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Algebraic descriptions of non-isolated singularities
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Abstract. For isolated singularities, there exist some algebraic characterizations called
Mather-Yau statements. In this article, we generalize these to non-isolated singularities.

Key words: non-isolated singularity, R_{I} -equivalence, right-left equivalence, isomorphism
of algebras.

1. Introduction

Many authors have been trying to characterize singularities algebrai-
cally. Benson [B] and independently Shoshitaishvili [Sh2] have proved that,
for (weighted) homogeneous hypersurface with isolated singularity, the Ja-
cobian ideal of the defining polynomial determined completely its analytic
equivalence class. Mather and Yau [MY] have proved that the moduli alge-
bra of a hypersurface determined its analytic equivalence class. Scherk [Sc]
and Yau [Y] have considered the O_{1} and respectively, \mathbb{C}\{t\}/(t^{n+1}) algebra

minedcomp1ete1ytheright- 1eftequi’ encec1assoffunctionfwithiso1atedstructuresontheJacobiana1gebra\frac{O}{J(f,vai},andprovedthatthisa1gebradeter-

singularities. This result has been generalized to functions on analytic vari-
eties with isolated singularities by Matsuoka [M]. Dimca [Di] has considered
whether the singular subspace of a complete intersection with isolated sin-
gularity can determine the analytic equivalence class of the whole space.
Gaffney and Hauser [GH] and later Hauser and M\"uller [HM] have consid-
ered the singularities with isolated singularity type and so called harmonic
singularities. For these singularities, the singular subspace, which may be
non-isolated, determined completely the singularities. Martin [Ma] also gave
some cohomology characterizations for some singularities.

We consider, in this paper, mainly non-isolated singularities. We find
that some isomorphism between the ideals of algebras related to singularities
can be lifted to an isomorphism between the algebras.

1991 Mathematics Subject Classification : 14B05,32S05 .
Supported by National Nature Science Foundation of China, Liaoning Education Com-

mission Science Foundation of China, and Utrecht Fellowship of The Netherlands



234 G. Jiang

1.1 We denote the ring of germs of analytic functions from (\mathbb{C}^{n+1},0)

to \mathbb{C} by O_{\mathbb{C}^{n+1}} or O_{n+1} , or simply by O . Denote the maximal ideal of O_{n+1}

by \mathfrak{m}_{n+1} or \mathfrak{m} . Let I be an ideal of O . Let \Sigma be the analytic space defined by
I . The collection of all functions having \Sigma in their singular loci is denoted
by \int I . Let \mathcal{R} be the group of all germs of local analytic automorphisms of
(\mathbb{C}^{n+1},0) . If I is radical, then (see [P1] (2.14)) \mathcal{R}_{I}:=\{\varphi\in \mathcal{R}|\varphi^{*}I=I\}=

n_{fI} .
For the definitions of \mathcal{K} , A , C , \mathcal{R} and \mathcal{L} see Mather [M1]. Notations

and definitions which are not defined here can be found in [PI], [M1] and
[M2]. Denote I\mathcal{K}:=\mathcal{R}_{I}\lambda C , A_{I}:=\mathcal{R}_{I}\cross \mathcal{L} .

Two germs f, g \in\int I are called \mathcal{G}-equivalent if there exists a \Phi\in \mathcal{G} such
that g=\Phi f . where \mathcal{G} is one of the above groups. For \mathcal{G}=\mathcal{R} or \mathcal{R}_{I} , two
hypersurface germs (f^{-1}(0), 0) , (g^{-1}(0), 0) are called \mathcal{G}-equivalent if there
exists \phi\in \mathcal{G} such that (g)=(f\circ\phi) as ideals. In this case we also say that
(f^{-1}(0), 0) is analytically equivalent to (g^{-1}(0), 0) by a \phi\in \mathcal{G} .

1.2 Let Der = Derc(0) = the O-module of \mathbb{C}-derivations of O.
Der_{I}=\{\eta\in Der|\eta(I)\subset I\} . Write J(f)=( \frac{\partial f}{\partial z_{0}},. . ’

\frac{\partial f}{\partial z_{n}}) , the Jacobian
ideal, and (see [PI,2])

T \mathcal{R}_{I}=\{\eta|\eta=\sum_{j=0}^{n}\eta_{j}\frac{\partial}{\partial z_{j}}\in Der_{I} , \eta_{j}\in \mathfrak{m} , j =0 , . . ’ n}
\tau_{I,e}(f)=\{\eta(f) | \eta\in Der_{I}\} \tau_{I}(f)=\{\eta(f) | \eta\in T\mathcal{R}_{I}\}

1.3 Let K , K’ be ideals of O and assume we are given an isomorphism
of \mathbb{C}-algebras \varphi : \frac{o}{K}arrow\frac{O}{K}, . Then \varphi induces an O-module structure on \frac{o}{K},
as follows: for any a\in O , [b]’ \in\frac{o}{K},

’ define a [b]’:=(\varphi[a])[b]’ . then \frac{o}{K}, is a
module over O . Moreover \varphi is an isomorphism of O-modules if \frac{O}{K}, is given
the induced O-module structure.

1.4 We call Q(f)= \frac{o}{J(f)} the Jacobian algebra of f . Let I be an ideal
of O , f\in O . If J(f)\subset I , then \frac{I}{J(f)} is called the Jacobi module of f ([P2]
(5.1) ) .

We call \mathbb{C} algebra A_{I}:= \frac{o}{\tau_{I}(f)} the generalized Jacobian algebra of f_{J}. and
M_{I}(f):= \frac{o}{\tau_{I}(f)+(f)} the generalized moduli algebra of f . Under the canonical
projection, every ideal of O gives an ideal of the generalized Jacobian algebra
or the generalized moduli algebra. We call N_{I}(f):= \frac{\int I}{\tau_{I}(f)} the normal space
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of \mathcal{R}_{I}(f) at f , or the right normal space of f , and \overline{N_{I}}(f):=\frac{\int I}{\tau_{I}(f)+(f)} the
normal space of I\mathcal{K}(f) at f . or the contact normal space of f .

Theorem 1.5 (For I\mathcal{K}-equivalence) 1) Let f, g \in\int I ‘ If germ
(f^{-1}(0), 0) is analytically equivalent to (g^{-1}\underline{(0}) , 0) by \underline{a}\varphi\in \mathcal{R}_{I} , then \varphi

induces an isomorphism of O -modules \varphi_{r}^{*} : N_{I}(f)arrow N_{I}(g) which can be
lifted to an isomorphism of \mathbb{C} -algebras \varphi^{*} : M_{I}(f)arrow M_{I}(g) ;

2) Let I be a radical ideal. If we are given an isomorphism of O-
modules \alpha_{r} : \overline{N_{I}}(f)arrow\overline{N_{I}}(g) which can be lifted to an isomorphism of
\mathbb{C} -algebras \alpha : M_{I}(f)arrow M_{I}(g) , then germ (f^{-1}(0), 0) is analytically equiv-
alent to (g^{-1}(0), 0) by a \varphi\in \mathcal{R}_{I} .

Theorem 1.5* (For \mathcal{K}-equivalence) 1) Let I be an ideal, f \in\int I , g\in

O. If germ (f^{-1}(0), 0) is analytically equivalent to (g^{-1}(0), 0) by a \varphi\in \mathcal{R} ,
then g \in-\varphi^{*}\int I=\int\varphi^{*}I and \varphi induces an isomorphism of O-modules
\varphi_{r}^{*} : N_{I}(f)arrow\overline{N}_{\varphi^{*}(I)}(g) which can be lifted to an isomorphism of \mathbb{C}

-

algebras \varphi^{*} : M_{I}(f)arrow M_{\varphi^{*}(I)}(g) ,
2) Let I , I’ be radical ideals. Let f \in\int\underline{I,}g\in\int I’ . If we are given

an isomorphism of O-modules \alpha_{r} : \overline{N_{I}}(f)arrow N_{I’}(g) which can be lifted to
an isomorphism of \mathbb{C} -algebras \alpha : M_{I}(f)arrow M_{I’}(g) , then there exists a
\phi\in \mathcal{R} such that (f^{-1}(0), 0) is analytically equivalent to (g^{-1},0) by \phi and
\phi^{*}I=I’ .

Theorem 1.6 (For left-right equivalence and weighted homogeneous poly-
nomials) Let I , I’ be radical ideals generated by weighted homogeneous
polynomials.

1) Two weighted homogeneous polynomial germs f, g \in\int I are \mathcal{R}_{I}

equivalent if and only if there exists an isomorphism of O -modules \alpha_{r} :
N_{I}(f)arrow N_{I}(g) which can be lifted to an isomorphism of \mathbb{C} -algebras \alpha :
A_{I}(f)arrow A_{I}(g) .

2) Two weighted homogeneous polynomial germs f \in\int I , g \in\int I’

are \mathcal{R} equivalent if and only if there exists an isomorphism of O-modules
\alpha_{r} : N_{I}(f)arrow N_{I’}(g) which can be lifted to an isomorphism of \mathbb{C} -algebras
\alpha : A_{I}(f)arrow A_{I’}(g) .

Theorem 1.7 (For A_{I}-equivalence) 1) Let I be an ideal, f, g \in\int I . If
there exists a \varphi\in \mathcal{R}_{I} , \psi\in \mathcal{L} such that g=\psi\circ f\circ\varphi , then \varphi induces an
isomorphism of O_{1} -modules \varphi_{r}^{*} : N_{I}(f)arrow N_{I}(g) over (\psi^{-1})^{*} : O_{1} – O_{1} ,
such that \varphi_{r}^{*} can be lifted to an O_{1} -algebra isomorphism \varphi^{*} : A_{I}(f)arrow
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A_{I}(g) over (\psi^{-1})^{*}

2) Let I be a radical ideal. If we are given an isomorphism of O_{1} -

modules: \alpha_{r} : N_{I}(f)arrow N_{I}(g) over a\mathbb{C} -algebra isomorphism \sigma : O_{1}arrow O_{1}

such that \alpha_{r} can be lifted to an O_{1} -algebra isomorphism \alpha : A_{I}(f)arrow A_{I}(g)

over \sigma , then f and g are A_{I} -equivalent.

Theorem 1.8 (For \mathcal{R}_{I}-equivalence) 1) Let I be an ideal, f, g \in\int I If
there exists a \varphi\in \mathcal{R}_{I} such that g=f\circ\varphi , then \varphi induces an isomorphism
of O_{1} -modules \varphi_{r}^{*} : N_{I}(f)arrow N_{I}(g) over id : O_{1}arrow O_{1} such that \varphi_{r}^{*} can
be lifted to an O_{1} -algebra isomorphism \varphi^{*} : A_{I}(f)arrow A_{I}(g) over id ;

2) Let I be a radical ideal, and f, g \in\int I . If we are given an isomor-
phism of O_{1} -modules \alpha_{r} : N_{I}(f)arrow N_{I}(g) over \mathbb{C} -algebra isomorphism
id:O_{1}arrow O_{1} such that \alpha_{r} can be lifted to an isomorphism of O_{1} algebras
\alpha : A_{I}(f)arrow A_{I}(g) over id , then f and g are \mathcal{R}_{I} -equivalent.

Theorem 1.9 (Hauser [HI]) (For A-equivalence) Two germs f, g\in O

are right-left equivalent if and only if there is an O_{1} -algebra isomorphism
\alpha : Q(f)arrow Q(g) over some \mathbb{C}- algebra isomorphism \sigma : O_{1}arrow O_{1} .

Remark 1.10 1) Although the theorems are stated for non-isolated sin-
gularities, they are true and known (see e.g . [B], [GH], [HM], [HI], [H2],
[MY], [Sc], [Sh2] and [Y] ) for isolated singularities if we take I to be the
maximal ideal of O ;

2) If the \sigma in theorem 1.9 is an identity, then we can get a similar
conclusion about right equivalence. Since f^{k}\in J(f) for k>>0 , we can get
similar conclusions to those in [Y].

Example 1.11 In (\mathbb{C}^{3},0) , Let I=(y, z) , f=y^{2}+z^{2} , (X, 0)=(f^{-1}(0), 0) ;
g=xy^{2}+z^{2} , (Y, 0)=(g^{-1}(0), 0) . we have \tau_{I}(f)=\tau_{I,e}(f)=\tau_{I,e}(g)=I^{2} ,
but \tau_{I}(g)=(xy^{2}, yz, z^{2}, y^{3}, xyz) . Hence A(f)= \frac{o}{\tau_{I}(f)} and A(g)= \frac{o}{\tau_{I}(g)}

are not isomorphic as algebras or modules. But \frac{o}{\tau_{I,e}(f)}=\frac{O}{I^{2}}=\frac{o}{\tau_{I,e}(g)} and
\frac{I^{2}}{\tau_{I,e}(f)}=0=\frac{I^{2}}{\tau_{I,e}(g)} . This example shows \frac{o}{\tau_{I,e}(f)} cannot characterize singu-
larities. For (Y, 0) , in [GH], (g)+J(g) was used to describe the hypersurface.
We here use (g)+\tau_{I}(g) to do the job for non-isolated singularities.

2. Equivalence and Triviality

2.1 It is easy to prove the following
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Lemma Two germs f, g \in\int I are I\mathcal{K} -equivalent if and only if (\mathcal{V}(f), 0)

and (\mathcal{V}(g), 0) are analytically equivalent by a \varphi\in \mathcal{R}_{I} , where \mathcal{V}(f)=f^{-1}(0) ,
\mathcal{V}(g)=g^{-1}(0) .

2.2 Let I be generated by weighted homogeneous polynomials, and

f, g \in\int I weighted homogeneous polynomials. The following lemma is a
generalization of a result due to Durfee [Du] and the proof is similar.

Lemma Germs (\mathcal{V}(f), 0) and (\mathcal{V}(g), 0) are analytically equivalent by a
\varphi\in \mathcal{R}_{I} if and only if f, g are \mathcal{R}_{I} equivalent

Definition 2.3 (cf. [J]) 1) Let \mathcal{G} be a subgroup of \mathcal{K} , and a\in \mathbb{C} . A
(\mathbb{C}, a) -level-preserving map-germ G : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross a)arrow(\mathbb{C}^{p}\cross \mathbb{C}, O\cross a) is
said to be \mathcal{G}-trivial at a if there exist (\mathbb{C}, a) -level preserving map-germs

H’ : (\mathbb{C}^{n}\cross \mathbb{C}^{p}\cross \mathbb{C}, 0\cross 0\cross a)arrow(\mathbb{C}^{n}\cross \mathbb{C}^{p}\cross \mathbb{C}, O\cross 0\cross a)

and

H : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross a)arrow(\mathbb{C}^{n}\cross \mathbb{C}, 0\cross a)

such that

H^{\prime-1}\circ(\pi_{1}, G)\circ H=(\pi_{1}, G_{a})\cross 1_{(\mathbb{C},a)} (2.1)

where \pi_{1} : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross a)arrow(\mathbb{C}^{n}, 0) is the germ of the projection, and if
\pi_{2} : (\mathbb{C}^{n}\cross \mathbb{C}^{p}\cross \mathbb{C}, 0\cross 0\cross a)arrow(\mathbb{C}^{n}\cross \mathbb{C}^{p}, 0\cross 0) , \pi_{3} : (\mathbb{C}^{n}\cross \mathbb{C}^{p}, 0\cross 0)arrow

(\mathbb{C}^{n}, 0) are the germs of projections, then H_{t}’=:\pi_{2}\circ H’(-, -, t)\in \mathcal{G} for
each t\in(\mathbb{C}, 0) , and H_{t}=:\pi_{1}\circ H(-, t)=\pi_{3}\circ H_{t}’ for each t\in(\mathbb{C}, a) .

2) Let T\subset \mathbb{C} be an open domain. A (\mathbb{C}, T) -level-preserving map-germ
G : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross T)arrow(\mathbb{C}^{p}\cross \mathbb{C}, O\cross T) is said to be locally \mathcal{G}-trivial if the
restricted germ

G^{a} : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross a)arrow(\mathbb{C}^{p}\cross \mathbb{C}, 0\cross a)

of G at a\in T is \mathcal{G}-trivial at each a\in T

Lemma 2.4 (cf. [J] or [dPW] ) Let T\subset \mathbb{C} be a path connected open
domain. If (\mathbb{C}, T) -level-preserving map-germ G : (\mathbb{C}^{n}\cross \mathbb{C}, 0\cross T)arrow(\mathbb{C}^{p}\cross

\mathbb{C} , O\cross T) is locally \mathcal{G} -trivial, then G_{u} and G_{v} are \mathcal{G} -equivalent for any u , v\in

T. where G_{w}=:\pi_{4}\circ G(-, w) and \pi_{4} : (\mathbb{C}^{p}\cross \mathbb{C}, 0\cross T)arrow(\mathbb{C}^{p}, 0) is the
germ of projection.
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Thom-Levine Type Lemma 2.5 Let T be a domain in \mathbb{C} . If F:(\mathbb{C}^{n}\cross

\mathbb{C} , 0\cross T)arrow(\mathbb{C}^{p}\cross \mathbb{C}, O\cross T) is a(\mathbb{C}, T) el-preserving map-germ.
1) Germ F is locally \mathcal{R}_{I} -trivial at a\in T if and only if

\frac{\partial\pi_{4}\circ F^{a}}{\partial t}\in\overline{T}\mathcal{R}_{I}F^{a}

=: \{\eta(\pi_{4}\circ F^{a})|\eta=\sum_{j=0}^{n}\eta_{j}\frac{\partial}{\partial z_{j}} , \eta(I)\subset IO_{n+1} , \eta_{j}\in \mathfrak{m}_{n}O_{n+1}\}

2) Germ F is locally I\mathcal{K} -trivial at a\in T if and only if

\frac{\partial\pi_{4}\circ F^{a}}{\partial t}\in\overline{T}\mathcal{R}_{I}F^{a}+((\pi_{4}\circ F^{a})^{*}\mathfrak{m}_{p})O_{n+1}^{\cross p}

3) Germ F is locally A_{I} -trivial at a\in T if and only if
\frac{\partial\pi_{4}\circ F^{a}}{\partial t}\in\overline{T}\mathcal{R}_{I}F^{a}+((\pi_{4}\circ F^{a})^{*}(\mathfrak{m}_{p}O_{p+1}))^{\cross p}

This lemma can be proved by the same way as in [M1], [J], or [PI].

3. Proofs of Theorems

Lemma 3.1 Let I\subset I’ , J\subset J’ be ideals of O. If an isomorphism of
\frac{Oo}{I}arrow\frac{o^{O}}{J},thereexi.s- submdules\alpha_{r}.\frac{I’}{tsI}

an
an’ lyticautomorphism \varphi\cdot.(\mathbb{C}^{n+},0)arrow(\mathbb{C}^{n+1},0)\frac{J’}{J,a}canbeliflfledtoa\mathbb{C}- algebra_{1}isomorphism\alpha.\cdot

with \varphi^{*}I=J, \varphi^{*}I’=J’ , such that \varphi induces \alpha and \alpha_{r} .

Proof It is obvious that diagram A is commutative, where the two hor-
izontal sequences are exact and \overline{\alpha} is an isomorphism of O-modules deter-
mined uniquely by \alpha (which is also an O-module isomorphism in a canonical
way) and \alpha_{r} , and p_{1} , p_{2} are canonical projections.

0– \frac{I’}{I}
\frac{O}{I}

p_{1}
\frac{o}{I}, –0

\downarrow\alpha_{r} \downarrow\alpha \downarrow\overline{\alpha}

p_{1}

0– \frac{J’}{J}
\frac{o}{J} \frac{o}{J}, –0

Diagram A
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O

O
\varphi^{*}

0
\frac{o}{I}

\frac{o\downarrow}{I}\pi_{I}

\alpha

\frac{o\downarrow}{J}\pi_{J}

\alpha\downarrow

Diagram B \frac{O}{J}

p_{2}
\frac{o}{J},

Diagram C

By [Lo] Lemma (1.7), there exists an analytic automorphism \varphi :
(\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{n+1},0) with \varphi^{*}I=J such that \varphi^{*} induces \alpha , namely dia-
gram B is commutative. In diagram C , we have \alpha\circ\pi_{I}=\pi_{J}\circ\varphi^{*} . p_{2}\circ\alpha=

\overline{\alpha}\circ p_{1} , p_{1}\circ\pi_{I}=\pi_{I’} , p_{2}\circ\pi_{J}=\pi_{J’} . Hence all the faces of Diagram C are
commutative. This implies \varphi^{*}I’=J’ , and \varphi induces \overline{\alpha} by the uniqueness
of \overline{\alpha} . \square

Hauser Lemma 3.2 ([HI] \S 2) Let T be an analytic manifold, t_{0}\in T ,

and (M_{t})_{t\in T} an analytic family of O_{k} (for some k=1 , \ldots , n+1 ) modules
in O_{n+1} . If M_{t}\subset M_{t_{0}} pointwise for any t\in T . then M_{t}=M_{t_{0}} holds
analytically for all t in a Zariski open subset T’ of T

Lemma 3.3 Let I be an ideal of O , f, g \in\int It

1) If g-f\in\tau_{I}(f)=\tau_{I}(g) , then f is \mathcal{R}_{I} -equivalent to g ;
2) If (f)+\tau_{I}(f)=(g)+\tau_{I}(g) , then f is I\mathcal{K} -equivalent to g ;
3) If f^{*}\mathfrak{m}_{1}+\tau_{I}(f)=g^{*}\mathfrak{m}_{1}+\tau_{I}(g) , then f is A_{I} -equivalent to g .

Proof. Let T=\mathbb{C} , and G:(\mathbb{C}^{n+1}\cross \mathbb{C}, O\cross T)arrow(\mathbb{C}\cross \mathbb{C}, O\cross T) be a (\mathbb{C}, T)-

level preserving map germ defined by G(x, t)=(f(x)+t(g(x)-f(x)), t) .
We are going to prove that for any a\in T . the restricted germ G^{a} is locally
trivial at a with respect to any of the three groups. We only give the detailed
proof of 2), the reader can follow the same way to give the proofs of the
other conclusions.
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Let

M_{t}=\overline{T}\mathcal{R}_{I}G^{a}+((\pi_{4}\circ G^{a})^{*}\mathfrak{m}_{1})O_{n+2}

= \{\eta(f+t(g-f))|\eta=\sum_{j=0}^{n}\eta_{j}\frac{\partial}{\partial z_{j}} , \eta(I)\subset IO_{n+2} , \eta_{j}\in \mathfrak{m}O_{n+2}\}

+((\pi_{4}\circ G^{a})^{*}\mathfrak{m}_{1})O_{n+2}

Then (M_{t})_{t\in T} is an analytic family of O_{n+1} -modules. From 2) we have
M_{t}\subset M_{0}=M_{1} for every t\in T By Hauser Lemma, M_{t}=M_{0}=M_{1} for all
t\in T_{0}=:\mathbb{C}-\{fifinitepoints\neq 1,0\} . Hence for any a\in T_{0}

\frac{\partial G^{a}}{\partial t}=g-f\in M_{0}=M_{t}

this proves that G^{a} is locally I\mathcal{K}-trivial at every a\in T_{0} . By lemma 2.4,
f=G_{0}^{a}=\pi_{4}\circ G^{a}(-, 0) and g=G_{1}^{a}=\pi_{4}\circ G^{a}(-, 1) are IKi-equivalent.

\square

3.4 Proof of 1.5 1) Let g=uf\circ\varphi , \varphi\in \mathcal{R}_{I} , u\in O , u(0)\neq 0 . Notice
that for any \phi\in\prime \mathcal{R}_{I} , \phi^{*}(\tau_{I}(f))=\tau_{I}(f\circ\phi) . It follows that \varphi^{*}((f)+\tau_{I}(f))=

(g)+\tau_{I}(g) .
Hence \varphi^{*} induces an isomorphism of \mathbb{C}-algebras \overline{\varphi}^{*} : M_{I}(f)arrow M_{I}(g) ,

and the restriction of \overline{\varphi}^{*} gives an isomorphism of O-modules \overline{\varphi}_{r}^{*} : \overline{N_{I}}(f)arrow

\overline{N_{I}}(g) . \square

3.5 Proof of 1.5 2) By lemma 3.1, there exists an analytic automor-
phism \varphi : (\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{n+1},0) with \varphi^{*}(\tau_{I}(f)+(f))=\tau_{I}(g)+(g) and
\varphi^{*}(\int I)=\int I . By [P1] (2.14), \varphi^{*}I=I . namely \varphi\in \mathcal{R}_{I} .

Hence we have (f\circ\varphi)+\tau_{I}(f\circ\varphi)=\varphi^{*}((f)+\tau_{I}(f))=(g)+\tau_{I}(g) . From
this we can assume that (f)+\tau_{I}(f)=(g)+\tau_{I}(g) .

In order to prove that (f^{-1}(0), 0) is analytically equivalent to (g^{-1}(0), 0)

by an automorphism \varphi : (\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{n+1},0) with \varphi^{*}I=I , By lemma
2.1, it is enough to prove f and g are I\mathcal{K}-equivalent. Lemma 3.32) gives
this conclusion. \square

3.6 Proof of 1.5* 1) For any automorphism \varphi : (\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{n+1},0) ,
we have \varphi^{*}\int I=\int\varphi^{*}I and \varphi^{*}((f)+\tau_{I}(f))=(g)+\tau_{\varphi^{*}(I)}(g) .

2) By Lemma 3.1, there exists an automorphism \varphi : (\mathbb{C}^{n+1},0)arrow

(\mathbb{C}^{n+1},0) such that \varphi^{*}((f)+\tau_{I}(f))=(g)+\tau_{I’}(g) and \varphi^{*}\int I=\int I’ which
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gives \varphi^{*}I=I’ (see [P1] (2.14)). We also have

(g)+\tau_{I’}(g)=\varphi^{*}((f)+\tau_{I}(f))=(fo\varphi)+\tau_{\varphi^{*}(I)}(fo\varphi)

=(fo\varphi)+\tau_{I’}(fo\varphi)

By lemma 3.32), we know that f\circ\varphi and g are I^{\prime \mathcal{K}}-equivalent. \square

3.7 Proof of 1.6 If we notice the fact that Euler derivation is a generator
of T\mathcal{R}_{I} , then f\in\tau_{I}(f) , g\in\tau_{I}(g) . Theorem 1.6 follows from theorem 1.5,
1.5* and lemma 2.2. \square

3.8 Proof of 1.7 1) If g=\psi\circ f\circ\varphi , \varphi\in \mathcal{R}_{I} , \psi\in \mathcal{L} , then \varphi^{*}\tau_{I}(f)=\tau_{I}(g)

(since \frac{\partial\psi^{-1}}{\partial t}\circ g\in O_{n+1} is a unit). Hence we have an O_{1} -algebra isomorphism
\varphi^{*} : A_{I}(f)arrow A_{I}(g) over (\psi^{-1})^{*} : O_{1}arrow O_{1} . Of course, \varphi^{*} is a \mathbb{C}-algebra
isomorphism which induces an isomorphism of O-modules. Since \varphi^{*}\int I=

\int I , so \varphi^{*} restricts to an O_{1} -module isomorphism \varphi_{r}^{*} : N_{I}(f)arrow N_{I}(g)

which is also an O-module isomorphism induced by \varphi^{*} . \square

3.9 Proof of 1.7 2) Let \alpha : A_{I}(f)arrow A_{I}(g) be an isomorphism of
O_{1} -algebras over \mathbb{C}-algebra isomorphism \sigma : O_{1}arrow O_{1} , then \alpha is also a \mathbb{C}

-

algebra isomorphism and induces \alpha_{r} which is an O-module isomorphism. By
lemma 3.1 we have an analytic automorphism \varphi : (\mathbb{C}^{n+1},0)arrow(\mathbb{C}^{n+1},0)

with \varphi^{*}\tau_{I}(f)=\tau_{I}(g) , \varphi^{*}\int I=\int I such that \varphi*induces\alpha as \mathbb{C}-algebra
isomorphism. It is easy to check that \varphi^{*} is also an O_{1} -algebra isomorphism
over \sigma . Since \prime \mathcal{R}_{I}=\mathcal{R}_{\int I} , \varphi^{*}I=I and \tau_{I}(g)=\varphi^{*}\tau_{I}(f)=\tau_{I}(f\circ\varphi) . So in

the following, we assume \tau_{I}(f)=\tau_{I}(g) , \varphi=id .
For t\in O_{1} , [1]\in A(f) , and [1]’\in A(g) , we have \varphi^{*}(t\cdot[1])=\sigma(t)\cdot\varphi^{*}[1]=

\sigma(t) [1]’ while \varphi^{*}(t [1])=[(t\circ f) 1]’=[f]’ Let a(t)=\sigma(t)\in O_{1} , then
\sigma(t) [1]’=[a\circ g]’ Hence

f-aog\in\tau_{I}(g)=\tau_{I}(f)

Set b=a^{-1} (since \sigma is an isomorphism), then

g-b\circ f\in\tau_{I}(f)

These tell us that

g^{*}m_{1}+\tau_{I}(g)=f^{*}m_{1}+\tau_{I}(f)

By lemma 3.33), f and g are A_{I}-equivalent. \square
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3.10 Proof of 1.8 Replace in 3.8 and 3.9 \psi by id and \sigma by id. \square
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