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Decay of solutions to the Cauchy problem
for the Klein-Gordon equation with
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Abstract. We derive a precise decay estimate of the solutions to the Cauchy problem
for the Klein-Gordon equation with a nonlinear dissipation:

u_{tt}-\triangle u+u+\rho(x, t,u_{t})=0 in R^{N}\cross[0, \infty) ,

u(x, 0)=u_{0}(x) and u_{t}(x, 0)=u_{1}(x) ,

where \rho(x, t, v) is a function like \rho=a(x)(1+t)^{\theta}|v|^{r}v , - 1<r , with a(x)\geq 0 supported
on \Omega_{R}=\{x\in R^{N}||x|\geq R\} for some R >0 .
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1. Introduction

In this paper we are concerned with a decay property of the solutions
to the Cauchy problem for the Klein-Gordon equation with a dissipative
term:

u_{tt}-\triangle u+u+\rho(x, t, u_{t})=0 in R^{N}\cross[0, \infty) , (1.1)

u(x, 0)=u_{0}(x) and u_{t}(x, 0)=u_{1}(x) , (1.1)

where \rho(x, t, v) is a function like \rho=a(x)(1+t)^{\theta}|v|^{r}v , -1<r , with a(x)\geq 0

supported on \Omega_{R}=\{x\in R^{N}||x|\geq R\} for some R>0 .
To explain our problem, let us consider a typical case \rho=a(x)|v|^{r}v .
When a(x)\geq\in 0>0 on R^{N} , we have proved in [7] that the solution

u(t)\in C^{1}([0, \infty);L^{2}(R^{N}))\cap C([0, \infty);H_{1}(R^{N})) with supp u_{0}\cup suppu_{1}\subset

B_{L}\equiv\{x\in R^{N}||x|\leq L\} , L>0 , satisfies the decay estimate

E(t) \equiv\frac{1}{2}\{||u_{t}(t)||^{2}+||\nabla u(t)||^{2}+||u(t)||^{2}\}
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\leq\{

C_{L}(E(0))(1+t)^{-(2-Nr)/r} if 0<r<2/N
C_{L}(E(0)) ( log (2+t))^{-2/r} if r=2/N.

(1.3)

Needless to say, if r=0 we have the usual exponential decay

E(t)\leq CE(0)e^{-\lambda t} . \lambda>0 , (1.4)

without the support condition on (u_{0}, u_{1}) .
The estimate (1.3) seems to be sharp, because T. Motai [3] proved

that if r>2/N small amplitude solutions do not decay to 0 as t – \infty .
More precisely, it is proved in [3] that if we assume r>N/2 , (u_{0}, u_{1})\in

H_{2}\cap W^{1,s+1}\cross H_{1}\cap W^{1,s}\cap L^{2(r+1)} with s>N/2 and |||u_{0}|||_{W^{1,s+1}}+|||u_{1}|||_{W^{1,s}}

is sufficiently small (but not 0), then E(t) does not converge to 0 as tarrow\infty .
For a generalization or closely related result see also K. Mochizuki and T.
Motai [4]. Here, we note that the critical exponent 2/N appears only for
the case of whole space or exterior domains. Indeed, for the case of bounded
domains we know, under the homogeneous Dirichlet boundary condition,

E(t)\leq C(E(0))(1+t)^{-2/r} if 0<r\leq 4/(N-2)^{+}

and further,

E(t)\leq C(||u_{0}||_{H_{2}}, ||u_{1}||_{H_{1}})(1+t)^{-2/r} if 4/(N-2)^{+}<r\leq 8/(N-4)^{+} ,

where we use a notation \alpha\equiv\max\{\alpha, 0\} . (See [5, 8].) For generalizations
in various directions of these results see [10] and the references cited there.
The restriction 0\leq r\leq 2/N in the case of whole space comes from the
reason that we must estimate ||u_{t}(t)|| by \int_{R^{N}}\rho(x, u_{t})u_{t}dx and for this we
must use an inequality like

||u_{t}(t)||\leq C_{L}(1+t)^{Nr/2(r+2)}||u_{t}(t)||_{L^{r+2}} , (1.4)

which is shown by the use of the property supp E(t)\subset B_{L+t} . We note that
the decay property depends in a delicate way on such a time-dependent
inequality.

Now, quite recently, Zuazua [16] has treated the linear case \rho(x, v)=

a(x)v with a(x) vanishing on a neighbourhood of the origine 0 and proved
the exponential decay of E(t) . That is, under the assumption a(x)\geq\in 0>0

on \Omega_{R} , R>0 , he has proved the estimate (1.4) for the solutions u(t) . In
fact, a semilinear equation having a term f(u) is treated in [16].
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The object of this paper is to combine the ideas in [7] and [16] to
derive precise decay estimates for the solutions of the problem (1.1)-(1.2)
with \rho(x, t, u_{t}) like \rho=a(x)(1+t)^{\theta}|u_{t}|^{r}u_{t} , - 1<r\leq 2/N , where a(x) is
supported on \Omega_{R} , R>0 , as in [16].

The decay properties of the solutions to the initial-boundary value prob-
lem of the wave equation in a bounded domain with a localized dissipation
have been investigated by E. Zuazua [15] and the present author [12, 13, 14]
in various situations. Our argument is necessarily related to those papers
and also to J. Lions [1], where the boundary control problem for the wave
equation is proposed and investigated in detail.

2. Statement of the result

We use only familiar function spaces and omit the definition of them.
Treatment of the nonlinear localized dissipation is delicate and we must

consider the so called H_{2}-solutions rather than usual energy finite solutions.
For this we assume:

Hyp. A. (u_{0}, u_{1})\in H_{2}\cross H_{1} and

supp u_{0}\cup suppu_{1}\subset\{x\in R^{N}||x|\leq L\}

for some L>0 .
We want to consider a class of \rho(x, t, v) including a(x)(1+|x|)^{\theta_{1}}(1+

t)^{\theta_{2}}|v|^{r}v , a(x)(1+|x|+t)^{\theta}|v|^{r}v etc. with -1<r , and make the following
assumptions on \rho .

Hyp. B \rho(x, t, v) is continuous on R^{N}\cross R^{+}\cross R , differentiable in (t, v) ,
v\neq 0 , and satisfies the conditions:

k_{0}a(x)(1+t)^{\theta}|v|^{r+2}\leq\rho(x, t, v)v\leq k_{1}a(x)(1+t)^{\theta}|v|^{r+2} (1)

for x\in B_{L+t}=\{x\in R^{N}||x|\leq L+t\} and t\in R^{+} if |v|\leq 1 ,
and

k_{0}a(x)(1+t)^{\theta}|v|^{p+2}\leq\rho(x, t, v)v\leq k_{1}a(x)(1+t)^{\theta}|v|^{p+2} (2)

for x\in B_{L+t} and t\in R^{+} if |v|\geq 1 , where k_{0} , k_{1} are positive constants
possibly depending on L , the exponents r and p satisfy

-1<r and - 1\leq p\leq 2/(N-2)^{+} .
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respectively, and a(x) is a nonnegative bounded function such that

a(x)\geq\xi i0>0 on \Omega_{R}=\{x\in R^{N}||x|\geq R\}

for some R>0 .
Further, \rho satisfies

|\rho_{t}|^{2}\leq k_{2}\rho_{v}\rho v for x\in B_{L+t} , t\in R^{+} and v\neq 0 (3)

for some positive constant k_{2} which may depend on L .
We could treat a little more general class of \rho . But, to make the essential

feature clear we restrict ourselves to the class of \rho as in Hyp. B.
For convenience to the readers we give some comments on the assump-

tions above. Roughly speaking, Hyp. B means that when x\in B_{L+t} , \rho(x, t, v)

behaves like a(x)(1+t)^{\theta}|v|^{r}v as |v|arrow 0 and like a(x)(1+t)^{\theta}|v|^{p}v as
|v|arrow\infty . Therefore, the restriction on r below, for example, r\leq 2/N

(in the case \theta=0 ) is made on the behaviour of \rho near v=0, while the
restriction on p is made on the growth order of \rho as |v|arrow\infty . Compared
with the case of bounded domains, the condition p\leq 2/(N-2)^{+} might
be considered stronger, but this as well as the condition on the initial data
(u_{0}, u_{1})\in H_{2}\cross H_{1} is required for the estimation of the term

\int_{t}^{t+T}\int_{B_{2R}}|\rho(x, t, u_{t})(x\nabla u)|dxds

(see (4.10), (5.3) and (6.6)), which is not necessary if a(x) is effective in
whole space. A further remark on the restriction on p will be given after
the proof of Proposition 1 in the Section 4. When r<0 we must require the
condition (u_{0}, u_{1})\in H_{2}\cross H_{1} even for the case-l \leq p\leq 0 and a(x)>\epsilon_{0}>0

in R^{N}

Our result reads as follows.

Theorem 1 Under the hypotheses A and B , the problem (1.1)-(1.2) ad-
mits a unique solution u(t) in the class

W^{2,\infty}([0, \infty);L^{2})\cap W^{1,\infty}([0, \infty);H_{1})\cap L^{\infty}([0, \infty);H_{2}) ,

with the finite propagation property supp u(t)\subset B_{L+t} , t\geq 0 , satisfying the
decay estimate below.
(1) The case: 0\leq r and 0\leq p\leq 2/(N-2)^{+}

(1)_{1} If \max\{-1, \frac{Nr-2}{2}\}<\theta<\min\{1, \frac{2(p+1)}{pN+2}\} , then, except for the case
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p=r=0,

E(t)\leq C_{1}(1+t)^{-2\eta} (2.1)

with

\eta=\min\{\frac{2+2\theta-Nr}{2r} , \frac{2(p+1)-(pN\theta^{+}+2\theta)}{(N-2)^{+}p}\} .

(1)_{2} If \theta=\frac{Nr-2}{2}<\min\{1,\frac{2p+2}{pN+2}\} , then

E(t)\leq C_{1}(\log(2+t))^{-2/r} (2.2)

(1)_{3} If \frac{Nr-2}{2}<\theta=\frac{2p+2}{pN+2}\leq 1 , then

E(t)\leq\{
C_{1}(\log(2+t))^{-4(p+1)/(N-2)^{+}p} if p\neq 0 and N\geq 3

(2.1)
C_{1}(1+t)^{-\alpha} if p=0 or N=2

for some \alpha>0 .
(1)_{4} If \theta=\frac{Nr-2}{2}=\frac{2p+2}{pN+2} , and p+r>0 , then

E(t)\leq C_{1}(\log(2+t))^{-2\overline{\eta}} (2.4)

with

\tilde{\eta}=\min\{\frac{1}{r} , \frac{2(p+1)}{(N-2)^{+}p}\} .

(1)_{5} If p=r=0 and |\theta|\leq 1 , then

E(t)\leq\{
C_{1} exp \{-\lambda t^{1-|\theta|}\} if |\theta|<1

C_{1}(1+t)^{-\alpha} if |\theta|=1

(2.5)

for some \lambda>0 , \alpha>0 .
(2) The case: -1<r<0 and 0 \leq p\leq\frac{2}{(N-2)^{+}} .
(2)_{1} If - 1<\theta<Nr/2 , then

E(t)\leq C_{1}(1+t)^{-2\eta} (2.6)

with

\eta=\min\{\frac{2r+Nr+2-2\theta}{-2r} , \frac{2p+2-2\theta}{(N-2)^{+}p}\} .
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(2)_{2} If \max\{-1, Nr/2\}<\theta<\min\{r+1+Nr/2, \frac{4(p+1)+pN^{2}r}{2(pN+2)}\} , then

E(t)\leq C_{1}(1+t)^{-2\eta} (2.7)

with

\eta=\min\{\frac{2r+Nr+2-2\theta}{-2r} , \frac{4(p+1)-2(pN+2)\theta+pN^{2}r}{2(N-2)^{+}p}\} .

(2)_{3} If \theta=r+1+\frac{Nr}{2}<\frac{4(p+1)+pN^{2}r}{2(pN+2)} , then

E(t)\leq C_{1}(\log(2+t))^{-2(r+1)/(-r)} . (2.8)

(2)_{4} If \theta=\frac{4(p+1)+pN^{2}r}{2(pN+2)}<r+1+\frac{Nr}{2} , then

E(t)\leq C_{1}(\log(2+t))^{-4(p+1)/(N-2)^{+}p} . (2.9)

(2)_{5} If \theta=r+1+\frac{Nr}{2}=\frac{4(p+1)+pN^{2}r}{2(pN+2)} , then

E(t)\leq C_{1}(\log(2+t))^{-2\tilde{\eta}} (2.10)

with

\tilde{\eta}=\min\{\frac{r+1}{-r} , \frac{2(p+1)}{(N-2)^{+}p}\} .

(3) The case: r\geq 0 and - 1\leq p<0 .
(3)_{1} If \frac{Nr-2}{2}<\theta<1 , then

E(t)\leq C_{1}(1+t)^{-2\eta} (2.11)

with

\eta=\min\{\frac{2-Nr+2\theta}{2r} , \frac{-2(1+\theta)}{(N-2)^{+}p}\} .

(3)_{2} If \theta=\frac{Nr-2}{2}<1 , then

E(t)\leq C_{1}(\log(2+t))^{-2/r} (2.12)

(4) The case: - 1<r<0 and - 1\leq p<0 .
(4)_{1} If -1 \leq\theta<r+1+\frac{Nr}{2} , then

E(t)\leq C_{1}(1+t)^{-2\eta} (2.13)
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with

\eta=\min\{\frac{2r+Nr+2-2\theta}{-2r} , \frac{2(1+\theta)}{-(N-2)^{+}p}\} .

(If \theta=-1 , \eta should be replaced by some \alpha>0 .)
(4)_{2} If -1< \theta=r+1+\frac{Nr}{2} , then

E(t)\leq C_{1}(\log(2+t))^{-2(r+1)/(-r)} . (2.14)

In the above C_{1} denotes various constants depending on ||u_{0}||_{H_{2}}+||u_{1}||_{H_{1}}

and L .

Let us restate our result for the most typical case \rho(x, v)=a(x)|v|^{r}v ,

-1<r , as a corollary.

Corollary 1 When \rho(x, u)=a(x)|v|^{r}v we have the estimate:

E(t)\leq\{
C_{1}(1+t)^{-2\eta} if 0<r<2/N or –2/(N+2)<r <0
C_{1}(\log(2+t))^{-2\overline{\eta}} if r=2/N or r=-2/(N+2)

where we take

\eta=\min\{\frac{2-Nr}{2r} , \frac{2(r+1)}{(N-2)^{+}r}\} if 0<r<2/N ,

\eta=\min\{\frac{Nr+2(r+1)}{-2r} , \frac{2}{-(N-2)^{+}r}\} if –2/(N+2)<r <0 ,

\tilde{\eta}=\frac{-1}{r} if r= \frac{2}{N}

and

\tilde{\eta}=\frac{r+1}{-2r} if r=-1/(N+2) .

The proof follows immediately from the cases (1)_{1} , (1)_{2} , (4)_{1} and (4)_{2}

in the Theorem by taking \theta=0 and p=r .
We note that when -1 <r<0 , our result is new even for the case

a(x)\geq\in 0>0 on R^{N} . For corresponding reslults to the initial-boundary
value problem with \rho=|v|^{r}v , -1<r<0 , see [9, 10] , where we get the
estimate with \eta=\min\{-(r+1)/r, -2/(N-2)^{+}r\} .
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3. Some lemmas

The following is well known and very useful in treating nonlinear terms.

Lemma 1 (GagliardO-Nirenberg) Let 1\leq r<p\leq\infty , 1\leq q\leq p and
k\leq m , integers. Then, we have the inequality

||u||_{W^{k,p}}\leq C||u||_{W^{m,q}}^{TJ}||u||_{r}^{1-\nu} for u\in W^{m,p}

with some C>0 and

\nu=(\frac{k}{N}+\frac{1}{r}-\frac{1}{p})(\frac{m}{N}+\frac{1}{r}-\frac{1}{q})^{-1}

provided that 0<l/\leq 1 (0<U<1 if p=\infty and mq=integer).

To derive precise decay rates we use:

Lemma 2 Let \phi(t) be a nonnegative continuous nonincreasing function
on [0, \infty) satisfying the inequality

\phi(t+T)\leq C\sum_{i=1}^{2}(1+t)^{\theta_{i}}(\phi(t)-\phi(t+T))^{\epsilon_{i}} for t\geq 0

with some T>0 , C>0,0<\in_{i}\leq 1 and \theta_{i}\leq\in_{i} . Then, \phi(t) has the
following decay property:
(1) If 0<\in_{i}\leq 1 with\in_{1}+\in_{2}<1 and \theta_{i}<\in_{i} , i=1,2 , t/ien

\phi(t)\leq C_{0}(1+t)^{-\gamma}

with

\gamma=\min_{i=1,2}\{(\epsilon_{i}-\theta_{i})/(1-\epsilon_{i})\} ,

where we consider as \frac{\epsilon_{i}-\theta_{i}}{1-\epsilon i_{i}}=\infty if\in_{i}=1 .
(2) If \theta_{1}=\in_{1}<1 and \theta_{2}<\in_{2}\leq 1 , then

\phi(t)\leq C_{0}(\log(2+t))^{-\in_{1}/(1-\epsilon_{1})} .

(3) If \Xi_{1}=\theta_{1}<1 and\in_{2}=\theta_{2}<1 , then

\phi(t)\leq C_{0}(\log(2+t))^{-\tilde{\gamma}}

with

\tilde{\gamma}=\min_{i=1,2}\{\epsilon_{i}/(1-\in_{i})\} .
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(4) If\in_{1}=\in_{2}=1 , then

\phi(t)\leq\{

C_{0} exp \{-\lambda t^{1-\theta}\} if \theta<1

C_{0}(1+t)^{-\alpha} if \theta=1

for some \lambda>0 , \alpha>0 , where we set \theta=\min\{\theta_{1}, \theta_{2}\} . In the above C_{0}

denotes constants depending on \phi(0) and other known constants.

For the proof of Lemma 2 see [14]. When\in_{1}=\in_{2} and \theta_{1}=\theta_{2} , more
detailed results are proved in [5] and [6]. Lemma 2 is easily generalized to
the difference inequality of the form

\phi(t+1)\leq C\sum_{i=1}^{m}(1+t)^{\theta_{i}}(\phi(t)-\phi(t+1))^{\in_{i}} .

For example, if 0<\in_{i}<1 and \theta_{i}<\in_{i} we obtain from this inequality that

\phi(t)\leq C_{0}(1+t)^{-\eta}

with \eta=\min_{1\leq i\leq m}\{(\in_{i}-\theta_{i})/(1-\in_{i})\} . We will also use such a generalization.
For the proof of Theorem we employ multiplyer methods. Here, we

list up the identities derived by several multiplyer techniques. We call, for
convenience, a solution in Theorem 1 an H_{2} solution

Lemma 3 Let u(t) be an H_{2} -solution of the problem (1.1)-(1.2). Then,
we have the identities:

\int_{t}^{t+T}\int_{R^{N}}\rho(x, s, u_{t}(s))u_{t}(s)dxds=E(t)-E(t+T)\equiv D(t)^{r+2} .

(3.1)

\int_{t}^{t+T}\int_{R_{N}}\varphi\{|\nabla u|^{2}+|u|^{2}\}dxds

= \int_{t}^{t+T}\int_{R^{N}}(\frac{1}{2}\triangle\varphi|u|^{2}+\varphi|u_{t}|^{2}) dxds

-(u_{t}(t), \varphi u(t))|_{t}^{t+T}-\int_{t}^{t+T}\int_{R^{N}}\rho(x, s, u_{t})\varphi udxds . (3.2)

for all \varphi\in L^{\infty}([0, \infty);H_{2,loc}) .

\frac{1}{2}\int_{t}^{t+T}\int_{B_{r}}div(q)\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}dxds
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+ \int_{t}^{t+T}\int_{B_{r}}\{\frac{\partial q_{k}}{\partial x_{j}}\frac{\partial u}{\partial x_{j}}\frac{\partial u}{\partial x_{k}}+\rho(x, s, u_{t})q\nabla u\}dxds

=- \int_{B_{r}}u_{t}q\nabla udx|_{t}^{t+T}+\int_{t}^{t+T}\int_{S_{r}}\{\frac{1}{2r}(q\cdot x)(|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2})

+ \frac{\partial u}{\partial r}(q\nabla u)\}d\Gamma ds (3.3)

for all C^{1} vector field q= (q_{1}, . , q_{N}) , where we set

B_{r}=\{x\in R^{N}||x|<r\} and S_{r}=\partial B_{r} , r>0 ,

and we denote by d\Gamma the surface element of S_{r} and by \frac{\partial}{\partial r} the outward
normal derivative at a point on S_{r} , respectively.

(3.1), (3.2) and (3.3) are derived by multiplying the equation (1.1) by
u_{t} , \varphi u and q \nabla u , respectively, and integrating by parts. For details see
Zuazua [16] or Lions [1]. (These papers consider these identities with t=0.)

4. Existence

In this section we shall derive some standard a priori estimates for an
(assumed) H_{2}-solution. The existence and uniqueness part in our Theorem
follows from these estimates by a rather standard argument (cf. Lions and
Strauss [2], Nakao [7].)

Proposition 1 Let u(t) be a [local in time) H_{2} -solution of the problem
(1.1)-(1.2). Then, under the Hypothes A , B, we have

E(t) \equiv\frac{1}{2}\{||u_{t}(t)||^{2}+||\nabla u(t)||^{2}+||u(t)||^{2}\}

\leq E(0)\equiv\frac{1}{2}\{||u||^{2}+||\nabla u_{0}||^{2}+||u_{0}||^{2}\}<\infty , (4.1)

||u_{tt}(t)||^{2}+||\nabla u_{t}(t)||^{2}\leq C_{1}<\infty (4.2)

and

||\triangle u(t)||^{2}\leq C_{1}(1+t)^{2\overline{\theta}^{+}} t\geq 0 (3.3)

where C_{1} denotes constants depending on L and ||u_{0}||_{H_{2}}+||u_{1}||_{H_{1}} and we
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set

\tilde{\theta}^{+}=\max\{\theta^{+} . ( \theta-\frac{Nr}{2})^{+}\} .

Proof. (4.1) is an immediate consequence of the identity

E(t)+ \int_{0}^{t}\int_{R^{N}}\rho(x, s, u_{t})u_{t}dxds=E(0) . (4.4)

To prove (4.2) we use the differentiated equation

u_{ttt}-\triangle u_{t}+u_{t}+\rho_{v}(x, t, u_{t})u_{tt}+\rho_{t}(x, t, u_{t})=0 . (4.5)

(More rigorously we must approximate \rho by a smooth \rho^{\epsilon} appropriately
(cf. [8]) and take the limit after establishing the estimates for approximate
solutions.)

Multiplying (4.5) by u_{tt} and integrating (note that supp u(t)\subset B_{L+t} ,
t\geq 0) we have

E_{1}(t)+ \int_{0}^{t}\int_{R^{N}}\rho_{v}|u_{tt}|^{2}dxds\leq\int_{0}^{t}\int_{R^{N}}|\rho_{t}||u_{tt}|dxds+E_{1}(0) , (4.6)

where we set

E_{1}(t)= \frac{1}{2}\{||u_{tt}(t)||^{2}+||\nabla u_{t}(t)||^{2}+||u_{t}(t)||^{2}\} .

Here,

\int_{0}^{t}\int_{R^{N}}|\rho_{t}||u_{tt}|dxds

= \int_{0}^{t}\int_{R^{N}}\frac{|\rho_{t}|}{\sqrt{\rho_{v}}}\sqrt{\rho_{v}}|u_{tt}|dxds

\leq(\int_{0}^{t}\int_{R^{N}}\frac{|\rho_{t}|^{2}}{\rho_{v}}dxds)^{1/2}(\int_{0}^{t}\int_{R^{N}}\rho_{v}|u_{tt}|^{2}dxds)^{1/2}

\leq\frac{1}{2}\int_{0}^{t}\int_{R^{N}}\rho_{v}|u_{tt}|^{2}dxds+\frac{k_{2}}{2}\int_{0}^{t}\int_{R^{N}}|\rho u_{t}|dxds (4.7)

where we have used the assumption Hyp. B,(3) . It follows from (4.6), (4.7)
and (4.4) that

E_{1}(t)\leq E_{1}(0)+k_{2}E(0) . (4.8)
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Further,we note that since |\rho(x, 0, v)|\leq C(1+|v|^{p+1}) , p \leq\frac{2}{(N-2)^{+}} ,

E_{1}(0)= \frac{1}{2}\{||u_{tt}(0)||^{2}+||\nabla u_{1}||^{2}+||u_{1}||^{2}\}

\leq C(||\nabla u_{1}||^{2}+||u_{1}||^{2}+||u_{0}||^{2}+||\triangle u_{0}||^{2}+||\rho(x, 0, u_{1})||^{2})

\leq C(L, ||u_{0}||_{H_{2}}, ||u_{1}||_{H_{1}})<\infty .

Finally, we see by the equation itself

||\triangle u(t)||^{2}\leq C(||u_{tt}(t)||^{2}+||u(t)||^{2}+||\rho(x, t, u_{t})||^{2})

\leq C_{1}\{1+(1+t)^{2\theta}\int_{R_{1}^{N}(t)}|u_{t}|^{2(r+1)}dx

+(1+t)^{2\theta} \int_{R_{2}^{N}(t)}|u_{t}|^{2(p+1)}dx\} , (4.9)

where we set

R_{1}^{N}(t)=\{x\in R^{N}||u_{t}(x, t)|\leq 1\} and
R_{2}^{N}(t)=\{x\in R^{N}||u_{t}(x, t)|\geq 1\} .

We easily see that if r\geq 0 ,

\int_{R_{1}^{N}}|u_{t}|^{2(r+1)}dx\leq\int_{R^{N}}|u_{t}|^{2}dx\leq E(0)

and if r<0 ,

\int_{R_{1}^{N}(t)}|u_{t}|^{2(r+1)}dx\leq\{\int_{B_{L+t}}1ds\}^{-r}\{\int_{R_{1}^{N}(t)}|u_{t}|^{2}dx\}^{r+1}

\leq C_{L}(1+t)^{-Nr}E(0)^{r+1} .

Similarly, if 0\leq p<2/(N-2)^{+} we have, by Sobolev’s inequality,

\int_{R_{2}^{N}(t)}|u_{t}|^{2(p+1)}dx\leq C_{1}<\infty (4.10)

and if p<0 ,

\int_{R_{2}^{N}(t)}|u_{t}|^{2(p+1)}dx\leq\int_{R_{2}^{N}(t)}|u_{t}|^{2}dx\leq E(0) .



Decay for the Klein-Gordon equation 257

Hence, we have from (4.9) that

||\triangle u(t)||^{2}\leq C_{1}(1+t)^{2\overline{\theta}^{+}}

\square

Remarks. (1) We note that \tilde{\theta}^{+}=\theta^{+} if r\geq 0 and \tilde{\theta}^{+}=(\theta-Nr/2)^{+} if
r<0 .

(2) The condition p\leq 2/(N-2)^{+} is made for the proof of (4.3). Once
(4.3) is established the arguments below are valid for-l \leq p\leq 4/(N-2)^{+}

(3) If we assume, instead of Hyp. B,(3) ,

|\nabla_{x}\rho|^{2}\leq k_{2}\rho_{v}\rho v (3)’

we can prove without the condition on p the estimate

||\nabla u_{t}(t)||^{2}+||\triangle u(t)||^{2}\leq C_{1}<\infty . (4.3)’

Indeed, multiplying the equation by -\triangle u_{t}(t) and integrating by parts we
see

\frac{1}{2}\frac{d}{dt}\{||\nabla u_{t}(t)||^{2}+||\triangle u(t)||^{2}+||\nabla u(t)||^{2}\}

+ \int_{R^{N}}\nabla_{x}\rho\nabla u_{t}u_{t}dx+\int_{R^{N}}\rho_{v}(\nabla u_{t})^{2}dx=0

and as in (4.7) we obtain (4.3)’ Consequently, it seems at a glance that
we could get better result than Theorem 1. However, if we consider \rho=

a(x)|v|^{r}v , the condition (3 )’ means that

|\nabla a(x)|\leq k_{2}a(x) .

This is very natural if a(x)>\epsilon_{0}>0 on R^{N} . while it is in fact too restrictive
when a(x) may vanish somewhere in R^{N} , because in this case a(x) must be
infinitely differentiate in the neighbourhood of S\equiv\{x\in R^{N}|a(x)=0\}

and all the derivatives oIa(\rho x) must be vanish at the points of \partial S . (Consider
the Taylor expansions near vanishing points of a(x).) Any way, under the
restrictive condition (3)’ the estimates in Theorem 1 can be improved into
a little simpler form and also applied to - 1\leq p\leq 4/(N-2)^{+}

5. Inequalities derived by multiplication method

We shall derive some inequalities for the solutions of (1.1)-(1.2) from the
identities in Lemma 3. The derivations are essentially included in Zuazua
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[16], and we sketch them briefly.

Proposition 2 Let T>0 and u(t) be an H_{2} -solution of the problem
(1.1)-(1.2). Then,

\int_{t}^{t+T}\int_{\Omega_{2R}}\{|\nabla u|^{2}+|u|^{2}\}dxds

\leq C\{E(t)+E(t+T)+\int_{t}^{t+T}\int_{\Omega_{R}}|\rho(x, s, u_{t})||u|dxds

+ \int_{t}^{t+T}\int_{B_{2R}/B_{R}}|u|^{2}dxds+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds\} , (5.1)

where C is a positive constant independent of u and L .

Proof. Take a function \varphi\in L^{\infty}([0, \infty);H_{2}) such that 0\leq\varphi\leq 1 on R^{N} ,
\varphi=0 on B_{R} and \varphi=1 on \Omega_{2R} . Then, the identity (3.2) implies (5.1)
immediately. \square

Proposition 3 For an H_{2} -solution u(t) we have

\int_{t}^{t+T}\int_{B_{2R}}\{|u_{t}|^{2}+|\nabla u|^{2}+|u|^{2}\}dxds

\leq C\{\int_{t}^{t+T}\int_{B_{4R}}|\rho|(|u|+|\nabla u|)dxds+\int_{t}^{t+T}\int_{B_{4R}/B_{R}}(|u_{t}|^{2})dxds

+ \int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds+E(t)+E(t+T)\} , (5.2)

where C is a constant independent of L and u .

Proof. First, take q=x and r=2R in (3.3). Then,

\frac{N}{2}\int_{t}^{t+T}\int_{B_{2R}}\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}dxds+\int_{t}^{t+T}\int_{B_{2R}}|\nabla u|^{2}dxds

=- \int_{t}^{t+T}\int_{B_{2R}}\rho x\nabla udxds-\int_{B_{2R}}u_{t}x \nabla udx|_{t}^{t+T}

+R \int_{t}^{t+T}\int_{S_{2R}}\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}d\Gamma ds

+2R \int_{t}^{t+T}\int_{S_{2R}}|\frac{\partial u}{\partial r}|^{2}d\Gamma ds . (5.3)

Next, take \varphi\equiv 1 in a similar identity to (3.2) with R^{N} replaced by
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B_{2R} . Then,

\int_{t}^{t+T}\int_{B_{2R}}\{|\nabla u|^{2}+|u|^{2}\}dxds

= \int_{t}^{t+T}\int_{B_{2R}}|u_{t}|^{2}dxds-\int_{t}^{t+T}\int_{B2R}\rho udxds

+ \int_{t}^{t+T}\int_{S_{2R}}\frac{\partial u}{\partial r}ud\Gamma ds-\int_{B_{2R}}u_{t}udx|_{t}^{t+T} (5.4)

It follows from (5.3) and (5.4) that

\int_{t}^{t+T}\int_{B_{2R}}\{|u_{t}|^{2}+|\nabla u|^{2}+|u|^{2}\}dxds

\leq C\{E(t)+E(t+T)+\int_{t}^{t+T}\int_{B_{2R}}|\rho|(|\nabla u|+|u|)dxds

+ \int_{t}^{t+T}\int_{B_{2R}}|u|^{2}dxds\}

+CR \int_{t}^{t+T}\int_{S_{2R}}\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}d\Gamma ds

+2R \int_{t}^{t+T}\int_{S_{2R}}|\frac{\partial u}{\partial r}|d\Gamma ds+C|\int_{t}^{t+T}\int_{S_{2R}}\frac{\partial u}{\partial r}ud\Gamma ds| (5.5)

for some C>0 .
To estimate the boundary integrals in (5.5) we take a function \varphi(x)

such that

0\leq\varphi\leq 1 in B_{2R} , \varphi=0 in B_{3R/2} and \varphi=1 on S_{2R} ,

and set q(x)=\varphi(x)x in (3.3) to get

\frac{N}{2}\int_{t}^{t+T}\int_{B_{2R}}\varphi\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}dxds

+ \int_{t}^{t+T}\int_{B_{2R}}\varphi|\nabla u|^{2}dxds+\int_{t}^{t+T}\int_{B_{2R}}(\nabla\varphi\cdot\nabla u)(x\nabla u)dxds

+ \int_{t}^{t+T}\int_{B_{2R}}(x\nabla\varphi)\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}dxds

=- \int_{t}^{t+T}\int_{B_{2R}}\rho\varphi(x\nabla u)dxds-\int_{B_{2R}}u_{t}(s)\varphi(x\nabla u)dx|_{t}^{t+T}
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+R \int_{t}^{t+T}\int_{S_{2R}}\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}+2R\int_{t}^{t+T}\int_{S_{2R}}|\frac{\partial u}{\partial r}|^{2}d\Gamma ds

(5.6)

Also, by a similar identity to (3.2) (see (5.4)),

\int_{t}^{t+T}\int_{B_{2R}}\varphi\{|\nabla u|^{2}+|u|^{2}\}dxds

= \int_{t}^{t+T}\int_{B_{2R}}\{\varphi|u_{t}|^{2}-u\nabla\varphi\nabla u\}dxds+\int_{t}^{t+T}\int_{S_{2R}}\frac{\partial u}{\partial r}ud\Gamma ds

- \int_{B_{2R}}\varphi u_{t}udx|_{t}^{t+T}-\int_{t}^{t+T}\int_{B_{2R}}\rho\varphi udxds . (5.7)

We have from (5.6) and (5.7) that

|R \int_{t}^{t+T}\int_{S_{2R}}\{|u_{t}|^{2}-|\nabla u|^{2}-|u|^{2}\}+2R\int_{t}^{t+T}\int_{S_{2R}}|\frac{\partial u}{\partial r} |2 d\Gamma ds|

+| \int_{t}^{t+T}\int_{S_{2R}}\frac{\partial u}{\partial r}ud\Gamma ds|

\leq C\{\int_{t}^{t+T}\int_{B_{2R}/B_{\overline{R}}}(|\nabla u|^{2}+|u|^{2})dxds+\int_{t}^{t+T}\int_{B_{2R}/B_{\overline{R}}}|u_{t}|^{2}dxds

+ \int_{t}^{t+T}\int_{B_{2R}/B_{\overline{R}}}|\rho|(|u|+|\nabla u|)dxds+E(t)+E(t+T)\} ,

\tilde{R}\equiv 3R/2 . (5.8)

Finally, to treat the first integral of the righthand side of (5.8) we take a
function \varphi such that 0\leq\varphi\leq 1 on B_{4R} , \varphi=1 on B_{2R}/B_{\tilde{R}} , supp \varphi\subset

B_{4R}/B_{R} and |\nabla\varphi|^{2}/\varphi\in L^{\infty} .

Then, by the identity (5.7) with 2R replaced by 4R and with \varphi defined
just above, we see

\int_{t}^{t+T}\int_{B_{4R}}\varphi(|\nabla u|^{2}+|u|^{2})dxds

\leq\int_{t}^{t+T}\int_{\sup p\varphi}(\varphi|u_{t}|^{2}+|\nabla\varphi|/\sqrt{\varphi}\cdot|u| \sqrt{\varphi}|\nabla u|)dxds

+ \int_{t}^{t+T}\int_{B_{4R}/B_{R}}|\rho||u|dxds+E(t)+E(t+T)
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and hence,

\int_{t}^{t+T}\int_{B_{2R}/B_{\overline{R}}}(|\nabla u|^{2}+|u|^{2})dxds

\leq\int_{t}^{t+T}\int_{B_{4R}}\varphi(|\nabla u|^{2}+|u|^{2})dxds

\leq C\{\int_{t}^{t+T}\int_{B_{4R}/B_{R}}(|u_{t}|^{2}+|u|^{2}+|\rho||u|)dxds+E(t)+E(t+T)\} .

(5.9)

From (5.5), (5.8) and (5.9) we obtain (5.2). \square

Proposition 4 There exists T_{0}>0 such that if T>T_{0} , we have

E(t) \leq C(T)\{D(t)^{r+2}+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds+\int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds

+ \int_{t}^{t+T}\int_{R^{N}}|\rho(x, s, u_{t})|(|u|+|u_{t}|)dxds\} , t\geq 0 (5.10)

for a H_{2} -solution u(t) , where C(T) is a constant independent of L and u .

Proof By Propositions 2 through to 4 and the identity (3.1) we have

TE(t+T)

\leq\frac{1}{2}\int_{t}^{t+T}\int_{R^{N}}\{|u_{t}|^{2}+|\nabla u|^{2}+|u|^{2}\}dxds

\leq C\{D(t)^{r+2}+E(t+T)+\int_{t}^{t+T}\int_{R^{N}}|\rho|(|u|+|\nabla u|)dxds

+ \int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds+\int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds\} (5.11)

Therefore, for T>T_{0}\equiv C , we see by (5.11) and (3.1) that

E(t)=E(t+T)+D(t)^{r+2}

\leq C(T)\{D(t)^{r+2}+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds

+ \int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds+\int_{t}^{t+T}\int_{R^{N}}|\rho|(|u|+|\nabla u|)dxds\} .



262 M. Nakao

6. Estimation of the nonlinear term

In what follows we fix T>T_{0} and we denote by C the positive constants
depending on T and L as well as other known constants and denote by
C_{1} positive constants depending continuously on L and ||u_{0}||_{H_{2}}+||u_{1}||_{H_{1}} .
Estimating the integral including \rho(x, t, u_{t}) in (5.10) we have:

Proposition 5 For an H_{2} -solution u(t) the inequality

E(t) \leq C_{1}\{A_{i}(t)^{2}+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds

+ \int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds\} t\geq 0 , (6.1)

holds, where A_{i}(t) , i=1,2,3,4 , correspond to the cases (i) in Theorem 1
and are defined as follows: For the case (1) : 0\leq r and 0\leq p\leq 2/(N-2)^{+} ,

A_{i}(t)^{2}=D(t)^{r+2}+(1+t)^{\theta}D(t)^{r+2}

+(1+t)^{2(pN\theta^{+}+2\theta)/(2p+Np+4)}D(t)^{4(r+2)(p+1)/(2p+Np+4)}

(6.2)

For the case (2) : - 1<r<0 and 0\leq p\leq 2/(N-2)^{+} ,

A_{2}(t)^{2}=D(t)^{r+2}+(1+t)^{(2\theta-Nr)/(r+2)}D(t)^{2(r+1)}

+(1+t)^{2(pN\tilde{\theta}^{+}+2\theta)/(2p+Np+4)}D(t)^{4(r+2)(p+1)/(2p+Np+4)} .

(6.3)

For the case (3) : 0\leq r and - 1\leq p<0 ,

A3 (t)^{2}=D(t)^{r+2}+(1+t)^{\theta}D(t)^{r+2} (6.4)

For the case (4) : - 1<r<0 and -1\leq p<0 ,

A_{4}(t)^{2}=D(t)^{r+2}+(1+t)^{(2\theta-Nr)/(r+2)}D(t)^{2(r+1)}

+(1+t)^{\theta}D(t)^{r+2} . (6.5)

Proof. We set

\Omega^{1}(t)\equiv\{x\in R^{N}||u_{t}(x, t)|\leq 1\}\cap B_{L+t} and \Omega^{2}(t)=R^{N}/\Omega^{1}(t) .
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Then, by Hyp. B ,

\int_{t}^{t+T}\int_{R^{N}}|\rho|(|u|+|\nabla u|)dxds

\leq C\int_{t}^{t+T}\int_{\Omega^{1}(s)}(1+s)^{\theta}a(x)|u_{t}|^{r+1}(|u|+|\nabla u|)dxds

+C \int_{t}^{t+T}\int_{\Omega^{2}(s)}(1+s)^{\theta}a(x)|u_{t}|^{p+1}(|u|+|\nabla u|)dxds

\equiv I_{1}+I_{2} . (6.6)

For the case (1) we see

I_{1} \leq C(\int_{t}^{t+T}\int_{\Omega^{1}(s)}(1+s)^{2\theta}a(x)|u_{t}|^{2(r+1)}dxds)^{1/2}\sqrt{E(t)}

\leq C(1+t)^{\theta/2}(\int_{t}^{t+T}\int_{\Omega^{1}(s)}(1+s)^{\theta}a(x)|u_{t}|^{r+2}dxds)^{1/2}\sqrt{E(t)}

\leq C(1+t)^{\theta/2}D(t)^{(r+2)/2}\sqrt{E(t)} . (6.6)

And,

I_{2}\leq C(1+t)^{\theta/(p+2)}

\cross(\int_{t}^{t+T}\int_{\Omega^{2}(s)}(1+s)^{\theta}a(x)|u_{t}|^{p+2}dxds)^{(p+1)/(p+2)}

\cross(\int_{t}^{t+T}\int_{\Omega^{2}(s)}(|u|^{p+2}+|\nabla u|^{p+2})dxds)^{1/(p+2)} (6.8)

Here, by GagliardO-Nirenberg inequality and Proposition 1,

||u||_{p+2}\leq C(||u||+||\nabla u||)\leq C\sqrt{E(t)} ,

and

||\nabla u||_{p+2}\leq C||\nabla u||^{1-\nu}||u||_{H_{2}}^{\nu} (\nu=pN/2(p+2))

\leq C_{1}(1+t)^{pN\theta^{+}/2(p+2)}E(t)^{(2p+4-Np)/4(p+2)} . (6.9)

Thus, we see

I_{2}\leq C(1+t)^{\theta/(p+2)}D(t)^{(p+1)(r+2)/(p+2)}\sqrt{E(t)}
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+C_{1}(1+t)^{(pN\theta^{+}+2\theta)/2(p+2)}D(t)^{(p+1)(r+2)/(p+2)}

\cross E(t)^{(2p+4-Np)/4(p+2)} . (6.10)

Applying Young’s inequality to (6.7) and (6.10) we obtain from (5.10) the
desired estimate, where we have used the inequality

(1+t)^{2\theta/(p+2)}D(t)^{2(p+1)(r+2)/(p+2)}

\leq C_{1}(D(t)^{r+2}+(1+t)^{\theta}D(t)^{r+2}) . (6.11)

For the case (2) we have, instead of (6.7),

I_{1}\leq C(1+t)^{\theta/(r+2)}

\cross(\int_{t}^{t+T}\int_{\Omega^{1}(s)}(1+s)^{\theta}a(x)|u_{t}|^{r+2}dxds)^{(r+1)/(r+2)}

\cross(\int_{t}^{t+T}\int_{\Omega^{1}(s)}(|u|^{r+2}+|\nabla u|^{r+2})dxds)^{1/(r+2)}

\leq C(1+t)^{\theta/(r+2)}D(t)^{r+1}(1+t)^{-Nr/2(r+2)}

\cross(\int_{t}^{t+T}\int_{\Omega^{1}(s)}(|u|^{2}+|\nabla u|^{2})dxds)^{1/2}

\leq C(1+t)^{(2\theta-Nr)/2(r+2)}D(t)^{r+1}\sqrt{E(t)} . (6.10)

I_{2} is estimated as in (6.10) with \theta^{+} replaced by \tilde{\theta}^{+}=(\theta-\frac{Nr}{2})^{+} Hence, we
obtain (6.1) with A_{2}(t)^{2} defined by (6.3).

For the case (3) we have, instead of (6.10),

I_{2} \leq C(\int_{t}^{t+T}\int_{\Omega^{2}(s)}(1+s)^{2\theta}a(x)|u_{t}|^{2(p+1)}dxds)^{1/2}

\cross(\int_{t}^{t+T}\int_{\Omega^{2}(s)}(|u|^{2}+|\nabla u|^{2})dxds)^{1/2}

\leq C(1+t)^{\theta/2}(\int_{t}^{t+T}\int_{\Omega^{2}(s)}(1+t)^{\theta}a(x)|u_{t}|^{p+2}dxds)^{1/2}\sqrt{E(t)}

\leq C(1+t)^{\theta/2}D(t)^{(r+2)/2}\sqrt{E(t)} . (6.13)

Hence, we obtain (6.1) with A3 (t)^{2} defined by (6.4).
The estimate for the case (4) follows immediately from the argument

above. \square
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We proceed to the estimation of the last term in the inequality (6.1).
For this we utilize the ‘unique continuation property for the wave equation’

Proposition 6 The inequality

\int_{t}^{t+T}\int_{B_{4R}}|u|^{2}dxds\leq C_{1}\{A_{i}(t)^{2}+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds\} (6.14)

holds for some constant C_{1}>0 , i=1,2,3,4 .

Proof. We prove (6.14) by contradiction as in [13, 16] . If (6.14) were
false, there would exist a sequence \{t_{n}\} and a sequence of solutions \{u_{n}(t)\}

such that

\int_{t_{n}}^{t_{n}+T}\int_{B_{4R}}|u_{n}|^{2}dxds\geq n\{A_{i}(t_{n})^{2}+\int_{t_{n}}^{t_{n}+T}\int_{\Omega_{R}}|u_{nt}|^{2}dxds\} .

(6.15)

Setting

\lambda_{n}^{2}=\int_{t_{n}}^{t_{n}+T}\int_{B_{4R}}|u_{n}|^{2}dxds and v_{n}(t)=u(t+t_{n})/\lambda_{n} ,

we see

\int_{0}^{T}\int_{B_{4R}}|v_{n}(t)|^{2}dxdt=1 (6.16)

and

Q_{n}^{2} \equiv\int_{0}^{T}\int_{\Omega_{R}}|v_{n_{t}}(t)|^{2}dxdt+(\frac{A_{i}(t_{n})}{\lambda_{n}})^{2} –0 as narrow\infty . (6.17)

Further, dividing the both sides of (6.1) in Proposition 5 by \lambda_{n}^{2} we know

||v_{n_{t}}(0)||^{2}+||\nabla v_{n}(0)||^{2}+||v_{n}(0)||^{2}\leq C_{1}(Q_{n}^{2}+1)\leq C_{1}<\infty

and hence (note that E(t) is decreasing for v_{n}(t) )

||v_{nt}(t)||^{2}+||\nabla v_{n}(t)||^{2}+||v_{n}(t)||^{2}\leq C_{1}<\infty for t\in[0, T] .

(6.18)

Thus, we have by a standard compactness argument that

v_{n}(t)arrow v(t) strongly in L^{2}(B_{4R}\cross[0, T]) , (6.19)

v_{n}(t)arrow v(t)weakly*inL^{\infty}([0, T];H_{1}(R^{N})) , (6.20)
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and

v_{n_{t}}(t) – v_{t}(t)weakly*inL^{\infty}([0, T];L^{2}(R^{N})) (6.21)

along a subsequence of \{v_{n}(t)\} .
The limit function v(t) belongs to

W^{1,\infty}([0, T];L^{2}(R^{N}))\cap L^{\infty}([0, T];H_{1}(R^{N}))

and satisfies, in particular,

\int_{0}^{T}\int_{B_{4R}}|v(t)|^{2}dxdt=1 , and \int_{0}^{T}\int_{\Omega_{R}}|v_{t}(t)|^{2}dxdt=0 . (6.21)

Moreover, we can show

\lim_{narrow\infty}\frac{\rho(x,t+t_{n},u_{nt}(t+t_{n}))}{\lambda_{n}}=0 in L_{loc}^{1}([0, T]\cross R^{N}) . (6.21)

Indeed, we see, for any compact set K\subset R^{N} .

\int_{t_{n}}^{t_{n}+T}\int_{K}|\rho(x, t , u_{nt}(t)|dxdt

\leq C\{\int_{t_{n}}^{t_{n}+T}\int_{B^{1}}(1+t)^{\theta}a(x)|u_{nt}(t)|^{r+1}dxdt

+ \int_{t_{n}}^{t_{n}+T}\int_{B^{2}}(1+t)^{\theta}a(x)|u_{nt}(t)|^{p+1}dxdt\}

\equiv\tilde{I}_{1}+\tilde{I}_{2} , (6.24)

where we set

B^{1}=\Omega^{1}(t)\cap K and B^{2}=\Omega^{2}(t)\cap K .

For the case (1),

\tilde{I}_{1}\leq C(K)(1+t_{n})^{\theta/2}(\int_{t_{n}}^{t_{n}+T}\int_{B^{1}}(1+t)^{\theta}a(x)|u_{nt}|^{2(r+1)}dxdt)^{1/2}

\leq C(K)(1+t_{n})^{\theta/2}D(t_{n})^{(r+2)/2}\leq CA_{1}(t_{n}) (see (6.2)),

(6.25)

and

\tilde{I}_{2}\leq C\int_{t_{n}}^{t_{n}+T}\int_{B^{2}}(1+t)^{\theta}a(x)|u_{nt}|^{p+2}dxdt
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\leq CD(t)^{r+2}\leq C(K)A_{1}(t_{n}) . (6.26)

The last inequality (6.26) is valid for other cases i=2,3,4 if we replace
A_{1}(t_{n}) , by A_{i}(t_{n}) , i=2,3,4 , respectively. We also note that (6.25) is valid
for i=3 if A_{1}(t_{n}) replaced by A3 (t_{n}) . Further, for the cases (2) and (4) we
easily see

\tilde{I}_{1}\leq C(K)(1+t_{n})^{\theta/(r+2)}

\cross(\int_{t_{n}}^{t_{n}+T}\int_{B^{1}}(1+t)^{\theta}a(x)|u_{nt}(t)|^{r+2}dxdt)^{(r+1)/(r+2)}

\leq C(K)(1+t_{n})^{\theta/(r+2)}D(t_{n})^{r+1}

\leq C(K)A_{i}(t_{n}) , i=2,4 , (6.27)

(see (6.3), (6.5)).
Thus, in any case we see

\int_{t_{n}}^{t_{n}+T}\int_{K}\frac{|\rho(x,t,u_{nt}(t))|}{\lambda_{n}}dxdt\leq C(K)\frac{A_{i}(t_{n})}{\lambda_{n}} –0

for each compact set K\subset R^{N}

From the above argument v(x, t) becomes a solution of the linear Klein-
Gordon equation

v_{tt}-\triangle v+v=0 in R^{N}\cross[0, T] . (6.28)

It is well known that v(t) , a solution of (6.28), belongs in fact to C^{1}([0, T] ;
L^{2}(R^{N}))\cap C([0, T];H_{1}(R^{N})) , and the latter condition of (6.22) implies
v_{t}(x, t)\equiv 0 in \Omega_{R}\cross[0, T] . Thus, by a standard unique continuation prop-
erty due to Holmgren’s theorem, we conclude that v(x, t)\equiv 0 in R^{N}\cross[0, T] ,
which is a contradiction to the former condition of (6.22). \square

7. Completion of the proof of Theorem 1

By Propositions 5 and 6 we have the estimate

E(t) \leq C_{1}\{A_{i}(t)^{2}+\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds\} . (7.1)

To complete the proof of Theorem 1 we must estimate the last term of
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(7. 1). Here, we see

\int_{t}^{t+T}\int_{\Omega_{R}}|u_{t}|^{2}dxds=\int_{t}^{t+T}\int_{\Omega_{R}^{1}}|u_{t}|^{2}dxds+\int_{t}^{t+T}\int_{\Omega_{R}^{2}}|u_{t}|^{2}dxds

=\hat{I}_{1}+\hat{I}_{2} , (7.2)

where we set

\Omega_{R}^{1}=\{x\in\Omega_{R}||u_{t}(x, t)|\leq 1\}\cap B_{L+t} and \Omega_{R}^{2}=\Omega_{R}/\Omega_{R}^{1} .

For the case (1) we have

\hat{I}_{1}\leq C(1+t)^{-2\theta/(r+2)}(\int_{t}^{t+T}\int_{\Omega_{R}^{1}}(1+t)^{\theta}a(x)|u_{t}|^{r+2}dxds)^{2/(r+2)}

\cross(\int_{t}^{t+T}\int_{\Omega_{R}^{1}}1dxds)^{r/(r+2)}

\leq C(1+t)^{(Nr-2\theta)/(r+2)}D(t)^{2} . (7.3)

and

\hat{I}_{2}\leq C\int_{t}^{t+T}\int_{\Omega_{R}}a(x)|u_{t}|^{p+2}dxds\leq C(1+t)^{-\theta}D(t)^{r+2} . (7.4)

For the case (2) we see, instead of (7.3),

\hat{I}_{1}\leq C\int_{t}^{t+T}\int_{\Omega_{R}}a(x)|u_{t}|^{r+2}dxds\leq C(1+t)^{-\theta}D(t)^{r+2}- (7.5)

and for the case (3) we have, instead of (7.4),

\hat{I}_{2}\leq C\int_{t}^{t+T}(\int_{\Omega_{R}}|u_{t}|^{p+2}dx)^{2(1-\iota/)/(p+2)}

\cross(\int_{\Omega_{R}}(|u_{t}|^{2}+|\nabla u|^{2})dx)^{(2\nu+p)/(p+2)}ds

\leq C_{1}(1+t)^{-2\theta(1-\iota/)/(p+2)}

\cross(\int_{t}^{t+T}\int_{\Omega_{R}}(1+s)^{\theta}a(x)|u_{t}|^{p+2}dxds)^{2(1-I/)/(p+2)}

\leq C_{1}(1+t)^{-4\theta/(2p-Np+4)}D(t)^{4(r+2)/(2p-Np+4)} .

( \nu\equiv\frac{-Np}{2p+4-Np}) (7.6)
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Thus, we obtain for the case (1),

E(t+T)
\leq E(t)

\leq C_{1}\{A_{1}(t)^{2}+(1+t)^{(Nr-2\theta)/(r+2)}D(t)^{2}+(1+t)^{-\theta}D(t)^{r+2}\}

\leq C_{1}\{(1+t)^{|\theta|}D(t)^{r+2}+(1+t)^{(Nr-2\theta)/(r+2)}D(t)^{2}

+(1+t)^{2(pN\theta^{+}+2\theta)/(2p+Np+4)}D(t)^{4(r+2)(p+1)/(2p+Np+4)}\} .

(7.7)

Recalling (3.1) and applying Lemma 2 to (7.7) carefully, we can derive the
estimates from (1)_{1} through to (1)_{5} in Theorem 1. Indeed,for the case (1)_{1} ,
we apply a generalization of the case (1) in Lemma 2 with

\theta_{1}=|\theta| , \theta_{2}=\frac{Nr-2\theta}{r+2} , \theta_{3}=\frac{2(pN\theta^{+}+2\theta)}{2p+Np+4} ,

\Xi_{1}=1 , \in_{2}=\frac{2}{r+2} and 53= \frac{4(p+1)}{2p+Np+4}

to get the desired estimate (2.1) with

\eta=\frac{1}{2}\min\{\frac{1-|\theta|}{+0} , \frac{\frac{2}{r+2}-\frac{Nr-2\theta}{r+2}}{1-\frac{2}{r+2}} , \frac{\frac{4(p+1)}{2p+Np+4}-\frac{2(pN\theta^{+}+2\theta)}{2p+Np+4}}{1-\frac{4(p+1)}{2p+Np+4}}\}

= \min\{\frac{2+2\theta-Nr}{2r} , \frac{2(p+1)-(pN\theta^{+}+2\theta)}{(N-2)^{+}p}\}

For the case (1)_{2} , we apply a generalization of the case (2) in Lemma 2 to
get the estimate (2.2). Other cases can be treated similarly.

For the case (2) we obtain from (7.1), (7.4) and (7.5)

E(t)\leq C_{1}\{(1+t)^{|\theta|}D(t)^{r+2}+(1+t)^{(2\theta-Nr)/(r+2)}D(t)^{2(r+1)}

+(1+t)^{2(pN\tilde{\theta}^{+}+2\theta)/(2p+Np+4)}D(t)^{4(r+2)(p+1)/(2p+Np+4)}\} .

(7.8)

Applying Lemma 2 to (7.8) we have the estimates for the cases from
(2)_{1} to (2)_{4} in Theorem 1.

For the case (3) we obtain from (7.1), (7.3) and (7.6),

E(t)\leq C_{1}\{D(t)^{r+2}+(1+t)^{\theta}D(t)^{r+2}+(1+t)^{(Nr-2\theta)/(r+2)}D(t)^{2}
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+(1+t)^{-4\theta/((2p-Np+4)}D(t)^{4(r+2)/(2p-Np+4)}\} . (7.9)

Applying Lemma 2 to (7.9) we have the estimates (3)_{1} and (3)_{2} in
Theorem 1.

Finally, for the case (4) we obtain

E(t)\leq C_{1}\{(1+t)^{|\theta|}D(t)^{r+2}+(1+t)^{(2\theta-Nr)/(r+2)}D(t)^{2(r+1)}

+(1+t)^{-4\theta/(2p-Np+4)}D(t)^{4(r+2)/(2p-Np+4)}\} . (7.10)

Applying Lemma 2 to (7.10) we have the estimates (4)_{1} and (4)_{2} in
Theorem 1. The proof of Theorem 1 is now complete.

8. A remark on the equation in an exterior domain

Let \Omega be an exterior domain in R^{N} with a compact boundary \partial\Omega .
Zuazua [16] also states a result on the exponential decay of the solutions for
the equation with a linear dissipation a(x)u_{t} and a semilinear term f(u) in
an exterior domain under the additional condition

a(x)\geq\in 0>0 on a neighbourhood of \partial\Omega . (8.1)

Combining the results in [13, 14] with the argument in previous sections,
we can easily extend Theorem 1 to the equation in an exterior domain.

We consider the problem

(P^{*}) \{

u_{tt}-\triangle u+u+\rho(x, t, u_{t})=0 in [0, \infty) \cross\Omega

u(x, 0)=u_{0}(x) , u_{t}(x, 0)=u_{1}(x) and u|_{\partial\Omega}=0 ,

where \Omega is an exterior domain in R^{N} with a compact C^{2} class boundary
\partial\Omega .

We make the same hypothesis B on \rho(x, t, v) and (8.1). Then, we obtain
essentially the same result as in Theorem 1 with H_{2} and H_{1} replaced by
H_{2}(\Omega)\cap H_{1}^{o}(\Omega) and H_{1}^{o}(\Omega) , respectively.
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