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Morita-Mumford classes on finite cyclic subgroups
of the mapping class group of closed surfaces
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Abstract. Let G be a finite cyclic subgroup of the mapping class group of order m
We prove the Morita-Mumford classes restricted to G admit a certain kind of periodicity
whose period is given by the Euler function \phi(m) Using this periodicity theorem, we
compute the Morita-Mumford classes on arbitrary finite cyclic subgroups of the automor-
phism group of Klein’s quartic curve.
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Introduction

Let \Sigma_{g} be a closed oriented surface of genus g\geq 2 , and M_{g} the mapping
class group of \Sigma_{g} , which is the group of isotopy classes of orientation preserv-
ing diffeomorphisms of \Sigma_{g} . The cohomological study of M_{g} has been devel-
oped rapidly and has yielded many interesting results. The Morita-Mumford
classes, defined by Morita [MO1] and Mumford [Mu] independently, are a
series of cohomology classes of M_{g} , whose zeroth term is equal to the Euler
number 2-2g of \Sigma_{g} . Many mathematicians, including Harer [H2] [H3],
Miller [Mi], and Morita [MO1] [M02] [M03] [M04], have pointed out the im-
portance of these classes for the study of the stable cohomology ring of M_{g} .
Moreover, recently it is revealed by Akita that the Morita-Mumford classes
play an important role in the study of the \eta-invariant of mapping tori of
periodic mapping classes (see [Ak]). We are convinced that the Morita-
Mumford classes contribute largely to the unstable cohomological study of
M_{g} in the future.

The Morita-Mumford classes of surface bundles are defined as follows.
Let \pi : Earrow B be an oriented fiber bundle whose fiber is \Sigma_{g} . (We call
such a bundle a “surface bundle”) The relative tangent bundle T_{E/B} is the
oriented real 2-dimensional vector bundle over E consisting of all the tangent
vectors along the fibers. Take its Euler class e:=e(T_{E/B})\in H^{2}(E;Z) ,
then e^{n+1}\in H^{2(n+1)}(E;Z) . Let \pi_{!} : H^{n}(E;Z) -arrow H^{n-2}(B;Z) be the
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Gysin homomorphism, which is also called the “integral along the fibers” ,
derived from the Serre spectral sequence of the surface bundle. Then the
n-th Morita-Mumford class e_{n} is defined as follows:

e_{n}=e_{n}(E):=\pi_{!}(e^{n+1})\in H^{2n}(B;Z) .

It is equal to the pull-back of e_{n}\in H^{2n}(M_{g}; Z) by the holonomy homomor-
phism of \pi_{1}(B) into M_{g} . Especially if n=0, then e_{0} is equal to the Euler
number 2-2g of \Sigma_{g} .

The main purpose of this paper is to compute the Morita-Mumford
classes on arbitrary finite cyclic subgroups of the automorphism group of
the Klein curve. The Klein curve is defined by the equation

X^{3}Y+Y^{3}Z+Z^{3}X=0

in the complex projective plane CP^{2} , and it has been studied by many
people, including Baker [Ba], Matsuura [Ma], Morifuji [Mf2], Prapavessi [P]
and others. As is known, its genus is 3, and its automorphism group is
isomorphic to the projective special linear group PSX(2, 7) .

We will use a general formula for the Morita-Mumford classes (TheO-
rem 2.1) to prove the main result in Section 3. Let C be a compact Riemann
surface of genus g and G a finite cyclic group of order m . Suppose G acts
on C in a faithful and holomorphic way. Consider the homotopy quotient
\pi : C_{G}arrow B_{G} of this action, which is a surface bundle with fiber C . Let
( =\exp(2\pi\sqrt{-1}/m) , and u_{0}\in H^{2}(G;Z) the Euler class associated with the
complex 1-dimensional G-module R given by multiplication by (. It is equal
to the Euler class of the complex line bundle R_{G} over the classifying space
B_{G} . Then the Morita-Mumford classes admit a certain kind of periodicity,
whose period is \phi(m) , the number of integers between 1 and m relatively
prime to m . Then

Theorem 2.1 e_{n+\phi(m)}(C_{G})=e_{n}(C_{G})u0^{\phi(m)}\in H^{2(n+\phi(m))}(G;Z) for n\geq

0 .

Theorem 2.1 is discussed in Section 2. In [Ak], Akita notices it for the
case where m is a prime. In view of the affirmative solution of the Nielsen
realization problem by Kerckhoff [Ke], any finite subgroup of M_{g} is realized
as a holomorphic automorphism group of a suitable Riemann surface. Hence
the periodicity theorem (Theorem 2.1) also holds for any cyclic subgroup of
M_{g} . The main result of this paper is the following.
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Theorem 3.1 Let C be the Klein curve and G a finite cyclic group. Sup-
pose G acts on C in a faithful and holomorphic way. Let (=\exp(2\pi\sqrt{-1}/7) ,

and \omega=\exp(2\pi\sqrt{-1}/3) . Then the Morita-Mumford classes of this action
are given as follows:

(1) If G\cong Z/7 , then

e_{n}(C_{G})=\{
3u_{0^{n}} , if n is a multiple of 3,

0, otherwise,

in H^{2n}(G;Z)\cong Z/7 , where u_{0}\in H^{2}(G;Z) denotes the Euler class assO-

ciated with the complex 1-dimensional G-module given by multiplication by
\zeta .

(2) If G\cong Z/3 , then

e_{n}(C_{G})=\{
2v_{0^{n}} , if n is even,

0, if n is odd,

in H^{2n}(G;Z)\cong Z/3 , where v_{0}\in H^{2}(G;Z) denotes the Euler class assO-

ciated with the complex 1-dimensional G-module given by multiplication by
\omega .

(3) If G\cong Z/2 or Z/4, then e_{n}(C_{G})=0 for n\geq 0 in H^{2n}(G;Z) .

Theorem 3.1 implies that there exist two kinds of finite cyclic subgroups
of M_{3} . One satisfies e_{1}=0 and e_{2}\neq 0 , the other e_{1}=e_{2}=0 and e_{3}\neq 0 . In
Section 4, we construct an action of a finite cyclic group on a closed oriented
surface satisfying e_{1}=e_{2}=’ . =e_{n-1}=0 and e_{n}\neq 0 when n(\geq 4) is
an even number or a multiple of 3. Finally in Section 5, we consider the
case where C is a hyperelliptic curve, and give two actions of finite cyclic
groups. Especially if the genus of C is one, one of them satisfies e_{odd}\neq 0

and e_{even}=0 .

1. Preliminaries

In this section, we recall a fixed-point formula of the Morita-Mumford
classes on finite groups ([KU]). In [KU], we studied the Morita-Mumford
classes on finite subgroups of M_{g} in the following situation. Let G be a finite
group and C a compact Riemann surface of genus g\geq 0 . Suppose G acts
on C in a faithful and holomorphic way. Consider the universal principal
G-bundle E_{G} - B_{G} . Then it induces the homotopy quotient (which is also
called “the Borel construction”) \pi : C_{G} – B_{G} of this action. The space C_{G}
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is the quotient of E_{G}\cross C by the diagonal action of G . The map \pi induced
by the first projection provides an oriented fiber bundle with fiber C

Carrow C_{G}arrow B_{G}\pi .

Its Morita-Mumford class e_{n}(C_{G})\in H^{2n}(B_{G;}Z)=H^{2n}(G;Z) is equal to
the restriction of e_{n} to the subgroup G.

Denote the isotropy group at a point p\in C by G_{p} . The singular set

S:=\{p\in C|G_{p}\neq\{1\}\}

is a G-stable finite subset of G, since the action is faithful and holomorphic.
Let \xi_{p}=(E_{G_{p}}xT_{p}C)/G_{p} be the oriented real 2-dimensional vector bundle
over B_{G_{p}} associated with the action of G_{p} on the tangent space T_{p}C and
e(\xi_{p})\in H^{2}(B_{G_{p};}Z)=H^{2}(G_{p}; Z) its Euler class. Since the transfer map
cor_{G_{p}}^{G} : H^{*}(G_{p};Z) -arrow H^{*}(G;Z) is invariant under conjugation, the coh0-
mology class cor_{G_{p}}^{G}(e(\xi_{p})^{n})\in H^{2n}(G;Z) is constant on each G-0rbit (see for
example [Br].) Then we obtain an explicit formula for the Morita-Mumford
classes e_{n}(C_{G}) in terms of fixed-point data.

Theorem 1.1 (Kawazumi-Uemura) In the situation stated above we have

e_{n}(C_{G})= \sum_{p\in S/G}cor_{G_{p}}^{G}(e(\xi_{p})^{n})\in H^{2n}(B_{G;}Z)=H^{2n}(G;Z)

for any n\geq 1 .

It should be noted that this fixed-point formula is deduced from a gen-
eral formula of Morita-Mumford classes for fiberwise branched coverings of
surface bundles by Miller [Mi] and Morita [Mol]. The right-hand side de-
pends only on the isotropy groups and their actions on the tangent spaces
at the fixed-points.

2. A periodicity theorem for the Morita-Mumford classes

Let C be a compact Riemann surface of genus g . Suppose a finite
cyclic group G of order m acts on C in a faithful and holomorphic way. Let
\zeta=\exp(2\pi\sqrt{-1}/m) , and choose a generator \gamma of G . Then we consider the
complex 1-dimensional G-module R where the action of \gamma is given by the
multiplication by \zeta , and define u_{0}\in H^{2}(G;Z) by the Euler class associated
with R . Throughout this paper, we will call u_{0} simply “the Euler class given
by multiplication by \zeta

” Then the Morita-Mumford classes admit a certain
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kind of periodicity, whose period is \phi(m) , the number of integers between
1 and m relatively prime to m . In other words, \phi(m) is the Euler function
of m . Then we obtain the following result.

Theorem 2.1 e_{n+\phi(m)}(C_{G})=e_{n}(C_{G})u_{0^{\phi(m)}}\in H^{2(n+\phi(m))}(G;Z) for n\geq

0 .

Proof. Let S=\coprod_{i=1}^{l}G\cdot p_{i} be the G-stable decomposition of the singular
set and m_{i} the order of G\cdot p_{i} , so that \frac{m}{m_{i}}=|G_{pi}| . Let (i= \exp(2\pi\sqrt{-1}/\frac{m}{m_{i}}) .
Then the action \gamma^{m_{i}} on the tangent space T_{p_{i}}C is equal to the multiplication
by (_{i}^{k_{i}} for some integer k_{i} relatively prime to m . From Theorem 1.1, when
n\geq 1 , the Morita-Mumford classes of this action is given as follows:

e_{n}(C_{G})=( \sum_{i=1}^{l}m_{i}k_{i}^{n})u_{0^{n}}

As is well-known, k_{i}^{\phi(\frac{m}{m_{i}})}\equiv 1 (mod\frac{m}{m_{i}} ). Since \phi(\frac{m}{m_{i}}) divides \phi(m) , this

congruence implies m_{i}k_{i}^{\phi(m)}\equiv m_{i} (mod m). Therefore we obtain

e_{n+\phi(m)}(C_{G})=( \sum_{i=1}^{l}m_{i}k_{i}^{n+\phi(m)})u_{0}^{n+\phi(m)}

=( \sum_{i=1}^{l}m_{i}k_{i}^{n})u_{0^{n}}u_{0^{\phi(m)}}=e_{n}(C_{G})u0^{\phi(m)}

in H^{2(n+\phi(m))}(G;Z)\cong Z/m . In the case where n=0 we have \sum_{i=1}^{l}m_{i}\equiv

2-2g=e_{0}(C_{G}) (mod m) from the classical Riemann-Hurwitz formula.
Hence we obtain

e_{\phi(m)}(C_{G})=(2-2g)u_{0}^{\phi(m)}=e_{0}(C_{G})u_{0}^{\phi(m)}

similarly. This concludes the proof. \square

Corollary 2.1 e_{s\phi(m)}(C_{G})=(2-2g)u_{0^{s\phi(m)}}=e_{0}(C_{G})u_{0}^{s\phi(m)} /or any in-
teger s\geq 1 .

If m=2,3 , 4 and 6, then \phi(m)\leq 2 . Using Theorem 2.1 and Corol-
lary 2.1, we deduce the following corollaries.

Corollary 2.2 If G\cong Z/2 , then e_{n}(C_{G})=0 for n\geq 0 .
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Corollary 2.3 If G\cong Z/3 , Z/4 or Z/6 , then

e_{n}(C_{G})=\{
(2-2g)u_{0^{n}:} if n is even,
e_{1}u_{0}^{n-1} , if n is odd.

3. An application to the Klein curve

Let C be the complex algebraic curve defined by the equation

X^{3}Y+Y^{3}Z+Z^{3}X=0 (1)

in the complex projective plane CP^{2} . The curve C is of genus 3, and
called the Klein curve. It is known that the automorphism group Aut(C) is
isomorphic to the projective special linear group PSL(2, 7) which has order
168. Moreover Aut(C) has the presentation

PSL(2, 7)=\langle s, t|s^{2}=t^{3}=(st)^{7}=[s, t]^{4}=1\rangle ,

where [s, t]=sts^{-1}t^{-1} denotes the commutator of s and t . We may regard
it as a subgroup of M_{3} .

The purpose of this section is to compute the Morita-Mumford classes
on arbitrary cyclic subgroups of PSL(2,7) as an application of Theorem
1.1 and Theorem 2.1. The conjugacy classes of PSL(2, 7) are as follows
(see [I]):

Table 1. Conjugacy classes of PSL(2, 7)

In Table 1, each conjugacy class is denoted by the order of its elements,
and 7_{1} and 7_{2} mean the different classes. This Table 1 indicates that any
two cyclic subgroups of PSL(2, 7) are conjugate to each other if they have
the same order, and each of them is isomorphic to Z/2 , Z/3 , Z/4 or Z/7 .

The main result in this paper is the following.

Theorem 3.1 Let C be the Klein curve and G a finite cyclic group. Sup-
pose G acts on C in a faithful and holomorphic way. Let (=\exp(2\pi\sqrt{-1}/7) ,
and \omega=\exp(2\pi\sqrt{-1}/3) . Then the Morita-Mumford classes of this action
are given as follows:
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(1) If G\cong Z/7 , then

e_{n}(C_{G})=\{
3u0^{n} . if n is a multiple of 3,

0, otherwise,

in H^{2n}(G;Z)\cong Z/7 , where u_{0} denotes the Euler class given by multiplica-
tion by ( .

(2) If G\cong Z/3 , then

e_{n}(C_{G})=\{
2v_{0^{n}} . if n is even,

0, if n is odd,

in H^{2n}(G;Z)\cong Z/3 , where v_{0} denotes the Euler class given by multiplica-
tion by \omega .

(3) If G\cong Z/2 , then e_{n}(C_{G})=0 for n\geq 0 in H^{2n}(G;Z)\cong Z/2 .
(4) If G\cong Z/4 , then e_{n}(C_{G})=0 for n\geq 0 in H^{2n}(G;Z)\cong Z/4 .

Proof. We recall that the genus of the Klein curve is 3. We see from [KU]
that e_{1}=0 , since PSL(2, 7) is a perfect group. Hence (2), (3) and (4)
follow from Corollary 2.2 and 2.3 immediately.

In order to prove (1), we define an automorphism \gamma of C as follows:
(see for example [AR], [K1])

\gamma(X, Y, Z):=((X, (^{4}Y, \zeta^{2}Z) ,

where ( =\exp(2\pi\sqrt{-1}/7) . It induces an element \gamma of order 7 of the aut0-
morphism group PSL(2, 7) . We put G=\langle\gamma\rangle<PSL(2,7) . Since any cyclic
subgroups of PSL(2, 7) of order 7 is conjugate to G , it suffices to compute
e_{n}(C_{G}) .

On the open subset \{Z\neq 0\} , substituting x:=X/Z and y:=Y/Z into
(1), we obtain the following function of two variables:

f:=x^{3}y+y^{3}+x .

Then \gamma(x)=\zeta^{-1}x and \gamma(y)=\zeta^{2}y . We can easily see that [0 : 0: 1] is the
unique fixed point of \gamma on \{Z\neq 0\} . By the implicit function theorem, the
variable y can serve as a coordinate at (x, y)=(0,0) since f_{x}(0,0)\neq 0=

f_{y}(0,0) . Let u0\in H^{2}(G;Z) be the Euler class given by multiplication by
(. Then we can see that the contribution at [0 : 0: 1] is (2u_{0})^{n} .

In a similar way, on \{X\neq 0\} , [1 : 0 : 0] is the unique fixed point and
its contribution is u_{0}^{n} , and on \{Y\neq 0\} , [0 : 1 : 0] is the unique fixed point
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and its contribution is (-3u_{0})^{n} . Therefore we obtain

e_{n}(C_{G})=(2u_{0})^{n}+u_{0}^{n}+(-3u_{0})^{n}

=\{2^{n}+1+2^{2n}\}u_{0}^{n}

in H^{2n}(G;Z)\cong Z/7 . This concludes the proof. \square

Remark 3.1. As is known, we have another action \gamma 0 of order 7 such that

\gamma_{0}(X, Y, Z) :=((X, (^{2}Y, \zeta^{4}Z)

(see for example [Ba].) If we compute the Morita-Mumford classes using
this action, we obtain the following:

e_{n}(C_{G})=\{
-3u_{0^{n}} . if n is a multiple of 3,
0, otherwise,

in H^{2n}(G;Z)\cong Z/7 .

Remark 3.2. The cyclic actions on the Klein curve C are explicitly given
by [K1], [P], and [Ba]. We can also compute the Morita-Mumford classes on
Z/3 by using the action \tau of order 3 given by

\tau(X, Y, Z):=(Y, Z, X) (cyclic permutation.)

In fact, the fixed points of \tau are [ 1 : \omega : \omega^{2}] and [ 1 : \omega^{2} : \omega] , so using
e_{1}=0 (recall that PSL(2, 7) is perfect), we obtain the same result as in
Theorem 3.1.

4. Some actions of cyclic groups on surfaces

Theorem 3.1 implies the existence of a finite cyclic subgroup of M_{3}

satisfying e_{1}=0 , e_{2}\neq 0 , and e_{1}=e_{2}=0 , e_{3}\neq 0 . So we consider the
following problem.

Problem Construct a finite cyclic subgroup of M_{g} satisfying e_{1}=e_{2}=
. t =e_{n-1}=0 and e_{n}\neq 0 for each n \geq 4 .

In this section, we will give two affirmative partial answers to this prob-
lem.

Theorem 4.1 For an arbitrary integer m\geq 0 , there exists an action of
a finite cyclic group G on a closed oriented surface C satisfying e_{1}(C_{G})=

e_{2}(C_{G})=\cdot 1=e_{2m-1}(C_{G})=0 and e_{2m}(C_{G})\neq 0 .



Morita-Mumford classes on finite cyclic subgroups 605

Theorem 4.2 For an arbitrary integer m\geq 0 , there exists an action of
a finite cyclic group G on a closed oriented surface C satisfying e_{1}(C_{G})=

e_{2}(C_{G})= . =e_{3m-1}(C_{G})=0 and e_{3m}(C_{G})\neq 0 .

Proof of Theorem 4.1. By Dirichlet’s Theorem, there exists a prime p sat-
isfying p=2ml+1 for some integer l\geq 1 . Let k be a primitive root of p ,
so that k^{p-1}\equiv 1 (mod p) and k_{0}:=k^{l} . We consider the following situation.
At first, let S_{i}^{2} be the 2-sphere of radius a>0 inside R^{3} defined by the
following equation:

S_{i}^{2}=\{(x, y, z)\in R^{3}|x^{2}+y^{2}+\{z+3(i-1)a\}^{2}=a^{2}\}

for 1\leq i\leq m . Secondly, take 2p points

p_{i}^{J}+=( \frac{\sqrt{3}}{2}a cos ( \frac{2j\pi}{p}) , \frac{\sqrt{3}}{2}a sin ( \frac{2j\pi}{p}) . (-3i+ \frac{7}{2})a)

p_{i_{-}}^{i}=( \frac{\sqrt{3}}{2}a \cos(\frac{2j\pi}{p}) , \frac{\sqrt{3}}{2}a
\sin(\frac{2j\pi}{p}) : (-3i+ \frac{5}{2})a)

on each S_{i}^{2}(0\leq j\leq p-1) . Take sufficiently small open discs U_{i}^{j}\pm centered at
p_{i}^{j}\pm respective1y, and connect U_{i_{-}}^{j} and U_{(i+1)_{+}}^{k_{0}j} with a tube for each i , j . Then
we obtain a closed oriented surface C of genus (p-1)(m-1) . We define an
action of the cyclic group G=Z/p on C as follows. Rotate S_{i}^{2} by 2k_{0}^{i-1}\pi/p

about the z-axis. From the construction, these actions extend to the action
of G=Z/p on the whole surface C . Let u_{0}\in H^{2}(G;Z) be the Euler class
given by multiplication by ( =\exp(2\pi\sqrt{-1}/p) . Then the isotropy group of
each singular point is G, namely, this action is semi-free. The fixed points
on S_{i}^{2} are (0, 0, (-3i+3\pm 1)a) . Considering the contribution of each fixed
point, the n-th Morita-Mumford class of this action is

e_{n}(Cc)=u_{0^{n}}+(-u_{0})^{n}+(k_{0}u_{0})^{n}+(-k_{0}u_{0})^{n}+\cdot

+(k_{0}^{m-1}u_{0})^{n}+(-k_{0}^{m-1}u_{0})^{n}

=\{1+(-1)^{n}+k_{0}^{n}+(-k_{0})^{n}+ , .
+k_{0}^{(m-1)n}+(-k_{0})^{(m-1)n}\}u_{0}^{n}

in H^{2n}(G;Z)\cong Z/p . It is obvious that e_{n}(C_{G})=0 when n is an odd
number. If n=2t(1\leq t\leq m-1) , then

e_{2t}(C_{G})=2(1+k_{0}^{2t}+k_{0}^{4t}+, . +k_{0}^{2(m-1)t})u0^{2t}
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=2 \frac{k_{0}^{2mt}-1}{k_{0}^{2t}-1}u_{0^{2t}}

=0,

since k_{0}^{2mt}=k^{2mlt}=1 , and k_{0}^{2t}=k^{2lt}\neq 0 . If n=2m, then

e_{2m}(C_{G})=2(1+k_{0}^{2m}+k_{0}^{4m}+\cdot\cdot+k_{0}^{2m(m-1)})u0^{2m}

=2(1+k^{2ml}+k^{4ml}+|\cdot+k^{2ml(m-1)})u0^{2m}

=21mu_{0^{2m}}

\neq 0

in Z/p since m<p-1=2ml . This concludes the proof. \square

Consider the case where m=1 in the proof of Theorem 4.1. Then the
genus of C is zero. Therefore C is isomorphic to the complex projective line
P^{1} . Any action of a finite cyclic group on P^{1} is conjugate to the rotation
as above. We can regard C as the unit sphere S^{2} in R^{3} by a suitable
diffeomorphism. So we can define the action of G=Z/p on C , which is the
rotation of C by 2a\pi/p about the z-axis for some integer 1\leq a\leq[_{2}^{E}] . Here
[_{2}^{fi}] denotes the largest integer less than or equal to E2^{\cdot} Therefore we obtain
the following.

Proposition 4.1 Let C be the Riemann sphere P^{1} . Suppose G=Z/p
acts on C as above. Let u_{0}\in H^{2}(G;Z) be the Euler class given by multi-
plication by \zeta=\exp(2\pi\sqrt{-1}/m) . Then

e_{n}(C_{G})=\{
2au_{0^{n}}., if n is even,
0, if n is odd.

Proof of Theorem 4.2. By Dirichlet’s Theorem, there exists a prime p sat-
isfying p=3ml+1 for some integer l\geq 1 . Let k be a primitive root of
p , and k_{0}:=k^{l} , and a(\geq 2) the smallest integer satisfying p|1+a+a^{2} .
Define the complex algebraic curve C_{0} by

X^{a+1}Y+Y^{a+1}Z+Z^{a+1}X=0

in CP^{2} . It is not difficult to see that C_{0} is a non-singular curve, and its
genus is a(a+1)/2 by Plucker’s formula. Prepare m copies C_{i}(1\leq i\leq

m) of the curve C_{0} . Similarly in the proof of Theorem 3.1, we define an
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automorphism \gamma_{i} on each C_{i} as follows:

\gamma_{i}(X, Y, Z):=((^{k_{0}^{i-1}}X, (^{k_{0}^{i-1}a^{2}}Y, (^{k_{0}^{i-1}a}Z) ,

where ( =\exp(2\pi\sqrt{-1}/p) . Note that \gamma_{i}=\gamma_{1}^{k_{0}^{i-1}}

Each \gamma_{i} induces an action of the cyclic group G=Z/p on C_{i} . We can
easily see that the singular set S_{i}\subset C_{i} of G is

S_{i}=\{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] \} .

Choose two points p_{i} , q_{i}\in C_{i}-S_{i} such that G\cdot p_{i}\cap G\cdot q_{i}=\emptyset . Define
p_{i}^{J}:=\gamma_{i}^{j}(p_{i}) and \oint_{i}:=\gamma_{i}^{J}(q_{i}) for 0\leq j\leq p-1 . Note that the action of
G on C_{i}-S_{i} is free. Take sufficiently small open discs U_{i,j} and V_{i,j} in C_{i}

centered at p_{i}^{J} and q/_{i} . respectively. Connect V_{i,j} and U_{i+1,j} with a tube for
each i , j(1\leq i\leq m-1) . Then we obtain a closed oriented surface C of
genus a(a+1)(p-1)(m-1)/2 . From this construction, the automorphisms
\gamma_{i} ’s extend to the action of G=Z/p on the whole surface C .

Let u_{0}\in H^{2}(G;Z) be the Euler class given by multiplication by ( =

\exp(2\pi\sqrt{-1}/p) . Clearly this action is semi-free, and we can compute the
contribution of each fixed point similarly in the proof of Theorem 3.1.
Therefore the n-th Morita-Mumford class of the action on C_{i} is

e_{n}((C_{i})_{G})=[\{k_{0}^{i-1}(a-1)\}^{n}+\{k_{0}^{i-1}(1-a^{2})\}^{n}

+\{k_{0}^{i-1}(a^{2}-a)\}^{n}]u0^{n} ,

and that of the action on the whole surface C is

e_{n}(C_{G})

= \sum_{i=1}^{m}e_{n}((C_{i})_{G})

= (1+k_{0}^{n}+ \cdot 1+k_{0}^{(m-1)n})\{(a-1)^{n}+(1-a^{2})^{n}+(a^{2}-a)^{n}\}u_{0^{n}}

in H^{2n}(G;Z)\cong Z/p . It is easy to check that e_{n}(C_{G})=0 when n is not a
multiple of 3. If n=3t(1\leq t\leq m-1) , then

(1+k_{0}^{3t}+ \cdot +k_{0}^{3t(m-1)})=\frac{k_{0}^{3mt}-1}{k_{0}^{3t}-1}=\frac{k^{3lmt}-1}{k^{3lt}-1}=0 ,

since k_{0}^{3mt}=k^{3mlt}=1 , and k_{0}^{3t}=k^{3lt}\neq 0 . Therefore e_{3t}(C_{G})=0\in Z/p .
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If n=3m, then

(1+k_{0}^{3m}+ +k_{0}^{3m(m-1)})=1+k^{3ml}+|\cdot+k^{3m(m-1)l}

=1 , m\neq 0 .

Therefore it is easy to see that e_{3m}(C_{G})=3m(a-1)^{3m}u0^{3m}\neq 0 in Z/p .
This concludes the proof. \square

5. Hyperelliptic curves

In this section, we consider the case where C is a hyperelliptic curve,
and give two actions of finite cyclic groups.

Example 5.1. Consider two complex plane curves

w^{2}=z(1-z^{2g}) , w_{1}^{2}=z_{1}(z_{1^{2g}}-1)

for g\geq 1 . Glueing them each other by the map z_{1}=z^{-1} and w_{1}=z^{-g-1}w ,
we obtain a hyperelliptic curve C of genus g . Let \zeta=\exp(2\pi\sqrt{-1}/4g) ,
consider the action

\gamma : (z, w)-(\zeta^{2k}z, \zeta^{k}w) (k=1,2, . , 4g-1) .

Then it gives an automorphism of C of order Ag. Its singular set S is

S=\{(0,0), \infty, ((^{2j}, 0);j=0,1, \ldots, 2g-1\} ,

where \infty denotes the point at infinity: (z_{1}, w_{1})=(0,0) . This action is
not semi-free since the isotropy groups of (0, 0) and \infty are \langle\gamma\rangle , but that of
(\zeta^{2j}, 0) is \langle\gamma^{2g}\rangle . Here \langle\gamma\rangle (resp. \langle\gamma^{2g}\rangle ) denotes the automorphism group of
C generated by \gamma (resp. \gamma^{2g} ). Let u_{0}\in H^{2}(\langle\gamma\rangle;Z) (resp. v_{0}\in H^{2}(\langle\gamma^{2g}\rangle;Z)

be the Euler class given by multiplication by \zeta (resp. \zeta^{2g} ). Then u_{0}^{n} (resp.
v_{0}^{n}) generates the group H^{2n}(\langle\gamma\rangle;Z)\cong Z/4g (resp. H^{2n}(\langle\gamma^{2g}\rangle;Z)\cong Z/2 )
for each n .

Then Theorem 1.1 implies

e_{n}(C_{\langle\gamma\rangle})=u_{0^{n}}+\{-(2g+1)\}^{n}u_{0^{n}}+cor_{\langle\gamma^{2g}\rangle}^{\langle\gamma\rangle}v_{0^{n}}\in H^{2n}(\langle\gamma\rangle;Z) .

From well-known properties of the transfer map, we can easily see that
cor_{\langle\gamma^{2g}\rangle}^{\langle\gamma\rangle}v_{0^{n}}=[\langle\gamma\rangle : \langle\gamma^{2g}\rangle]u_{0^{n}}=2gu_{0^{n}} (see for example [Br]). Therefore we
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obtain

e_{n}(C_{\langle\gamma\rangle})=\{

(2+2g)u0^{n} , if n is even,
0, if n is odd,

in H^{2n}(\langle\gamma\rangle;Z)\cong Z/4g . Especially if g=1 , then 2+2g\equiv 0 (mod 4). So
e_{n}(C_{\langle\gamma\rangle})=0 for any n\geq 0 .

Example 5.2. Consider two complex plane curves

w^{2}=z(1-z^{2g+1}) , w_{1}^{2}=z_{1^{2g+1}}-1

for g\geq 1 . Glueing them each other by the map z_{1}=z^{-1} and w_{1}=z^{-g-1}w ,
we obtain a hyperelliptic curve C of genus g . Let \zeta=\exp(2\pi\sqrt{-1}/(4g+2)) ,
consider the action

\gamma : (z, w)-((^{2k}z, \zeta^{k}w) (k=1,2, \ldots, 4g+1) .

Then it gives an automorphism of C of order 4g+2 . Its singular set S is

S=\{(0,0), \infty_{-}, \infty+, (\zeta^{2j}, 0) ; j=0,1, \ldots, 2g\} ,

where \infty_{-} and \infty+denote the points at infinity: (z_{1}, w_{1})=(0, \pm\sqrt{-1}) .
This action is not semi-free since the isotropy group of (0, 0) is \langle\gamma\rangle , but
those of \infty_{-} and \infty+are\langle\gamma^{2}\rangle , and that of (\zeta^{2j}, 0) is \langle\gamma^{2g+1}\rangle . Take the
Euler classes u_{0}\in H^{2}(\langle\gamma\rangle;Z) , m_{0}\in H^{2}(\langle\gamma^{2}\rangle;Z) , and v_{0}\in H^{2}(\langle\gamma^{2g+1}\rangle;Z)

similarly in Example 5.1.
Then Theorem 1.1 implies

e_{n}(C_{\langle\gamma\rangle})=u0^{n}+cor_{\langle\gamma^{2}\rangle}^{\langle\gamma\rangle}(-m_{0})^{n}+cor_{\langle\gamma^{2g+1}\rangle}^{\langle\gamma\rangle}v_{0^{n}}\in H^{2n}(\langle\gamma\rangle;Z) .

Note that the actions at the points at infinity are z_{1} – (^{-2k}z_{1} and w_{1}\vdasharrow

(^{-(2g+1)k}w_{1}=(-1)^{k}w_{1} , so the contribution at each point is (-m_{0})^{n} . Simi-
larly in Example 5.1, we can easily see that cor_{\langle\gamma^{2}\rangle}^{\langle\gamma\rangle} (-m_{0})^{n}=[\langle\gamma\rangle : \langle\gamma^{2}\rangle]u_{0^{n}}=

2(-1)^{n}u_{0^{n}} , and cor_{\langle\gamma^{2g+1}\rangle}^{\langle\gamma\rangle}v_{0^{n}}=[\langle\gamma\rangle : \langle\gamma^{2g+1}\rangle]u_{0^{n}}=(2g+1)u_{0^{n}} . Therefore
we obtain

e_{n}(C_{\langle\gamma\rangle})=\{

2 (2+g)u_{0^{n}}.
, if n is even,

2gu_{0^{n}} , if n is odd,

in H^{2n}(\langle\gamma\rangle;Z)\cong Z/(4g+2) . Especially if g=1 , then 2(2+1)\equiv 0 (mod 6).
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So we obtain

e_{n}(C_{\langle\gamma\rangle})=\{

0, if n is even,
2u_{0^{n}} , if n is odd,

in H^{2n}(\langle\gamma\rangle;Z)\cong Z/6 . This example shows that e_{odd}\neq 0 and e_{even}=0 ,
and differs from the others described above.
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