Regularity up to the boundary for the $\bar{\partial}$ complex

Giuseppe Zampieri

(Received May 7, 1998; Revised October 12, 1998)

Abstract

We introduce a condition of q-pseudoconvexity for a domain W of \mathbb{C}^{N}, and prove that it is sufficient for solvability of the $\bar{\partial}$-complex over (antiholomorphic) forms of degree $\geq q+1$ with smooth coefficients up to the boundary. Our method applies to wedges of \mathbb{C}^{N} and therefore it provides a useful tool to solve the tangential $\bar{\partial}$ system on real submanifolds of \mathbb{C}^{N}. The proof is very elementary. It consists in a variant of the L^{2}-estimates by Hörmander [4], [5] (in the non coordinate-free version) which permits a straight application of the method by Dufresnoy [2]. The plan of the paper is as follows.

In §1 we introduce generalized pseudoconvexity ((1.1) and (1.2)), prove that it can be formulated equivalently for defining functions of ∂W or exhaustion functions of W, and state our main result on solvability of $\bar{\partial}$ for forms with coefficients in $\mathbb{C}^{\infty}(\bar{W})$. In $\S 2$ we give the variant of the L^{2} estimates by [4], [5] which fits our condition. It consists in a partial use of the commutation relations of [5, formula (4.2.6)], so that the terms involved in our condition (1.1), instead of the full Levi form, are obtained. The rest is just routine. The above estimates first entail existence in L^{2} spaces with universal weight (i.e. independent of W) for $\bar{\partial}$, and then C^{∞} regularity up to the boundary for ($\bar{\partial}, \bar{\partial}^{*}$).

We aim to develop and refine our statements in our forthcoming paper [10].

Key words: q-convexity q-concavity, $\bar{\partial}$ and $\bar{\partial}_{b}$ Neumann problems.

1. Statement of the result

Let $W_{h}, h=1, \ldots, m$ be C^{2} half-spaces in a neighborhood of a point z_{o} in \mathbb{C}^{N}, with transversal boundaries $M_{h}=\partial W_{h}$, and let $W=\bigcap_{h=1, \ldots, m} W_{h}$. We assume $\bigcap_{h=1, \ldots, m} M_{h}$ generic, and set $\hat{M}_{h}:=M_{h} \cap \partial W, N:=\bigcup_{h \neq k} \hat{M}_{h} \cap$ \hat{M}_{k}. For multiindices $J=\left(j_{1}, \ldots, j_{k}\right)$, we shall deal with vectors $w=\left(w_{J}\right)$ with complex alternate coefficients. We shall consider defining functions r_{h} for W_{h} (i.e. $W=\left\{r_{h}<0\right\}$ with $\partial r_{h} \neq 0$). We assume there are positive integers a and q and local coordinates $z=x+i y$ on \mathbb{C}^{N} at z_{o} such that

$$
\begin{align*}
\sum_{|K|=a+q}^{\prime} \sum_{\text {or }}^{j \geq q+1} & \bar{\partial}_{j} \partial_{i} r_{h}(z) \bar{w}_{j K} w_{i K} \geq 0 \\
& \forall z \in \hat{M}_{h} \quad \forall z \text { close to } z_{o} \forall\left(w_{i K}\right)_{i} \in \partial r_{h}(z)^{\perp} . \tag{1.1}
\end{align*}
$$

(Here \sum^{\prime} denotes summation over ordered indices and \perp indicates the (complex) orthogonal.) Particular emphasis shall be put in the case $a=0$. If $\partial^{\prime}:=\left(\partial_{1}, \ldots, \partial_{q}\right)$ we are also assuming that Span $\partial^{\prime} \subset \partial r_{h}(z)^{\perp} \forall z \in \hat{M}_{h}$. Let $\partial^{\prime \prime}=\sum_{q+1}^{N} a_{j}^{\prime \prime}(z) \partial_{j}\left(a^{\prime \prime}=\left(a_{\substack{\prime \prime h}}^{j}\right)_{\substack{j=q+1 \cdots N \\ h=q+1 \cdots N-1}}\right)$ be the orthogonal completion of ∂^{\prime} in $T^{(1,0)} M_{h}$; then a sufficient condition for (1.1) with $a=0$ is clearly:

$$
\begin{equation*}
\bar{\partial}^{\prime} \partial^{\prime \prime} r_{h}(z)=0 \quad \bar{\partial}^{\prime \prime} \partial^{\prime \prime} r_{h} \geq 0 \quad \forall z \in \hat{M}_{h} \text { close to } z_{o} \tag{1.2}
\end{equation*}
$$

Note that both (1.1) and (1.2) are independent of the choice of the defining functions r_{h}. The other extremal case is when $q=0$. To treat it, let $\mu_{1}^{h} \leq \mu_{2}^{h} \leq \ldots$ denote the eigenvalues of $\left.\bar{\partial} \partial r_{h}\right|_{\partial r_{h}^{\perp}}$.
Proposition 1.1 (1.1) for $q=0$ is equivalent to

$$
\begin{equation*}
\sum_{j=1, \ldots, a+1} \mu_{j}^{h} \geq 0 \forall h \tag{1.3}
\end{equation*}
$$

Proof. It is a general fact that

$$
\begin{equation*}
\sum_{|K|=a}^{\prime} \sum_{i j=1, \ldots, N} \bar{\partial}_{j} \partial_{i} r_{h} \bar{w}_{j K} w_{i K} \geq\left(\sum_{j=1 \ldots a+1} \mu_{j}^{h}\right)|w|^{2} \tag{1.4}
\end{equation*}
$$

(which proves that (1.3) implies (1.1)). Moreover when $\left.\bar{\partial}_{j} \partial_{i} r_{h}\right|_{\partial r_{h}}$ is diagonal, and $w=\left(w_{1} \cdots a+1\right)$, then (1.4) becomes equality (which proves that (1.1) implies (1.3)).

We represent now \hat{M}_{h} as a graph $x_{1}=g_{h}$, and ∂W as $x_{1}=g$. We put $r:=-x_{1}+g, \delta:=-r, \phi=-\log \delta+c|z|^{2}$. Let $S=\left\{z: g_{h}=g_{k}\right.$ for $\left.h \neq k\right\}$. This is a manifold (because the M_{h} 's intersect transversally) with conormals $\pm n=\frac{ \pm \partial\left(g_{h}-g_{k}\right)}{\left|\partial\left(g_{h}-g_{k}\right)\right|}$. Denote by $J(\cdot)$ the $j u m p$ between the h 's and k 's side of S. We have

$$
\begin{equation*}
+n=\frac{J(\partial r)}{|J(\partial r)|}=\frac{J(\partial \phi)}{|J(\partial \phi)|} \tag{1.5}
\end{equation*}
$$

It is also clear that

$$
\begin{equation*}
\left.\partial^{\prime}\right|_{S} \subset T^{\mathbb{C}} S \tag{1.6}
\end{equation*}
$$

Proposition 1.2 Assume (1.1). Then there is a defining function r of W such that if we set $\phi=-\log \delta+c|z|^{2}(\delta:=-r)$, for suitable c, we obtain
an exhaustion function of W at z_{o} such that for some $\lambda(\lambda(z)>0 z \in W)$ and for any $k \geq q+a+1$:

$$
\begin{align*}
\sum_{|K|=k-1}^{\prime} \sum_{i \text { or }} \sum_{j \geq q+1} \bar{\partial}_{j} \partial_{i} \phi(z) \bar{w}_{j K} w_{i K} & \geq \lambda|w|^{2} \\
& \forall z \in W \backslash S \text { close to } z_{o} \tag{1.7}
\end{align*}
$$

Proof. One of the problems here is that in (1.1) z ranges in ∂W whereas in (1.7) it ranges through W. Recall the functions $r=-x_{1}+g, r_{h}=-x_{1}+g_{h}$, and the surface $S=\left\{z: g_{h}=g_{k}\right.$ for $\left.h \neq k\right\}$. We then consider the local foliation $W=\bigcup_{\epsilon} M_{\epsilon}$ (where $M_{\epsilon}=\{r=-\epsilon\}$). Let z, z^{*} be two points in $M_{\epsilon} \backslash S$ and $M_{0}(=\partial W)$ respectively with the same $\left(y_{1}, z^{\prime}\right)$-components. We have

$$
T_{z} M_{\epsilon}=T_{z^{*}} M_{0} \quad \bar{\partial} \partial r(z)=\bar{\partial} \partial r\left(z^{*}\right)
$$

Under our choice of r, (1.1) holds for any $z \in W \backslash S$ (not only $z \in \partial W$). We then put $\phi=-\log (-r)+c|z|^{2}$. We have $\forall K$:

$$
\begin{align*}
\bar{\partial} \partial \phi\left(\bar{w}_{\cdot}, w_{\cdot K}\right)= & r^{-2} \partial r w_{\cdot K} \bar{\partial} r \bar{w}_{K} \\
& -r^{-1} \bar{\partial} \partial r\left(\bar{w}_{\cdot}, w_{\cdot K}\right)+c\left|w_{\cdot}\right|^{2} \tag{1.8}
\end{align*}
$$

When $w_{K} \perp \partial r$, then the first term on the right of (1.8) vanishes whereas for the second (1.1) applies $(\forall z \in W)$. Observe here that any $|J| \geq q+1$ can be written, up to order, as $J=i K$ for $i \geq q+1,|K|=k-1$. Then (1.7) follows.

In the general case, let $w_{\cdot K}^{\tau}\left(\right.$ resp. $\left.w_{\cdot K}^{\nu}\right)$ be the component of $w_{\cdot K}$ orthogonal (resp. parallel) to ∂r. We have

$$
\begin{align*}
& \sum_{|K|=k-1}^{\prime} \sum_{i \text { or }} \sum_{j \geq q+1} \bar{\partial}_{j} \partial_{i} \phi \bar{w}_{j K} w_{i K} \\
& \geq \sum_{|K|=k-1}^{\prime}\left(-\sum_{i \text { or }}^{j \geq q+1}\right. \\
& \tag{1.9}\\
& \left.\quad r^{-1} \bar{\partial}_{j} \partial_{i} r \bar{w}_{j K}^{\tau} w_{i K}^{\tau}\right) \\
& \\
& \quad \sum_{|K|=k-1}^{\prime}\left(\frac{r^{-2}}{2}\left|w_{\cdot K}^{\nu}\right|^{2}+c \sum_{i \geq q+1}\left|w_{i K}\right|^{2}-b r^{-1}\left|w_{\cdot K}^{\tau} \| w_{\cdot K}^{\nu}\right|\right)
\end{align*}
$$

The first term on the right of (1.9) is positive by assumption, while the second is positive for suitable $c=c_{b}$. (We are using again here the fact that
any $|J| \geq q+1$ can be written as $J=i K$ for $i \geq q+1$.) Then (1.7) easily follows.

We are ready to state the main theorem of the paper
Theorem 1.3 Assume (1.1). Then there is a fundamental system of neighborhoods $\{U\}$ of z_{o} such that for any $\bar{\partial}$-closed form $f=\sum_{|J|=k}^{\prime} f_{J} \mathrm{~d} \bar{z}_{J}$ of degree $k \geq \max (a, q)+1$ and with coefficients in $C^{\infty}(\overline{W \cap U})$, there is a form $u=\sum^{\prime}|K|=k-1 ~ u_{K} \mathrm{~d} \bar{z}_{K}$ with coefficients in $C^{\infty}(\overline{W \cap U})$ which solves $\bar{\partial} u=f$.

2. L^{2} estimates and proof of Theorem 1.3

We provide here the variant of the L^{2} estimates by Hörmander [4], [5] which fits our condition (1.1). We shall then recall the sequence of arguments which yields the proof of Th. 1.3 in the line of [2]. Let W be a domain of \mathbb{C}^{N} with C^{2} boundary, and ϕ a real positive C^{2} function on W. We denote by $L_{\phi}^{2}(W)$ the space of functions f such that $\|f\|:=\int_{W} e^{-\phi}|f|^{2} \mathrm{~d} V$ is finite (where $\mathrm{d} V$ denotes the Euclidean element of volume). We denote by $L_{\phi}^{2}(W)^{k}$ the space of antiholomorphic forms $f=\sum_{|J|=k}^{\prime} f_{J} \mathrm{~d} \bar{z}_{J}$ with $L_{\phi}^{2}(W)$ coefficients. We consider the sequence of closed densely defined operators

$$
\begin{equation*}
L_{\phi}^{2}(W)^{k-1} \xrightarrow{\bar{o}} L_{\phi}^{2}(W)^{k} \xrightarrow{\bar{o}} L_{\phi}^{2}(W)^{k+1} \tag{2.1}
\end{equation*}
$$

and denote by $\bar{\partial}^{*}$ the adjoint operators. Let δ_{i} be the operator (on functions) defined by $\delta_{i}\left(f_{J}\right)=e^{\phi} \partial_{i}\left(e^{-\phi} f_{J}\right)$. The following equality holds for any positive ϕ :

$$
\begin{array}{r}
\sum_{|K|=k-1}^{\prime} \sum_{i j=1, \ldots, N} \int_{W} e^{-\phi}\left(\delta_{i}\left(f_{i K}\right) \overline{\delta_{j}\left(f_{j K}\right)}-\bar{\partial}_{j}\left(f_{i K}\right) \overline{\bar{\partial}_{i}\left(f_{j K}\right)} \mathrm{d} V\right. \\
+\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N} \int_{W} e^{-\phi}\left|\bar{\partial}_{j}\left(f_{J}\right)\right|^{2} \mathrm{~d} V=\left\|\bar{\partial}^{*} f\right\|_{\phi}^{2}+\|\bar{\partial} f\|_{\phi}^{2} \\
\forall f \in C_{c}^{\infty}(W)^{k} \tag{2.2}
\end{array}
$$

Note that by the trivial choice $\phi=0,(2.2)$ gives

$$
\begin{equation*}
\sum_{|J|=k}^{\prime} \sum_{j=1, \ldots, N}\left\|\bar{\partial}_{j} f_{J}\right\|^{2}=\left\|\bar{\partial}^{*} f\right\|_{\phi}^{2}+\|\bar{\partial} f\|_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k} \tag{2.3}
\end{equation*}
$$

where $\|\cdot\|$ is the norm in $L^{2}(W) .((2.3)$ will be used in the sequel as the main ingredient in proving the ellipticity of the system $\left(\bar{\partial}, \bar{\partial}^{*}\right)$.) Let us
introduce now a new $\psi \geq 0$. Then (2.1) modifies to

$$
\begin{equation*}
L_{\phi-2 \psi}^{2}(W)^{k-1} \xrightarrow{\bar{o}} L_{\phi-\psi}^{2}(W)^{k} \xrightarrow{\bar{o}} L_{\phi}^{2}(W)^{k+1} \tag{2.4}
\end{equation*}
$$

Let (I) be the term on the left side of (2.2). By introducing the new function $\psi,(2.2)$ modifies to

$$
\begin{equation*}
(I) \leq 2\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+\|\bar{\partial} f\|_{\phi}^{2}+2\||\partial \psi| f\|_{\phi}^{2} \forall f \in C_{c}^{\infty}(W)^{k} \tag{2.5}
\end{equation*}
$$

Let $D_{\bar{\partial}}$ and $D_{\bar{\partial}^{*}}$ denote the domains in (2.4) of $\bar{\partial}$ and $\bar{\partial}^{*}$ respectively.
Proposition 2.1 Assume (1.7) $(\forall z \in W \backslash S)$ and let $k \geq \max (a+1, q+1)$. Then we may find ϕ and ψ such that

$$
\begin{equation*}
\|f\|_{\phi-\psi}^{2} \leq\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+\|\bar{\partial} f\|_{\phi}^{2} \quad \forall f \in D_{\bar{\partial}} \cap D_{\bar{\partial}^{*}} \tag{2.6}
\end{equation*}
$$

Moreover, for any fixed compact subset $C \subset \subset W$, we can choose $\left.\psi\right|_{C} \equiv 0$ and $\left.\phi\right|_{C} \equiv 2|z|^{2}$.
Proof. We choose ψ according to the density result [5, Lemma 4.1.3] (in particular $\left.\psi\right|_{C} \equiv 0$). By this choice it shall be enough to prove (2.6) only on forms with $C_{c}^{\infty}(W)$ coefficients. We fix the coordinates in which (1.7) holds. We observe that the sum of the terms in (I) of (2.5) with both i and $j \leq q$ equals $\left\|\bar{\partial}^{\prime *} f\right\|_{\phi}^{2}+\left\|\bar{\partial}^{\prime} f\right\|_{\phi}^{2}$. In particular it is positive. We want to rewrite now those terms where either of i or j is $\geq q+1$. We recall that $\delta_{i}=-\bar{\partial}_{i}^{*}$ (for the inner product underlying to the $L_{\phi}^{2}(W)$ norm) and observe that

$$
\begin{equation*}
\delta_{i} \bar{\partial}_{j}-\bar{\partial}_{j} \delta_{i}=\bar{\partial}_{j} \partial_{i} \phi \tag{2.7}
\end{equation*}
$$

We also recall the notation n for the conormal to S. By (2.7) and by Stokes formula, we get

$$
\begin{align*}
\sum_{|K|=k-1}^{\prime} & \sum_{i \text { or }}^{j \geq q+1} \\
= & \sum_{|K|=k-1}^{\prime} \sum_{i \text { or }} \sum_{j \geq q+1}^{\prime} \sum_{W} e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{j K} f_{i K} \mathrm{~d} V \\
& +\sum_{|K|=k-1}^{\prime} \sum_{i \text { or } j \geq q+1} \int_{S} e^{-\phi} \bar{n}_{j} n_{i}|J(\partial \phi)| \bar{f}_{j K} f_{i K} \mathrm{~d} V \tag{2.8}
\end{align*}
$$

Now since $n^{\prime}=0($ by (1.5)) then in the last term in (2.8) we can extend the sum to all indices $i j$ and conclude that it is positive (because it contains a
square). Collecting all the previous remarks, we get

$$
\begin{equation*}
(I) \geq \sum_{|K|=k-1}^{\prime} \sum_{i \text { or }}^{j \geq q+1} \int_{W} e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{j K} f_{i K} \mathrm{~d} V . \tag{2.9}
\end{equation*}
$$

By combining (1.7), (2.5) and (2.9) we conclude:

$$
\lambda\|f\|_{\phi}^{2} \leq 2\left\|\bar{\partial}^{*} f\right\|_{\phi-2 \psi}^{2}+\|\bar{\partial} f\|_{\phi}^{2}+2\||\partial \psi| f\|_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k} .
$$

Here we can take the same constant $\lambda=\lambda_{C} \forall f$ with supp $f \subset C$. Note also that the subsets $C_{t}:=\{z \in W: \phi(z) \leq t\} t \in \mathbb{R}^{+}$are an exhaustive family of compact of W. Thus with $\psi \equiv 0$ on C_{c} (c large), we replace ϕ by $\phi_{1}=\chi(\phi)+2|z|^{2}$ where χ has the properties: $\chi(t) \geq 0 \forall t, \chi(t) \equiv 0 \forall t \leq c$, $\chi^{\prime \prime} \geq 0$, and finally

$$
\begin{equation*}
\chi^{\prime}(t) \geq \frac{\sup _{C_{t}} 2\left(|\partial \psi|^{2}+e^{\psi}\right)}{\lambda_{C_{t}}} . \tag{2.10}
\end{equation*}
$$

Then (2.6) immediately follows for such a ϕ_{1}.
End of proof of Theorem 1.3 We first prove existence in L^{2}, and then regularity in C^{∞} for solutions of ($\bar{\partial}, \bar{\partial}^{*}$). Finally we shall apply the technique by Dufresnoy. Let W be bounded and assume that in suitable coordinates, (1.7) holds $\forall z \in W \backslash S$. Then for any $f \in L_{2|z|^{2}}^{2}(W)^{k}$ with $\bar{\partial} f=0$ there is $u \in L_{2|z|^{2}}^{2}(W)^{k-1}$ such that

$$
\begin{equation*}
\left(\bar{\partial} u=f, \bar{\partial}^{*} u=0\right) \quad\|u\|_{2|z|^{2}}^{2} \leq\|f\|_{2|z|^{2}}^{2} . \tag{2.11}
\end{equation*}
$$

This statement follows from Prop. 2.1 in the lines of [5, Lemma 4.4.1]. Let now $\|\cdot\|_{(s)}$ be the norm of the Sobolev space $H^{s}(W)$. Let $W_{\epsilon}=\{z \in W$: dist $(z, \partial W)>\epsilon\}$. Let W be still bounded and (1.7) be fulfilled $\forall z \in W \backslash S$. Using (2.11) together with (2.3), we can in fact prove the following result on regularity of the solutions of the system ($\bar{\partial}, \bar{\partial}^{*}$) (cf. [5, Th. 4.2.5]): For any $f \in C^{\infty}(W)^{k}$ with $\bar{\partial} f=0$, there is $u \in C^{\infty}\left(W_{\epsilon}\right)^{k-1}$ such that $\forall s \geq 0$ and for suitable M_{s} we have

$$
\begin{equation*}
\left(\bar{\partial} u=f, \bar{\partial}^{*} u=0\right) \quad\|u\|_{(s+1)} \leq \frac{M_{s}}{\epsilon^{s+1}}\|f\|_{(s)} . \tag{2.12}
\end{equation*}
$$

We are ready to conclude. We aim to apply (2.12) to a sequence of domains $W_{\nu} \supset W_{\nu+1} \supset \supset W$. We suppose W is defined locally by $r\left(=-x_{1}+g\right)<$ 0 , and then define W_{ν} by $r<\frac{\eta^{2}}{2}$, for $0<\eta<\frac{1}{2}$. Clearly we have in a
neighborhood of z_{0} :

$$
\begin{align*}
& \left\{z \in \mathbb{C}^{N}: \operatorname{dist}(z, W)<\eta^{2^{\nu+1}}\right\} \\
& \subset W_{\nu} \subset\left\{z \in \mathbb{C}^{N}: \operatorname{dist}(z, W)<\frac{\eta^{\nu^{\nu}}}{2}\right\} . \tag{2.13}
\end{align*}
$$

We then observe that since the hypothesis of Th. 1.3 is local, whereas the techiques developped in the whole $\S 2$ are global, we need to replace W by $W \cap U$ and W_{ν} by $W_{\nu} \cap U$ for a system of neighborhoods U of z_{0}. We shall still use the notation W and W_{ν} instead of $W \cap U$ and $W_{\nu} \cap U$.

Let $f \in C^{\infty}(\bar{W})^{k}$ satisfy $\bar{\partial} f=0$. Extend f to \tilde{f} such that

$$
\|\tilde{\partial} \tilde{f}\|_{(s)} \leq M_{r s} \eta^{r 2^{\nu}} \text { on } W_{\nu} \text { for any } r, s \text { and for suitable } M_{r s}
$$

This is clearly possible because $\bar{\partial} \tilde{f} \equiv 0$ on W and $W_{\nu} \subset\{z: \operatorname{dist}(z, W)<$ $\left.\frac{\eta^{2^{\nu}}}{2}\right\}$. According to (2.12) there is a solution h_{ν} on $W_{\nu+1}$ of

$$
\left\{\begin{array}{l}
\bar{\partial} h_{\nu}=\bar{\partial} \tilde{f} \\
\left\|h_{\nu}\right\|_{(s+1)} \leq M_{s}\left(\eta^{2^{\nu+1}}\right)^{-s-1}\|\tilde{\partial} \tilde{f}\|_{(s)}
\end{array}\right.
$$

(due to $W_{\nu+1} \subset\left\{z: \operatorname{dist}\left(z, \partial W_{\nu}\right)>\frac{\eta^{2^{\nu+1}}}{2}\right\}$). Solve on W_{2} the equation $\bar{\partial} g_{1}=\tilde{f}-h_{1}$, and, inductively on $W_{\nu+2}$:

$$
\bar{\partial} g_{\nu+1}=h_{\nu}-h_{\nu+1},
$$

with the estimates

$$
\begin{aligned}
\left\|g_{\nu+1}\right\|_{(s+2)} & \leq M_{s+1}\left(\eta^{2^{\nu+2}}\right)^{-(s+2)}\left\|h_{\nu}-h_{\nu+1}\right\|_{(s+1)} \\
& \leq M_{s}^{\prime}\left(\eta^{2^{\nu+2}}\right)^{-2 s-3} M_{r s} \eta^{r 2^{\nu}} \\
& \leq M_{r s}^{\prime} \frac{1}{2^{\nu}} \quad(r, \nu \text { large }) .
\end{aligned}
$$

Therefore $\sum_{\nu=1}^{\infty} g_{\nu}$ converges in $C^{\infty}(\bar{W})$ and solves on \bar{W} :

$$
\bar{\partial}\left(\sum_{\nu=1}^{\infty} g_{\nu}\right)=\tilde{f}-\lim _{\nu} h_{\nu}=\tilde{f} .
$$

References

[1] Andreotti A. and Grauert H., Théorèmes de finitude pour la cohomologie des éspaces complexes. Bull. Soc. Math. France 90 (1962), 193-259.
[2] Dufresnoy A., Sur l'operateur $\bar{\partial}$ et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier 29 (1) (1979), 229-238.
[3] Henkin G.M., H. Lewy's equation and analysis on pseudoconvex manifolds (Russian). I. Uspehi Mat. Nauk. 32 (3) (1977), 57-118.
[4] Hörmander L., L^{2} estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math. 113 (1965), 89-152.
[5] Hörmander L., An introduction to complex analysis in several complex variables. Van Nostrand, Princeton N.J. (1966).
[6] Kohn J.J., Regularity at the boundary of the $\bar{\partial}$-Neumann problem. Proc. Nat. Acad. Sci. U.S.A 49 (1963), 206-213.
[7] Michel V., Sur la regularité $C^{\infty} d u \bar{\partial}$ au bord d'un domaine de \mathbb{C}^{n} dont la forme de Levi a exactement s valeurs propres strictement negatives. Math. Ann. 195 (1993), 131-165.
[8] Tumanov A., Extending CR functions on a manifold of finite type over a wedge. Mat. Sb. 136 (1988), 129-140.
[9] Zampieri G., L^{2}-estimates with Levi-singular weight, and existence for $\bar{\partial}$. J. d'Analyse Math. 74 (1998), 331-344.
[10] Zampieri G., q-psudoconvexity and regularity at the boundary for solutions of the $\bar{\partial}$-complex. Preprint (1998).

Dip. Matematica, Università
v. Belzoni 7, Padova

Italy
E-mail: Zampieri@math.unipd.it

