (Ck, 0) is δ-constant.

Theorem 5.3 Let (X, f, π) be a k-parametric family of generically reduced
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plane curve singularities. Then it is δ-constant if and only if the family
(Xu, fu, π) is I-equisingular.

Proof. The I-equisingularity of the family (Xu, fu, π) implies that the in-
duced family ((Xu)T , fu

T , πT ) is also I-equisingular with reduced fibers. It
follows that the deformation fu

T : (Xu)T → T with reduced fibers is equinor-
malizable (cf. [Tei2, Theorem 5.3.1]). By a result of Teissier (cf. [Tei1,
Corollary 1, p. 609]),

δ
(
((Xu)T )t

)
= δ

(
((Xu)T )0

)
, ∀t ∈ T close to 0.

Since the fibers of fu : Xu → S and fu
T : (Xu)T → T are isomorphic,

it implies that the deformation fu : Xu → S is δ-constant. Hence it is
equinormalizable (cf. [Ch-Li, Theorem 5.6]). It follows again from Theorem
4.1 that f : X → S is δ-constant. The converse of the argument given above
is also satisfied. This proves the theorem. ¤
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