Regularity up to the boundary for the $\bar{\partial}$ complex

Giuseppe ZAMPIERI

(Received May 7, 1998; Revised October 12, 1998)

Abstract. We introduce a condition of q-pseudoconvexity for a domain W of \mathbb{C}^N , and prove that it is sufficient for solvability of the $\bar{\partial}$ -complex over (antiholomorphic) forms of degree $\geq q + 1$ with smooth coefficients up to the boundary. Our method applies to wedges of \mathbb{C}^N and therefore it provides a useful tool to solve the tangential $\bar{\partial}$ system on real submanifolds of \mathbb{C}^N . The proof is very elementary. It consists in a variant of the L^2 -estimates by Hörmander [4], [5] (in the non coordinate-free version) which permits a straight application of the method by Dufresnoy [2]. The plan of the paper is as follows.

In §1 we introduce generalized pseudoconvexity ((1.1) and (1.2)), prove that it can be formulated equivalently for defining functions of ∂W or exhaustion functions of W, and state our main result on solvability of $\bar{\partial}$ for forms with coefficients in $\mathbb{C}^{\infty}(\bar{W})$. In §2 we give the variant of the L^2 estimates by [4], [5] which fits our condition. It consists in a partial use of the commutation relations of [5, formula (4.2.6)], so that the terms involved in our condition (1.1), instead of the full Levi form, are obtained. The rest is just routine. The above estimates first entail existence in L^2 spaces with *universal* weight (i.e. independent of W) for $\bar{\partial}$, and then C^{∞} regularity up to the boundary for $(\bar{\partial}, \bar{\partial}^*)$.

We aim to develop and refine our statements in our forthcoming paper [10].

Key words: q-convexity q-concavity, $\bar{\partial}$ and $\bar{\partial}_b$ Neumann problems.

1. Statement of the result

Let W_h , h = 1, ..., m be C^2 half-spaces in a neighborhood of a point z_o in \mathbb{C}^N , with transversal boundaries $M_h = \partial W_h$, and let $W = \bigcap_{h=1,...,m} W_h$. We assume $\bigcap_{h=1,...,m} M_h$ generic, and set $\hat{M}_h := M_h \cap \partial W$, $N := \bigcup_{h \neq k} \hat{M}_h \cap \hat{M}_k$. For multiindices $J = (j_1, \ldots, j_k)$, we shall deal with vectors $w = (w_J)$ with complex alternate coefficients. We shall consider defining functions r_h for W_h (i.e. $W = \{r_h < 0\}$ with $\partial r_h \neq 0$). We assume there are positive integers a and q and local coordinates z = x + iy on \mathbb{C}^N at z_o such that

$$\sum_{|K|=a+q}' \sum_{i \text{ or } j \ge q+1} \bar{\partial}_{j} \partial_{i} r_{h}(z) \bar{w}_{jK} w_{iK} \ge 0$$

$$\forall z \in \hat{M}_{h} \quad \forall z \text{ close to } z_{o} \quad \forall (w_{iK})_{i} \in \partial r_{h}(z)^{\perp}.$$
(1.1)

¹⁹⁹¹ Mathematics Subject Classification : 32F10, 32F20.

(Here \sum' denotes summation over ordered indices and \perp indicates the (complex) orthogonal.) Particular emphasis shall be put in the case a = 0. If $\partial' := (\partial_1, \ldots, \partial_q)$ we are also assuming that Span $\partial' \subset \partial r_h(z)^{\perp} \quad \forall z \in \hat{M}_h$. Let $\partial'' = \sum_{q+1}^N a''_j(z)\partial_j \left(a'' = (a''_j)_{\substack{j=q+1\cdots N\\h=q+1\cdots N-1}}\right)$ be the orthogonal completion of ∂' in $T^{(1,0)}M_h$; then a sufficient condition for (1.1) with a = 0 is clearly:

$$\bar{\partial}'\partial''r_h(z) = 0 \quad \bar{\partial}''\partial''r_h \ge 0 \quad \forall z \in \hat{M}_h \text{ close to } z_o.$$
 (1.2)

Note that both (1.1) and (1.2) are independent of the choice of the defining functions r_h . The other extremal case is when q = 0. To treat it, let $\mu_1^h \leq \mu_2^h \leq \ldots$ denote the eigenvalues of $\bar{\partial}\partial r_h|_{\partial r_h^\perp}$.

Proposition 1.1 (1.1) for q = 0 is equivalent to

$$\sum_{j=1,\dots,a+1} \mu_j^h \ge 0 \ \forall h. \tag{1.3}$$

Proof. It is a general fact that

$$\sum_{|K|=a}' \sum_{ij=1,\dots,N} \bar{\partial}_j \partial_i r_h \bar{w}_{jK} w_{iK} \ge \left(\sum_{j=1\dots,a+1} \mu_j^h\right) |w|^2, \tag{1.4}$$

(which proves that (1.3) implies (1.1)). Moreover when $\bar{\partial}_j \partial_i r_h|_{\partial r_h^{\perp}}$ is diagonal, and $w = (w_1 \cdots a + 1)$, then (1.4) becomes equality (which proves that (1.1) implies (1.3)).

We represent now \hat{M}_h as a graph $x_1 = g_h$, and ∂W as $x_1 = g$. We put $r := -x_1 + g$, $\delta := -r$, $\phi = -\log \delta + c|z|^2$. Let $S = \{z : g_h = g_k \text{ for } h \neq k\}$. This is a manifold (because the M_h 's intersect transversally) with conormals $\pm n = \frac{\pm \partial (g_h - g_k)}{|\partial (g_h - g_k)|}$. Denote by $J(\cdot)$ the *jump* between the *h*'s and *k*'s side of S. We have

$$+n = \frac{J(\partial r)}{|J(\partial r)|} = \frac{J(\partial \phi)}{|J(\partial \phi)|}.$$
(1.5)

It is also clear that

$$\partial'|_S \subset T^{\mathbb{C}}S. \tag{1.6}$$

Proposition 1.2 Assume (1.1). Then there is a defining function r of W such that if we set $\phi = -\log \delta + c|z|^2$ ($\delta := -r$), for suitable c, we obtain

an exhaustion function of W at z_o such that for some λ ($\lambda(z) > 0 \ z \in W$) and for any $k \ge q + a + 1$:

$$\sum_{|K|=k-1}' \sum_{i \text{ or } j \ge q+1} \bar{\partial}_{j} \partial_{i} \phi(z) \bar{w}_{jK} w_{iK} \ge \lambda |w|^{2}$$
$$\forall z \in W \setminus S \ close \ to \ z_{o}. \tag{1.7}$$

Proof. One of the problems here is that in (1.1) z ranges in ∂W whereas in (1.7) it ranges through W. Recall the functions $r = -x_1 + g$, $r_h = -x_1 + g_h$, and the surface $S = \{z : g_h = g_k \text{ for } h \neq k\}$. We then consider the local foliation $W = \bigcup_{\epsilon} M_{\epsilon}$ (where $M_{\epsilon} = \{r = -\epsilon\}$). Let z, z^* be two points in $M_{\epsilon} \setminus S$ and M_0 (= ∂W) respectively with the same (y_1, z') -components. We have

$$T_z M_\epsilon = T_{z^*} M_0 \quad \bar{\partial} \partial r(z) = \bar{\partial} \partial r(z^*).$$

Under our choice of r, (1.1) holds for any $z \in W \setminus S$ (not only $z \in \partial W$). We then put $\phi = -\log(-r) + c|z|^2$. We have $\forall K$:

$$\bar{\partial}\partial\phi(\bar{w}_{\cdot K}, w_{\cdot K}) = r^{-2}\partial r w_{\cdot K} \bar{\partial}r \bar{w}_{\cdot K} - r^{-1} \bar{\partial}\partial r(\bar{w}_{\cdot K}, w_{\cdot K}) + c|w_{\cdot K}|^2.$$

$$(1.8)$$

When $w_{K} \perp \partial r$, then the first term on the right of (1.8) vanishes whereas for the second (1.1) applies ($\forall z \in W$). Observe here that any $|J| \ge q + 1$ can be written, up to order, as J = iK for $i \ge q + 1$, |K| = k - 1. Then (1.7) follows.

In the general case, let $w_{\cdot K}^{\tau}$ (resp. $w_{\cdot K}^{\nu}$) be the component of $w_{\cdot K}$ orthogonal (resp. parallel) to ∂r . We have

$$\sum_{|K|=k-1}^{\prime} \sum_{i \text{ or } j \ge q+1} \bar{\partial}_{j} \partial_{i} \phi \bar{w}_{jK} w_{iK}$$

$$\geq \sum_{|K|=k-1}^{\prime} \left(-\sum_{i \text{ or } j \ge q+1} r^{-1} \bar{\partial}_{j} \partial_{i} r \bar{w}_{jK}^{\tau} w_{iK}^{\tau} \right)$$

$$+ \sum_{|K|=k-1}^{\prime} \left(\frac{r^{-2}}{2} |w_{\cdot K}^{\nu}|^{2} + c \sum_{i \ge q+1} |w_{iK}|^{2} - br^{-1} |w_{\cdot K}^{\tau}| |w_{\cdot K}^{\nu}| \right).$$
(1.9)

The first term on the right of (1.9) is positive by assumption, while the second is positive for suitable $c = c_b$. (We are using again here the fact that

any $|J| \ge q + 1$ can be written as J = iK for $i \ge q + 1$.) Then (1.7) easily follows.

We are ready to state the main theorem of the paper

Theorem 1.3 Assume (1.1). Then there is a fundamental system of neighborhoods $\{U\}$ of z_o such that for any $\bar{\partial}$ -closed form $f = \sum_{|J|=k}' f_J d\bar{z}_J$ of degree $k \ge \max(a,q) + 1$ and with coefficients in $C^{\infty}(\overline{W} \cap \overline{U})$, there is a form $u = \sum_{|K|=k-1}' u_K d\bar{z}_K$ with coefficients in $C^{\infty}(\overline{W} \cap \overline{U})$ which solves $\bar{\partial}u = f$.

2. L^2 estimates and proof of Theorem 1.3

We provide here the variant of the L^2 estimates by Hörmander [4], [5] which fits our condition (1.1). We shall then recall the sequence of arguments which yields the proof of Th. 1.3 in the line of [2]. Let W be a domain of \mathbb{C}^N with C^2 boundary, and ϕ a real positive C^2 function on W. We denote by $L^2_{\phi}(W)$ the space of functions f such that $||f|| := \int_W e^{-\phi} |f|^2 dV$ is finite (where dV denotes the Euclidean element of volume). We denote by $L^2_{\phi}(W)^k$ the space of antiholomorphic forms $f = \sum'_{|J|=k} f_J d\bar{z}_J$ with $L^2_{\phi}(W)$ coefficients. We consider the sequence of closed densely defined operators

$$L^2_{\phi}(W)^{k-1} \xrightarrow{\bar{\partial}} L^2_{\phi}(W)^k \xrightarrow{\bar{\partial}} L^2_{\phi}(W)^{k+1}, \qquad (2.1)$$

and denote by $\bar{\partial}^*$ the adjoint operators. Let δ_i be the operator (on functions) defined by $\delta_i(f_J) = e^{\phi} \partial_i(e^{-\phi} f_J)$. The following equality holds for any positive ϕ :

$$\sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N} \int_{W} e^{-\phi} (\delta_i(f_{iK})\overline{\delta_j(f_{jK})} - \bar{\partial}_j(f_{iK})\overline{\partial}_i(f_{jK})) dV + \sum_{|J|=k}^{\prime} \sum_{j=1,\dots,N} \int_{W} e^{-\phi} |\bar{\partial}_j(f_J)|^2 dV = ||\bar{\partial}^* f||_{\phi}^2 + ||\bar{\partial}f||_{\phi}^2 \forall f \in C_c^{\infty}(W)^k. \quad (2.2)$$

Note that by the trivial choice $\phi = 0$, (2.2) gives

$$\sum_{|J|=k}' \sum_{j=1,\dots,N} ||\bar{\partial}_j f_J||^2 = ||\bar{\partial}^* f||_{\phi}^2 + ||\bar{\partial}f||_{\phi}^2 \quad \forall f \in C_c^{\infty}(W)^k, \quad (2.3)$$

where $|| \cdot ||$ is the norm in $L^2(W)$. ((2.3) will be used in the sequel as the main ingredient in proving the *ellipticity* of the system $(\bar{\partial}, \bar{\partial}^*)$.) Let us

introduce now a new $\psi \ge 0$. Then (2.1) modifies to

$$L^{2}_{\phi-2\psi}(W)^{k-1} \xrightarrow{\bar{\partial}} L^{2}_{\phi-\psi}(W)^{k} \xrightarrow{\bar{\partial}} L^{2}_{\phi}(W)^{k+1}.$$
(2.4)

Let (I) be the term on the left side of (2.2). By introducing the new function ψ , (2.2) modifies to

$$(I) \le 2||\bar{\partial}^* f||^2_{\phi-2\psi} + ||\bar{\partial}f||^2_{\phi} + 2|||\partial\psi|f||^2_{\phi} \quad \forall f \in C^{\infty}_c(W)^k.$$
(2.5)

Let $D_{\bar{\partial}}$ and $D_{\bar{\partial}^*}$ denote the domains in (2.4) of $\bar{\partial}$ and $\bar{\partial}^*$ respectively.

Proposition 2.1 Assume (1.7) $(\forall z \in W \setminus S)$ and let $k \ge \max(a+1, q+1)$. Then we may find ϕ and ψ such that

$$||f||_{\phi-\psi}^{2} \leq ||\bar{\partial}^{*}f||_{\phi-2\psi}^{2} + ||\bar{\partial}f||_{\phi}^{2} \quad \forall f \in D_{\bar{\partial}} \cap D_{\bar{\partial}^{*}}.$$
(2.6)

Moreover, for any fixed compact subset $C \subset W$, we can choose $\psi|_C \equiv 0$ and $\phi|_C \equiv 2|z|^2$.

Proof. We choose ψ according to the density result [5, Lemma 4.1.3] (in particular $\psi|_C \equiv 0$). By this choice it shall be enough to prove (2.6) only on forms with $C_c^{\infty}(W)$ coefficients. We fix the coordinates in which (1.7) holds. We observe that the sum of the terms in (I) of (2.5) with both i and $j \leq q$ equals $||\bar{\partial}'^*f||_{\phi}^2 + ||\bar{\partial}'f||_{\phi}^2$. In particular it is positive. We want to rewrite now those terms where either of i or j is $\geq q + 1$. We recall that $\delta_i = -\bar{\partial}_i^*$ (for the inner product underlying to the $L_{\phi}^2(W)$ norm) and observe that

$$\delta_i \bar{\partial}_j - \bar{\partial}_j \delta_i = \bar{\partial}_j \partial_i \phi. \tag{2.7}$$

We also recall the notation n for the conormal to S. By (2.7) and by Stokes formula, we get

$$\sum_{|K|=k-1}^{\prime} \sum_{i \text{ or } j \ge q+1} \cdot + \sum_{|J|=k}^{\prime} \sum_{j \ge q+1} \cdot$$

$$= \sum_{|K|=k-1}^{\prime} \sum_{i \text{ or } j \ge q+1} \int_{W} e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{jK} f_{iK} dV$$

$$+ \sum_{|K|=k-1}^{\prime} \sum_{i \text{ or } j \ge q+1} \int_{S} e^{-\phi} \bar{n}_{j} n_{i} |J(\partial \phi)| \bar{f}_{jK} f_{iK} dV.$$
(2.8)

Now since n' = 0 (by (1.5)) then in the last term in (2.8) we can extend the sum to all indices ij and conclude that it is positive (because it contains a

square). Collecting all the previous remarks, we get

$$(I) \ge \sum_{|K|=k-1}' \sum_{i \text{ or } j \ge q+1} \int_{W} e^{-\phi} \bar{\partial}_{j} \partial_{i} \phi \bar{f}_{jK} f_{iK} \mathrm{d}V.$$
(2.9)

By combining (1.7), (2.5) and (2.9) we conclude:

$$\lambda ||f||_{\phi}^{2} \leq 2 ||\bar{\partial}^{*}f||_{\phi-2\psi}^{2} + ||\bar{\partial}f||_{\phi}^{2} + 2 |||\partial\psi|f||_{\phi}^{2} \quad \forall f \in C_{c}^{\infty}(W)^{k}.$$

Here we can take the same constant $\lambda = \lambda_C \ \forall f$ with $\operatorname{supp} f \subset C$. Note also that the subsets $C_t := \{z \in W : \phi(z) \leq t\} \ t \in \mathbb{R}^+$ are an exhaustive family of compact of W. Thus with $\psi \equiv 0$ on C_c (*c* large), we replace ϕ by $\phi_1 = \chi(\phi) + 2|z|^2$ where χ has the properties: $\chi(t) \geq 0 \ \forall t, \ \chi(t) \equiv 0 \ \forall t \leq c, \ \chi'' \geq 0$, and finally

$$\chi'(t) \ge \frac{\sup_{C_t} 2(|\partial \psi|^2 + e^{\psi})}{\lambda_{C_t}}.$$
(2.10)

Then (2.6) immediately follows for such a ϕ_1 .

End of proof of Theorem 1.3 We first prove existence in L^2 , and then regularity in C^{∞} for solutions of $(\bar{\partial}, \bar{\partial}^*)$. Finally we shall apply the technique by Dufresnoy. Let W be bounded and assume that in suitable coordinates, (1.7) holds $\forall z \in W \setminus S$. Then for any $f \in L^2_{2|z|^2}(W)^k$ with $\bar{\partial} f = 0$ there is $u \in L^2_{2|z|^2}(W)^{k-1}$ such that

$$(\bar{\partial}u = f, \bar{\partial}^* u = 0) \quad ||u||_{2|z|^2}^2 \le ||f||_{2|z|^2}^2.$$
(2.11)

This statement follows from Prop. 2.1 in the lines of [5, Lemma 4.4.1]. Let now $|| \cdot ||_{(s)}$ be the norm of the Sobolev space $H^s(W)$. Let $W_{\epsilon} = \{z \in W :$ dist $(z, \partial W) > \epsilon\}$. Let W be still bounded and (1.7) be fulfilled $\forall z \in W \setminus S$. Using (2.11) together with (2.3), we can in fact prove the following result on regularity of the solutions of the system $(\bar{\partial}, \bar{\partial}^*)$ (cf. [5, Th. 4.2.5]): For any $f \in C^{\infty}(W)^k$ with $\bar{\partial}f = 0$, there is $u \in C^{\infty}(W_{\epsilon})^{k-1}$ such that $\forall s \geq 0$ and for suitable M_s we have

$$(\bar{\partial}u = f, \bar{\partial}^*u = 0) \quad ||u||_{(s+1)} \le \frac{M_s}{\epsilon^{s+1}} ||f||_{(s)}.$$
 (2.12)

We are ready to conclude. We aim to apply (2.12) to a sequence of domains $W_{\nu} \supset W_{\nu+1} \supset \cdots W$. We suppose W is defined locally by $r(=-x_1+g) < 0$, and then define W_{ν} by $r < \frac{\eta^{2^{\nu}}}{2}$, for $0 < \eta < \frac{1}{2}$. Clearly we have in a

neighborhood of z_o :

$$\{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \eta^{2^{\nu+1}}\}$$
$$\subset W_{\nu} \subset \left\{z \in \mathbb{C}^N : \operatorname{dist}(z, W) < \frac{\eta^{2^{\nu}}}{2}\right\}.$$
(2.13)

We then observe that since the hypothesis of Th. 1.3 is local, whereas the techiques developped in the whole §2 are global, we need to replace W by $W \cap U$ and W_{ν} by $W_{\nu} \cap U$ for a system of neighborhoods U of z_o . We shall still use the notation W and W_{ν} instead of $W \cap U$ and $W_{\nu} \cap U$.

Let $f \in C^{\infty}(\overline{W})^k$ satisfy $\overline{\partial} f = 0$. Extend f to \tilde{f} such that

$$||\bar{\partial}\tilde{f}||_{(s)} \leq M_{rs}\eta^{r2^{\nu}}$$
 on W_{ν} for any r, s and for suitable M_{rs}

This is clearly possible because $\bar{\partial}\tilde{f} \equiv 0$ on W and $W_{\nu} \subset \{z : \operatorname{dist}(z, W) < \frac{\eta^{2^{\nu}}}{2}\}$. According to (2.12) there is a solution h_{ν} on $W_{\nu+1}$ of

$$\begin{cases} \bar{\partial}h_{\nu} = \bar{\partial}\tilde{f} \\ ||h_{\nu}||_{(s+1)} \le M_{s}(\eta^{2^{\nu+1}})^{-s-1}||\bar{\partial}\tilde{f}||_{(s)}, \end{cases}$$

(due to $W_{\nu+1} \subset \{z : \operatorname{dist}(z, \partial W_{\nu}) > \frac{\eta^{2^{\nu+1}}}{2}\}$). Solve on W_2 the equation $\overline{\partial}g_1 = \tilde{f} - h_1$, and, inductively on $W_{\nu+2}$:

$$\partial g_{\nu+1} = h_{\nu} - h_{\nu+1},$$

with the estimates

$$\begin{aligned} ||g_{\nu+1}||_{(s+2)} &\leq M_{s+1}(\eta^{2^{\nu+2}})^{-(s+2)} ||h_{\nu} - h_{\nu+1}||_{(s+1)} \\ &\leq M_s'(\eta^{2^{\nu+2}})^{-2s-3} M_{rs} \eta^{r2^{\nu}} \\ &\leq M_{rs}' \frac{1}{2^{\nu}} \quad (r, \nu \text{ large}). \end{aligned}$$

Therefore $\sum_{\nu=1}^{\infty} g_{\nu}$ converges in $C^{\infty}(\bar{W})$ and solves on \bar{W} :

$$\bar{\partial}\bigg(\sum_{\nu=1}^{\infty}g_{\nu}\bigg)=\tilde{f}-\lim_{\nu}h_{\nu}=\tilde{f}.$$

References

- [1] Andreotti A. and Grauert H., Théorèmes de finitude pour la cohomologie des éspaces complexes. Bull. Soc. Math. France **90** (1962), 193–259.
- [2] Dufresnoy A., Sur l'operateur $\bar{\partial}$ et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier **29** (1) (1979), 229–238.
- [3] Henkin G.M., H. Lewy's equation and analysis on pseudoconvex manifolds (Russian). I. Uspehi Mat. Nauk. **32** (3) (1977), 57–118.
- [4] Hörmander L., L^2 estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math. 113 (1965), 89–152.
- [5] Hörmander L., An introduction to complex analysis in several complex variables. Van Nostrand, Princeton N.J. (1966).
- [6] Kohn J.J., Regularity at the boundary of the \(\overline{\pi}\)-Neumann problem. Proc. Nat. Acad. Sci. U.S.A 49 (1963), 206-213.
- [7] Michel V., Sur la regularité C^{∞} du $\overline{\partial}$ au bord d'un domaine de \mathbb{C}^n dont la forme de Levi a exactement s valeurs propres strictement negatives. Math. Ann. **195** (1993), 131–165.
- [8] Tumanov A., Extending CR functions on a manifold of finite type over a wedge. Mat. Sb. 136 (1988), 129–140.
- [9] Zampieri G., L^2 -estimates with Levi-singular weight, and existence for $\bar{\partial}$. J. d'Analyse Math. **74** (1998), 331–344.
- [10] Zampieri G., q-psudoconvexity and regularity at the boundary for solutions of the $\bar{\partial}$ -complex. Preprint (1998).

Dip. Matematica, Università v. Belzoni 7, Padova Italy E-mail: Zampieri@math.unipd.it