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CL-shellability of ordered structure of reflection systems

Hideaki MORITA
(Received October 13, 1996; Revised October 24, 1997)

Abstract. We define a “Bruhat” order on a reflection system, and show that each
closed interval is CL-shellable. The reflection systems, introduced by M. Dyer, generalize
the Coxeter systems. Therefore our result is a generalization of a result of A. Bj\"orner
and M. Wachs for Coxeter groups.
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1. Introduction

The lexicographic shellability of posets was first introduced by Bj\"orner
[Bj]. If a poset P is CL-shellable, then P is Cohen-Macaulay over an ar-
bitrary field [BGS]. Cohen-Macaulay posets have been one of the main in-
terests in combinatorics and have been studied deeply from combinatorial,
algebraic, and topological points of view [S2] [Bac] [H] [M1] [M2]. However,
directly from its algebraic or geometric definition, it is sometimes difficult
to see whether a given poset is Cohen-Macaulay or not. On the other hand,
the definition of CL-shellability is completely combinatorial. Consequently
the CL-shellabitity makes it easier to see whether or not a given poset is
Cohen-Macaulay than the original definitions. One of the most remarkable
classes of CL-shellable ordered structures is the Bruhat order of Coxeter sys-
tems. CL-shellability of the Bruhat order was first proved for the symmetric
groups by Edelman [Ed], and for the classical Weyl groups by Proctor [Pr].
Finally Bj\"orner and Wachs showed it for any Coxeter groups [BW1].

The purpose of the present paper is to extend the result of Bj\"orner-
Wachs for Coxeter systems to reflection systems. The reflection systems
were first introduced by Dyer [D] in his study of reflection subgroups of
Coxeter groups. Reflection systems are a generalized notion of Coxeter
systems. The most noticeable difference lies in the orders of generators: In
the case of a Coxeter group, we can choose a system of generators consisting
of involutions of order two. On the other hand orders of generators of
a reflection system can be an arbitrary nonnegative integer (or even the
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infinity). However, we restrict our attention to the case that generators
have finite orders.

This paper is organized as follows: In Section 2, we review the def-
inition of CL-shellability of finite posets and observe the CL-shellability
of the Bruhat orders of symmetric groups as an example of the result of
Bj\"orner-Wachs [BW1]. In Section 3, we define the reflection systems by us-
ing Coxeter diagrams, and introduce some terminology which we use later.
In Section 4, we define a partial order on a reflection system by formally
extending the definition of the Bruhar order for a Coxeter system. We also
see some fundamental properties of the partial order. In Section 5, we con-
struct a labeling for each closed interval of a reflection system and show
that it is CL-shellable.

Throughout this paper, the following notation is used: For m\in Z , let
z_{\geq m} (resp. Z_{>m} ) denote the set \{a\in Z|a\geq m\} (resp. \{a\in Z|a>m\} ).

For an element x of a group G , ord(x) denotes the order of x , and for
elements x , y\in G , x y denotes xyx^{-1} . The cardinality of a set A is
denoted by $A.

2. CL-shellability of posets

In this section we review necessary notation on partially ordered sets
(posets for short). Consult [S1] (or also [Bir]) for the fundamental termi-
nology. Let P be a finite poset. All posets considered in this paper are
finite. A chain C of P is a totally ordered subset x_{0}<x_{1}< \cdot\cdot<x_{r} of P

and the number r is called the length of C and denoted by \ell(C) . The set of
all the maximal chains of P is denoted by \mathcal{M}(P) . If a poset P satisfies the
following two conditions, then P is called a graded poset of length r :

1. P has the minimum element \hat{0} and the maximum element \hat{1} , i.e., \hat{0}\leq

x\leq\hat{1} for all x\in P ,

2. All maximal chains of P have the same length r .

For elements x , y\in P such that x\leq y , we say that y covers x , and
write yarrow x , if there are no elements z\in P satisfying x<z<y . If P is a
graded poset, then there exists a function

\rho : Parrow N=\{0, 1, 2, \ldots\} ,

defined inductively as follows:
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1. \rho(\hat{0})=0 ,

2. if y covers x , then \rho(y)=\rho(x)+1 .

The function \rho is called the rank function of P . If P is a graded poset and
\rho(y)-\rho(x)=k , then a maximal chain from y to x has length k . A rooted
interval ([x, y], c) is a pair of a closed interval [x, y]=\{z\in P|x\leq z\leq y\}

and a maximal chain c from \hat{1} to y .
Let P be a graded poset of length r . A labeling of P is a map

\lambda : \mathcal{M}(P)arrow(Z_{>0})^{r} : C\vdash+(\lambda_{1}(C), \ldots, \lambda_{r}(C)) ,

where Z_{>0} denotes the set of positive integers.
Let m : \hat{1}=x_{0} -arrow x_{1} – -arrow x_{r}=\hat{0} be a maximal chain in P . A

labeling \lambda(m) of m is an r-tuple of positive integers (\lambda_{1}(m), . . ’ \lambda_{r}(m)) .
Here we understand that each integer \lambda_{i}(m) is assigned to the edge (or the
cover relation) x_{i-1} – x_{i} of m.

First we impose the following condition on a labeling \lambda .

(LI) If two maximal chains m and m’ coincide along their first d edges
from the top \hat{1} , then \lambda_{i}(m)=\lambda_{i}(m’) for i=1,2 , \ldots , d .

Then the labeling \lambda satisfying condition (LI) naturally induces a la-
beling \lambda’ of a rooted interval ([x, y], c) by restricting \lambda to [x, y] : Let m’ be
a maximal chain in the closed interval [x, y] and c’ be any maximal chain
from x to \hat{0} . These three chains c , m’ , c’ are connected to form a maximal
chain m:=c*m’*c’ from \hat{1} to \hat{0} . If \rho(\hat{1})-\rho(y)=\ell , then the label
\lambda’(m’)=(\lambda_{1}’(m’), . . , \lambda_{k}’(m’)) is defined by \lambda_{i}’(m)=\lambda_{i+\ell}(m) . By condi-
then (LI), there is no ambiguity on the choice of an integer for each edge
of m’ Note that the induced labeling of a rooted interval also satisfies the
condition (LI). We simply write \lambda for the induced labeling \lambda’ on ([x, y], c) .

Now we impose another condition on \lambda :

(L2) For any rooted interval ([x, y], c) in P , there exists a unique maxi-
mal chain m_{0} in [x, y] whose label \lambda(m_{0})=(\lambda_{1}(m_{0}), \lambda_{2}(m_{0}) , . .) is
increasing, i.e., \lambda_{1}(m_{0})\leq\lambda_{2}(m_{0})\leq \cdot\cdot . Moreover the label \lambda(m_{0})

is smaller than labels \lambda(m) of any other maximal chains m of [x, y]

with respect to the lexicographic order.
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Here the lexicographic order \leq_{L} is defined as follows: For two sequences
of integers a= (a_{1}, \ldots , a_{n}) , b=(b_{1} , b_{n}) , we define a\leq_{L}b if a_{i}<b_{i} in the
first coordinate where they differ.

Definition 1 ([Bj] [BW1]) Let P be a finite graded poset. If P has a
labeling \lambda satisfying conditions (LI) and (L2), then P is called a CL-shellable
poset, and the labeling \lambda is called a CL labeling of P .

Example 2 Let (W, S) be a Coxeter system and \leq the Bruhat order
[Hum]. Then any closed interval [w’, w]=\{v\in W|w’\leq v\leq w\} is
CL-shellable [BW1]. Its CL labeling \lambda is constructed as follows:

Let m : w=u_{0}>u_{1}>\cdot . >u_{t}=w’ be a maximal chain of
the closed interval [w’, w] . Since [w’, w] is graded, m is saturated, i.e.,
\ell(u_{k-1})-\ell(u_{k})=1 where \ell is the length function of W Then a CL-
labeling is defined inductively as follows: Fix a reduced expression s_{1}\cdots s_{r}

of w . By the subword property [Hum, p. 120], a reduced expression of
u_{1} is of the form s_{1}\cdot\cdot\hat{s}_{i}\cdots s_{r} , where the deleted letter s_{i} is uniquely de-
termined. Let \lambda_{1}(m)=i . We can repeat this process to define \lambda(m)=

(\lambda_{1}(m), \ldots, \lambda_{r}(m)) . After k steps, we reach u_{k} and its reduced expression
s_{i_{1}}\cdots s_{i_{r-k}} is uniquely determined as a subexpression of the fixed reduced
expression of w . Again by the subword property, a reduced expression of
u_{k+1} is of the form s_{i_{1}}\cdot\cdot s_{i_{p}}\cdots s_{i_{r-k}}\wedge with uniquely determined s_{i_{p}} , and
\lambda_{k}(m) is defined by i_{p} . Thus the label \lambda(m)=(\lambda_{1}(m), \ldots, \lambda_{r}(m)) is de-
fined, and the labeling \lambda of the closed interval [w’, w] is CL-shellable.

Let W=S_{3} be the symmetric group of three letters. The group W is
generated by transpositions X=\{s_{1}, s_{2}\} , where s_{1}=(12) and s_{2}=(23) .
Then the pair (W, X) is a Coxeter system. Let g=s_{1}s_{2}s_{1} be the longest
element and h=e be the identity element. A CL-labeling of the closed
interval [h, g] is given as follows:

s_{1}s_{2}s_{1}arrow 1s_{2}s_{1}arrow 2s_{1}arrow 3e

s_{1}s_{2}s_{1}arrow 1s_{2}s_{1}arrow 3s_{2}arrow 2e

s_{1}s_{2}s_{1}arrow 3s_{1}s_{2}arrow 1s_{2}arrow 2e

s_{1}s_{2}s_{1}arrow 3s_{1}s_{2}arrow 2s_{1}arrow 1e .
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3. Reflection system

Let (X, E) be an undirected finite graph with a vertex set X and an
edge set E, and let \phi , \psi be given functions such that

\phi : Xarrow\{n\in N|n\geq 2\}

\psi : Earrow\{n\in N|n\geq 3\}\cup\{\infty\} .

Assume that \phi(x)=\phi(y)=2 whenever \{x, y\}\in E and \psi(x, y)\neq\infty .

Definition 3 The pair (G, X) of a group G and its system of generators X
is called a reflflection system if G satisfies the following fundamental relations:

1. x^{\phi(x)}=1 , for x\in X ,
2. xy=yx , if \{x, y\}\not\in E ,
3. (xy)^{\psi(\{x,y\})}=1 , if \{x, y\}\in E and \psi(\{x, y\})<\infty .

The function \phi represents the orders of elements of X , i.e., \phi(x)=

ord(x) for any x\in X . Hence Coxeter systems are the reflection systems
with \phi(x)=2 for all x\in X . Note that a generator x\in X with ord(x)\neq 2

either commutes with y , or has no relations with y , i.e., for any y\in X with
x\neq y , we have (xy)^{k}\neq 1 for all k . In this paper, such x is said to have
trivial relations with y , and denoted by (xy)^{\infty}=1 .

A reflection system (G, X) is visualized graphically by its “ Coxeter
diagram” Figure 1 indicates that the group G is generated by X=\{s, t, u\}

with fundamental relations s^{2}=t^{2}=u^{5}=1 , ( st )^{3}=1 , and su=us , i.e.,
\phi(s)=\phi(t)=2 , \phi(u)=5 , \psi(s, t)=3 , \psi(s, u)=2 , and \psi(t, u)=\infty .

Since X generates G , any element of G is written in the form
x_{1}^{n_{1}}x_{2}^{n_{2}}\cdots x_{m}^{n_{m}} , where x_{i}\in X and n_{i}\in Z . However, since each x\in X
has the finite order \phi(x) in G , we may assume that all n_{i} are positive in-
tegers. Among such expressions, a reduced expression of g is defined to be
one with \sum_{i=1}^{m}n_{i} minimum. In this case, \sum_{i=1}^{m}n_{i} is called the length of g ,

3 \infty

O2 o_{2} o_{5}

s t u

Fig. 1. A Coxeter diagram



490 H. Morita

and denoted by \ell(g) . On the other hand, an expression with the minimum
m is called an \ell_{1} -reduced expression of g , and the integer m is called the
\ell_{1} -length, denoted by \ell_{1}(g) . A reduced expression which is also \ell_{1} reduced
is called a strongly reduced expression.

For example, let (G, X) be a reflection system which is defined by the

Coxeter diagram in Figure 1. An expression g=stu^{2}su is a reduced ex-
pression of length six, but not \ell_{1} -reduced. On the other hand, g=st^{3}su^{8}

is an \ell_{1} -reduced expression of \ell_{1} -length four of the same element g , but not

reduced. An expression g=stsu^{3} is a strongly reduced.
Let g be an element of G with a strongly reduced expression x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} .

Asubexpression of x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} is an expression of the form x_{1}^{k_{1}}\cdot\cdot x_{m}^{k_{m}} , where
0 \leq k_{i}\leq n_{i} for each i=1,2 , \ldots , m . If a subexpression x_{1}^{k_{1}}\cdot\cdot x_{m}^{k_{m}} is
consecutive, i.e., k_{i}\neq 0 for each i such that \min\{j|k_{j}\neq 0\}\leq i\leq\max\{j|

k_{j}\neq 0\} , then it is called a factor of x_{1}^{n_{1}} , . .x_{m}^{n_{m}} . Any factor of a (strongly)

reduced expression is again (strongly) reduced.

Remark 4 In the original definition by Dyer [D], the target of \phi is \{n\in

Z|n\geq 2\}\cup\{\infty\} , i.e., the orders \phi(x) of generators x\in X in G are not
necessarily finite. Hence a reduced expression of g\in G has to be defined
as x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} with \sum_{i=1}^{m}|n_{i}| minimum. However, no change is required for
the definition of \ell_{1} -length if we suppose that each x\in X is of finite order.

The following lemma is a consequence of [D , Lemma (2.9)] and its proof.

Lemma 5 Any expression of an element of G can be transformed into an
\ell_{1} -reduced expression only by using the commutativity relations of G .

In the preceding example, an expression g=stu^{2}su\in G , is transformed
into an \ell_{1} -reduced expression stu^{2}s by using the relation su=us .

Lemma 6 Let h and g be elements of G. Suppose that ord(h)=2 . Then
we have

\ell(g)-\ell(h)\leq\ell(gh)\leq\ell(g)+\ell(h) .

Proof. It is clear that \ell(gh)\leq\ell(g)+\ell(h) . On the other hand, we have
\ell(g)=\ell(ghh^{-1})\leq\ell(gh)+\ell(h^{-1})=\ell(gh)+\ell(h) . Hence \ell(g)-\ell(h)\leq\ell(gh) .

\square

If (G, X) is a reflection system, then elements of the set T =
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\bigcup_{g\in G}gXg-1 are called reflflections of (G, X) . Let

M_{(G,X)}= \{\sum_{t\in T}a_{t}t|a_{t}\in Z/ord(t)Z , a_{t}=0 for almost a1H t\}

The group G acts on M_{(G,X)} as follows:

g ( \sum_{t\in T}a_{t}l)=\sum_{t\in T}a_{t}(gt)

Definition 7 A map N : G -arrow M_{(G,X)} is called a reflflection cocycle if N
satisfies the following two conditions:

1. N(gh)=h^{-1} N(g)+N(h) for g , h\in G ,
2. N(x)=1x for x\in X .

We recall the following result which was proved by Dyer [D , Porposition
2.10].

Proposition 8 For a pair (G, X) of a group G and its system of genera-
tors X. (G, X) is a reflflection system if and only if (G, X) has the reflflection
cocycle.

Let (G, X) be a reflection system. For any element g\in G and a reflec-
tion t\in T , we define mu1t_{t}(g)\in Z/mZ by N(g)= \sum_{t\in T}mu1t_{t}(g)t . The
proof of the following lemma is similar to [D , Lemma 3.].

Lemma 9 For g\in G , we have
1. \ell_{1}(g)=\#\{t\in T|mu1t_{t}(g)\neq 0\} ,
2. \ell(g)=\sum_{t\in T}mu1t_{t}(g) .

For integers a\in Z and m\in Z_{>0} , the integer |a|_{m} is defined by |a|_{m}\equiv a

mod mZ and 0\leq|a|_{m}<m .

Corollary 10 Let g=x_{1}^{n_{1}} \cdot x_{m}^{n_{m}} be an \ell_{1} -reduced expression of g\in G .
Then

|n_{1}|_{ord(x_{1})} |n_{m}|_{ord(x_{m})}

g=x_{1} . x_{m}

is a strongly reduced expression of g .

Let g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}}\in G be a strongly reduced expression. Define
t_{i}=x_{m}^{-n_{m}} , . . x_{i+1}^{-n_{i+1}} x_{i} (i=1, \ldots , m) and T(g)=\{t_{1}, . . , t_{m}\} . By a
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simple observation we see that a reflection t belongs to T(g) if and only if
mu1t_{t}(g)\neq 0 , i.e . ,

T(g)=\{t\in T|mu1t_{t}(g)\neq 0\} .

Proposition 11 Let (G, X) be a reflflection system and T be the set of
reflflections. For a reflflection t\in T with ord(t)=2 and g\in G , we have

\ell(gt^{-1})<\ell(g)\Leftrightarrow t\in T(g) .

Proof. If t\in T(g) , then it is obvious that \ell(gt^{-1})<\ell(g) . Conversely,
suppose that mu1t_{t}(g)=0 . If we set g’=gt^{-1}=gt , then we have
mu1t_{t}(gt)=mu1t_{t}(g)+1\neq 0[D, (2.5)] . Thus

\ell(g)=\ell(g’t^{-1})<\ell(g’)=\ell(gt^{-1}) ,

by the ((only if” part of this proposition. \square

4. Word problem

In this section, we consider another characterization of reduced ex-
pressions of an element of a reflection system. Let (G, X) be a reflection
system and F the free group generated by X Then the canonical surjection
\pi : F -arrow G is a surjective map

\pi’ : F^{+}arrow G

from the monoid F^{+} on the set X since each generator x\in X has a finite
order in G . We consider the following three operations on F^{+} . called M-
operations, corresponding to the defining relations of G (i.e., M-0perations
have no effect on the image of \pi’ of any word in F^{+} ):

(M1) For any x\in X , delete the factor x^{ord(x)} in a word of F^{+}

(M2) For x , y\in X with \psi(x, y)\neq\infty , replace the factor \sim xyx
. in a

\psi(x,y) letters

word by
\sim yxy\cdot

.

\psi(x,y) letters

(M2)’ If x\in X satisfies \phi(x)\neq 2 , then, for any y\in X with \{x, y\}\not\in E ,
replace a factor xy in a word by yx .
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The following proposition is an analogue of the Tits word theorem for
Coxeter groups [T] [Br, p. 49]. (The length of an element of F^{+} is naturally
defined.)

Proposition 12 Let (G, X) be a reflflection system and g an element of
G. Then an expression g=x_{1}^{n_{1}}’\cdot\cdot x_{m}^{n_{m}} is reduced if and only if the word
x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}}\in F^{+} can not be shortened its length by any finite sequence of
M-Operations.

Proof. It suffices to show that any expression can be made into reduced
expression by a finite sequence of M-0perations. Note first that, by Lemma
5, any expression of g achieves \ell_{1} -reducedness only by using commutativity
relations which are M-0perations of type (M2) and (M2)’- By Lemma 10,
any \ell_{1} -reduced expression of g can be made into a reduced expression only
by using M-0perations of type (M2) \square

Corollary 13 If the order of x\in X is two, then we have \ell(gx)=\ell(g)\pm 1

for any g\in G .

Proof. In view of Lemma 6, it is sufficient to show that the case \ell(gx)=

\ell(g) never occurs. Let g=x_{1}^{n_{1}} \cdot x_{m}^{n_{m}} be a reduced expression of g . If x\in X

satisfies the condition \ell(gx)=\ell(g) , then the expression gx=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}}x

is not reduced. Hence, by Proposition 12, the length of x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}}x\in F^{+}

should be shortened at least two. This contradicts \ell(gx)=\ell(g) . \square

5. Reflection orders

Let (G, X) be a reflection system.

Definition 14 For each element g\in G , define S(g)=\{t\in T(g)|
\ell(gt^{-1})=\ell(g)-1\} . For two elements g , h\in G , we write garrow h if there exists
t\in S(g) such that h=gt^{-1} . We define g>h if there exist \xi_{1} , \ldots , \xi_{r-1}\in G

such that g=\xi_{0} – \xi_{1} -arrow -\xi_{r-1} -arrow\xi_{r}=h .

Then\leq is a partial order on the set G , called the reflflection order on
G . If (G, X) is a Coxeter system, then the reflection order coincides with
the Bruhat order [Hil] [Hum]. For elements g , h\in G such that h<g , it is
obvious from definition that the closed interval [h, g]=\{\xi\in G|h\leq\xi\leq g\}

is a finite graded poset.

Example 15 Let (G, X) be the reflection system defined by the Coxeter
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stu^{2}tu

Fig. 2. The Hasse diagram of the closed interval [h, g]

diagram in Figure 1. Let g=stu^{2}tu and h=stu . Then h<g . In fact, we
have the following chain from g to h :

g=stu^{2}tuarrow su^{2}tu -arrow sutu-arrow stu=h .

The reflections in the first, second, and third steps are given by (u^{2}tu)^{-1}t ,
(tu) u , and (tu)^{-1} u respectively. The Hasse diagram of the interval
[h, g] is shown in Figure 2.

In the rest of this section, we will show a proposition corresponding to
the subword property of Coxeter groups [Hum, p. 120]. The following two
lemmas are needed to prove the proposition.

Lemma 16 Let g , h\in G and g\geq h . If the order of x\in X equals two,
then we have either g\geq hx or gx\geq hx . ( c.f. , [Hum, Proposition 5.9])

Proof. It is enough to show the lemma in the case that garrow h . Let t be a
reflection such that h=gt^{-1} with t\in S(g) . If t=x , then there is nothing
to be proved. Hence we may assume that t\neq x .

1. First we consider the case that \ell(hx)=\ell(h)-1 . In this case we have
g -arrow h – hx . Hence hx<g .

2. If \ell(hx)=\ell(h)+1 , then it is enough to show that \ell(gx)=\ell(hx)+1 ,

since we have gx=htx =hxt’ , where t’=x^{-1}tx . Suppose that
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ord(t)=ord(t’)=2 and x_{1}^{k_{1}}\cdot\cdot x_{m}^{k_{m}} is a reduced expression of h . If
\ell(gx)<\ell(hx) , then we have t’\in T(hx) and

gx=\{
x_{1}^{k_{1}} . . x_{m}^{k_{m}} , or
x_{1}^{k_{1}} . . x_{i}^{k_{i}-1} . . x_{m}^{k_{m}}x ,

by Proposition 11. The first case contradicts the assumption t\neq x .

The second case contradicts the condition \ell(g)>\ell(h) .
Next we consider the case ord(t)\neq 2 . If g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} is a strongly
reduced expression of g , then a reduced expression of h is of the form
h=x_{1}^{n_{1}} \cdot x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} \cdot x_{m}^{n_{m}} for some unique i with ord(x_{i})\neq 2 .

Since \ell(hx)=\ell(h)+1 , the expression

hx=x_{1}^{n_{1}} . . x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} . . x_{m}^{n_{m}}x

is reduced. Since the order of x_{i} is not two, the expression

gx=x_{1}^{n_{1}} . x_{i-1}^{n_{i-1}}x_{i}^{n_{i}}x_{i+1}^{n_{i+1}}\cdots x_{m}^{n_{m}}x

is also reduced. Otherwise, by Proposition 12, the above expression of
gx can be shortened by any finite sequence of JI-0perations. This con-
tradicts the reducedness of the expression hx=x_{1}^{n_{1}}

\cdot x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1\square }^{n_{i+1}}

. x_{m}^{n_{m}}x . Thus we have hx – gx .

Lemma 17 Let g , h\in G and g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} be reduced. Suppose that h

can be obtained as a subexpression x_{1}^{k_{1}} \cdot x_{m}^{k_{m}} of the reduced expression of
g with n_{m}=k_{m} and ord(x_{m})\neq 2 . If

h’=x_{1}^{k_{1}} . . x_{m}^{k_{m}-1}\leq g’=x_{1}^{n_{1}} . . x_{m}^{n_{m}-1} ,

then we have h=h’x_{m}\leq g=gx .

Proof. It is sufficient to construct a maximal chain in the closed interval
[h’, g]’

g’=\xi_{0}arrow\xi_{1}arrow . . arrow\xi_{r}=h’ .

with the condition that \xi_{i}x_{m} -arrow\xi_{i} for all i . Let us argue by an induction
on r . It is enough to construct an element \xi\in G covered by g’ such that
\xi x_{m} -arrow\xi . Suppose that any element \xi covered by g’ satisfies \ell(\xi x_{m})<

\ell(\xi) , i.e. , if \xi=x_{1}^{n_{1}} . . x_{i-1}^{n_{?-1}}.x_{i}^{n_{i}-1}x_{i+1}^{n_{l+1}} \cdot x_{m}^{n_{m}-1}(i=1, \ldots m-1) , then
\ell(\xi x_{m})<\ell(\xi) . If x_{m} commutes with all x_{i}(i=1, \ldots m-1) , then we have
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\ell(\xi x_{m})=\ell(\xi)+1 . Hence we may assume that there exists a number i

(i=1,2, . . m-1)(x_{i}x_{m})^{\infty}=1 for some x_{i}(i=1,2_{\backslash } . m-1) . Let \alpha be
the maximum one among all such i ’s. Then x_{m} commutes with x_{j} for any
j>\alpha . From the assumption \ell(\xi x_{m})<\ell(\xi) , we have

\sum_{\alpha<j\leq m-1,x_{j}=x_{m}}n_{j}=ord(x_{j})-1
.

This contradicts the fact that the expression g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} is reduced.
\square

Proposition 18 Let (G, X) be a reflection system and g an element of
G. Fix a reduced expression g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} . Then h\leq g if and only if h

can be obtained as a subexpression of the reduced expression of g .

Proof. Suppose h\leq g . It is clear from the definition of the reflection order
that h can be obtained as a subexpression of the reduced expression of g .
Conversely, suppose that h can be obtained as a subexpression x_{1}^{k_{1}}\cdot\cdot x_{m}^{k_{m}} .
We prove h\leq g by the induction on \ell(g) . First suppose that k_{m}<n_{m} .
Then we have

h=x_{1}^{k_{1}} . . x_{m}^{k_{m}}\leq x_{1}^{n_{1}} . . x_{m}^{n_{m}-1}arrow g ,

by the induction hypothesis. Next assume that k_{m}=n_{m} . In this case, we
have

h’=x_{1}^{k_{1}} , . . x_{m}^{k_{m}-1}\leq g’=x_{1}^{n_{1}}\cdots x_{m}^{n_{m}-1}

If ord(x_{m})=2 , then it follows from Lemma 16 that either h=h’x_{m}\leq

x_{1}^{n_{1}} \cdot x_{m}^{n_{m}-1} or h=h’x_{m}\leq x_{1}^{n_{1}}\cdots x_{m}^{n_{m}} . If ord(x_{m})\neq 2 , it is also deduced
that h\leq g from Lemma 17. \square

6. CL-shellability

In this section we will construct a labeling of the maximal chains of
a closed interval [h, g] of a reflection system (G, X) and show the CL-
shellability of [h, g] .

Let g , h be elements of G such that g>h and \ell(g)-\ell(h)=r . Since
the closed interval [h, g] is a finite graded poset of length r , each maximal
chain m has length r , say

m : g=\xi_{0}arrow\xi_{1} arrow\xi_{r-1}arrow\xi_{r}=h .
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Fix a strongly reduced expression

g=x_{1}^{n_{1}} , . . x_{m}^{n_{m}}

of g . First we will construct a label \lambda(m)=(\lambda_{1}(m), . . ’ \lambda_{r}(m)) of m. Since
\xi_{1} is covered by g , it can be expressed in the form

x_{1}^{n_{1}} , . . x_{z-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} . . x_{m}^{n_{m}} ,

and the deleted letter is uniquely determined since g=x_{1}^{n_{1}} \cdot\cdot x_{m}^{n_{m}} is l_{1} -

reduced, and we define

\lambda_{1}(m)=n_{1}+ \cdot \iota+n_{i-1}+1 ,

i.e., we understand that each n_{j} letters x_{j} in the strongly reduced expression
of g carries positive integers

n_{1}+ , +n_{j-1}+1 , . , n_{1}+\cdot\cdot+n_{j-1}+n_{j}

respectively, and the deleted x_{i} is the one with the minimum number among
them.

Example 19 In Example 15, consider a strongly reduced expression Lq =
stu^{2} . We understand that the letter s has a label 1, t has 2, the first u has
3 and the last u has 4. There exist three elements in G that are covered
by g , namely h_{1}=tu^{2} , h_{2}=su^{2} , and h_{3}=stu . Then the cover relations
garrow h_{i}(i=1,2,3) have the labels 1, 2, and 3, respectively.

The second component \lambda_{2}(m) of \lambda(m) is defined in a similar way, but
we have to note that the reduced expression

\xi_{1}=x_{1}^{n_{1}} . . x_{i-1}^{n_{z-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} . x_{m}^{n_{m}}

is not necessarily \ell_{1} -reduced. Hence, for some harrow\xi_{1} , uniqueness of j such
that h=x_{1}^{n_{1}} \cdot x_{i}^{n_{i}-1} \cdot x_{j}^{n_{j}-1}’\cdot\cdot x_{m}^{n_{m}} is violated. However, by Lemma 4, if
x_{1}^{n_{1}}\cdots x_{i}^{n_{i}-1}\cdot\cdot x_{m}^{n_{m}} is not \ell_{1} -reduced, then it is possible to make it strongly
reduced only by using the commutativity relations.

Now we can determine the second component \lambda_{2}(m) . There is no prob-
lem if

x_{1}^{n_{1}} , . . x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} . . x_{m}^{n_{m}}

is strongly reduced. If not, then make it strongly reduced by Lemma 4, say
x_{j_{1}}^{p1}\cdot\cdot x_{j_{n}}^{p_{n}} ( \sum p_{i}=(\sum n_{i}) - 1, n\leq m) . A reduced expression of \xi_{2} is of
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the form x_{j_{1}}^{p1} \cdot x_{j_{k}}^{p_{k}-1}\cdot\cdot x_{j_{n}}^{p_{n}} for unique k , and \lambda_{2}(m) is defined to be the
minimum number which is possessed by x_{j_{k}} in x_{j_{1}}^{p_{1}}

, . . x_{j_{n}^{1}}^{p_{n}}

Example 20 Let (G, X) be a reflection system in Example 15, and g ,
h elements of G given by stu^{2}tu , stu , respectively. Then the label of the
maximal chain stu^{2}tu -arrow stutu – stu^{2}arrow stu is

g=stu^{2\underline{3}5}tustutuarrow stu^{2}\underline{4}stu=h .

Now we are in a position to prove that the labeling \lambda defined above is
CL-shellable. First we prove the uniqueness of a maximal chain with an
increasing label.

Proposition 21 For each closed interval [h, g] , if there exists a maxi-
mal chain m whose label \lambda(m)=(\lambda_{1}(m), . , \lambda_{r}(m)) is increasing, i.e. ,
\lambda_{1}(m)\leq \leq\lambda_{r}(m) , then it is uniquely determined.

Proof. Fix a strongly reduced expression g=x_{1}^{n_{1}}\cdot\cdot x_{m}^{n_{m}} , and let \lambda be
the labeling of the closed interval [h, g] defined by this strongly reduced
expression. Suppose that two maximal chains

m : g=\xi_{0}arrow\xi_{1}arrow arrow\xi_{r}=h

m’ : g=\eta_{0}arrow\eta_{1}arrow . . arrow\eta_{r}=h ,

both have increasing labels

\lambda(m)=(i_{1}, \ldots, i_{r}) ; i_{1}< <i_{r} ,
\lambda(m’)=(j_{1}, \ldots, j_{r}) ; j_{1}< . . <j_{r} .

Let h=x_{1}^{n_{1}-p_{1}} \cdot x_{\alpha}^{n_{\alpha}-p_{\alpha}}x_{\alpha+1}n_{\alpha+1} , . . x_{m}^{n_{m}} be the reduced expression obtained
by going down from g to h along with the maximal chain m. Also h=
x_{1}^{n_{1}-q1}\cdot\cdot x_{\beta}^{n_{\beta}-q_{\beta}}x_{\beta+1}^{n_{\beta+1}} \cdot x_{m}^{n_{m}} be the one with respect to the maximal chain
m’ .

Suppose that i_{r}<j_{r} . It follows from the definition of the labeling
that \alpha\leq\beta . First we consider the case \alpha<\beta . In this case, if we let
t=x_{m}^{-n_{\tau n}}\cdot\cdot x_{\beta+1}^{-n_{\beta+1}}

x_{\beta} , then we have

\eta_{r-1}=ht

=x_{1}^{n_{1}-q1} . x_{\beta}x_{\beta+1}n_{\beta}-q_{\beta}n_{\beta+1} . . x_{m}^{n_{m}}t

=x_{1}^{n_{1}-p_{1}} , . . x_{\alpha}^{n_{\alpha}-p_{\alpha}}x_{\alpha+1}^{n_{\alpha+1}} . . x_{m}^{n_{m}}t
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=x_{1}^{n_{1}-p1} . x_{\alpha\alpha+1}^{n_{\alpha}-p_{\alpha_{X}}^{n_{\alpha+1}}} . x_{\beta-1}^{n_{\beta-1}}x_{\beta}^{n_{\beta}+1}x_{\beta+1}^{n_{\beta+1}} . x_{m}^{n_{m}} .

If the order \phi(x_{\beta}) of x_{\beta} equals two, then we have \ell(\eta_{r-1})<\ell(h) , which is
a contradiction. If ord(x_{\beta})>2 , then the above expression of \eta_{r-1} cannot
be rewritten as a subexpression of g=x_{1}^{n_{1}}\cdot\cdot x_{\beta}^{n_{\beta}} \cdot x_{m}^{n_{m}} , since x_{\beta} has the
trivial relations with y\in X , y\neq x_{\beta} . This contradicts Proposition 18.

Next we consider the case where \alpha=\beta , which we call \gamma . Note that the
order of x_{\gamma} can not be two in this case. Then we have

h=x_{1}^{n_{1}-p_{1}}\cdots x_{\gamma^{\gamma}}^{n-p_{\gamma_{X_{\gamma+1}}}^{n_{\gamma+1}}} . x_{m}^{n_{m}}

=x_{1}^{n_{1}-q1} . . x_{\gamma^{\gamma}\gamma+1}^{n-q_{\gamma_{X}}^{n_{\gamma+1}}} . x_{m}^{n_{m}} .

It follows from the assumption i_{r}<j_{r} that p_{\gamma}<q_{\gamma} . If we set d=q_{\gamma}-p_{\gamma} ,
then we have

x_{1}^{n_{1}-p1} . x_{\gamma-1}^{n_{\gamma-1}}x_{\gamma}^{d}=x_{1}^{n_{1}-q_{1}} . x_{\gamma-1}^{n_{\gamma-1}} ,

both of which are reduced. By the assumption i_{r}<j_{r} , there exists a
number k , 1\leq k\leq\gamma-1 , such that (x_{k}x_{\gamma})^{\infty}=1 , and x_{l}\neq x_{\gamma} for all
k+1\leq l\leq\gamma-1 . If not, by the definition of the reflection order, we have
a descent in the label (i_{1}, \ldots, i_{r}) of m. Thus we cannot remove the letter
x_{\gamma} from the above equation. Hence we have a non-trivial relation involving
the letter x_{\gamma} . This is a contradiction to the fact that x_{\gamma} has trivial relations
with x\in X , x\neq x_{\gamma} . Now we have i_{r}\geq j_{r} . By symmetry we have i_{r}\leq j_{r} ,
and hence we obtain i_{r}=j_{r} . \square

Proposition 22 Let g , h be elements of G such that h<g and \ell(g) -

\ell(h)=2 . Fix a reduced expression g=x_{1}^{n_{1}} \cdot x_{m}^{n_{m}} . Suppose that h has a

reduced expression

h=x_{1}^{n_{1}}\cdots x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} . x_{j-1}x_{j}x_{j+1}n_{j-1}n_{j}-1n_{j+1} . x_{m}^{n_{m}}

for some i\neq j . Then there exists in the closed interval [h, g] a unique
maximal chain garrow\xiarrow h with increasing label a<b . Also there exists a

maximal chain g -arrow\eta - h with decreasing label p>q . Moreover we have
a<p .

Proof. Suppose that h=x_{1}^{n_{1}}\cdot\cdot x_{i}^{n_{i}-1}\cdot\cdot x_{j}^{n_{j}-1} \cdot x_{m}^{n_{m}} is a reduced ex-
pression with j minimal among all such expressions. The uniqueness in the
first statement is proved from Proposition 21. To prove the existence of
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such a maximal chain, it is enough to show that

h’=x_{1}^{n_{1}} . x_{i-1}^{n_{i-1}}x_{i}^{n_{t}-1}x_{i+1}^{n_{i+1}} , . . x_{j}^{n_{J}} . x_{m}^{n_{m}}

is reduced.
1. If ord(x_{j})\neq 2 , then it is clear from the reducedness of the expression

x_{1}^{n_{1}} . . x_{i-1}^{n_{i-1}}x_{i}^{n_{i}-1}x_{i+1}^{n_{i+1}} , . . x_{j}^{n_{j}} . x_{m}^{n_{m}} ,

and the assumption.
2. Suppose that ord (x_{j})=2 .

(a) If n_{i}-1\neq 0 , then it follows that the order ofx_{i} is not equal to two.
Hence x_{1}^{n_{1}} \cdot x_{i}^{n_{i}-1} \cdot x_{j}^{n_{j}} \cdot x_{m}^{n_{m}} is reduced, since x_{1}^{n_{1}}\cdot\cdot x_{i}^{n_{i}}

x_{j}^{n_{j}}\cdots x_{m}^{n_{m}} is reduced.
(b) Suppose that n_{i}-1=0 . Let t=x_{m}^{-n_{m}} \cdot x_{j+1}^{-n_{j+1}} x_{j} . Note that

ord(i) =ord(x_{j})=2 . If \ell(ht)<\ell(h) , then

ht=ht^{-1}=\{

x_{1}^{n_{1}} . . \hat{x}_{i}\cdots\hat{x}_{j}\cdots x_{p^{P}}^{n-1} . . x_{m}^{n_{m}} (A)

x_{1}^{n_{1}} . . \hat{x_{/i}}\cdots x_{p^{p}}^{n-1}\cdots\hat{x}_{j}\cdots x_{m}^{n_{m}} (B)

x_{1}^{n_{1}}\cdot\cdot x_{p^{p}}^{n-1}’\cdot\cdot\hat{x}_{i}\cdots\hat{x}_{j}\cdots x_{m}^{n_{m}} (A),

by Proposition 11.
In the case (A), let t’ be a reflection

t’=x_{m}^{-n_{m}} . x_{p+1}^{-n_{p+1}} x_{p} .

Then we have ht=ht^{-1}=ht^{\prime-1} and ord(t’)=2 . Hence we have
g=g1=gtt’=x_{1}^{n_{1}}\cdot\cdot x_{i}^{n_{i}-1} \cdot x_{p^{p}}^{n-1}\cdot\cdot x_{m}^{n_{m}} . This contradicts
the assumption.
In the case (B), let t’ denote the reflection x_{m}^{n_{m}}\cdot\cdot\hat{x}_{j}\cdots x^{n_{p+1}}\cdot x_{p}p+1 .
Then we have ht=ht’ , and ord(t’)=2 . Hence

h=ht’ t
=x_{1}^{n_{1}} . x_{i}^{n_{i}-1} . \hat{x}_{p}\cdots x_{j}\cdots x_{m}^{n_{m}} .

This contradicts the minimality of j .
The case (C) is similar.

For the second statement, the existence of such chain is similar. In this case,
we choose a reduced expression h=x_{1}^{n_{1}}\cdot\cdot x_{p^{p}}^{n-1}\cdot\cdot x_{q}^{n_{q}-1}\cdot\cdot x_{m}^{n_{m}} with p

maximum. Hence we have a<p . \square
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Remark 23 Note that the uniqueness does not holds for a maximal chain
whose label is decreasing. See the interval [stu_{\backslash }^{2}stu^{2}tu] in Example 15.

Now we are in a position to prove our main theorem.

Theorem 24 Let (G, X) be a reflflection system. Let the symbol \leq denote
the reflflection order of (G, X) . Then each closed interval [h, g](h\leq g) is
CL-shellable. More precisely, if \lambda is the labeling of [h, g] defined by a fixed
strongly reduced expression of g , then \lambda is a CL-labeling.

Proof It is clear from the definition that the labeling \lambda satisfies condition
(LI). It suffices to verify the condition (L2). Let ([u, v], c) be a rooted
interval in the closed interval [h, g] , where c : g=\xi_{0} -arrow\xi_{1} –. . -arrow\xi_{r}=v

is a saturated chain from g to v . Since the number attached to the letter
deleted is uniquely determined in each step of the saturated chain c , the
set S of all the numbers possessed by the letters appearing in the reduced
expression of v obtained by going down from g along with the chain c is
uniquely determined for c . Hence the induced labeling on maximal chains of
[u, v] as a rooted interval of [h, g] is equivalent to the labeling constructed by
starting directly from the reduced expression of g , i.e., an order-preserving
bijection

\varphi : Sarrow\{1,2, \ldots, \ell(g)-d\} ,

(d=\ell(g)-\ell(v)) induces a bijection

\{\lambda’(m)|m\in \mathcal{M}(([h, g], c))\}arrow\{\lambda(m)|m\in \mathcal{M}([h, g])\} ,

where (\lambda_{1}’(m), \ldots , \lambda_{t}’(m)) – (\varphi(\lambda_{1}’(m)), . . , \varphi(\lambda_{t}’(m))) . Therefore it is suf-
ficient to confirm the condition (L2) for the cfull’ interval [h, g] .

The uniqueness of the maximal chain with increasing label is proved
in Proposition 21. It remains to show that the maximal chain with the
minimum label in the lexicographic order has an increasing label. Let m_{0}=

(\xi_{i})_{i=0}^{r} be the maximal chain of [h, g] such that the label \lambda(m_{0}) is minimum
in the set \{\lambda(m)|m\in \mathcal{M}([h, g])\} . Suppose that there is a descent \lambda_{i}(m)>

\lambda_{i+1}(m) for some i . Remark that if we express \xi_{i+1} as a subexpression
x_{1}^{k_{1}} , . .x_{i}^{n_{i}-1}\cdot\cdot x_{j}^{n_{j}-1}\cdots x_{m}^{k_{m}} for a reduced expression x_{1}^{k_{1}}\cdot\cdot x_{m}^{k_{m}} of \xi_{i-1} ,
then we always have i\neq j , since there is no maximal chain with decreasing
label in the interval [\xi_{i+1}, \xi_{i-1}] .

Let \xi_{i-1} -arrow\xi_{i} - \xi_{i+1} be a maximal chain with decreasing label. By
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Proposition 22, there exists a unique maximal chain \xi_{i-1} -arrow\zetaarrow\xi_{i+1} with
increasing label a<b satisfying the condition a<\lambda_{i}(m) . Thus following

maximal chain of [h, g]

g=\xi 0arrow . . arrow\xi_{i-1}arrow\zetaarrow\xi_{i+1}arrow . . arrow\xi_{r}=h

has a labeling strictly smaller than \lambda(m_{0}) . This contradicts the choice of
\square

m_{0} .

Example 25 The CL-labeling of maximal chains of the poset in Figure 2
is indicated below:

stu^{2}tu\{\begin{array}{l}arrow su^{2}tuarrow 2arrow stutu3arrow stu^{3}arrow 53arrow stu^{2}t6\{\end{array}

3 suluarrow^{4}stu

\{\begin{array}{l}arrowarrowarrow\end{array}

stu^{2_{arrow Stu}^{4}}

arrow stutarrow stu35

arrow slu^{2}arrow stu53 .

Our main theorem generalizes a restricted version of a result by Bj\"orner
and Wachs [BW1]. Their result says that the “ordinary quotient” defined
below is also CL-shellable. Let (W, S) be a Coxeter system and J a subset
of S . Then a subset W^{J} of W is defined by

W^{J} := {w\in W|\ell(ws)>\ell(w) for any s\in J },

and is called the ordinary quotient of W by J . Bj\"orner and Wachs showed
that each closed interval of W^{J} is CL-shellable. The subset W^{J} is also called
the minimal coset representatives which plays a fundamental role in the
theory of Coxeter systems. Later they extended their result to ‘generalized
quotients’ [BW2]. It would be interesting to consider an analogous setting
for reflection systems.
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