On the diameter of closed minimal submanifolds in a real projective space

Changyu XIA

(Received May 27, 1998)

Abstract

In this note, we prove an optimal lower bound estimate for the diameter of closed minimal submanifolds in a real projective space.

Key words: diameter, minimal submanifolds, real projective space.

1. Introduction

Many results for the pinching problem of closed minimal submanifolds in a rank one symmetric space have been obtained in the past years. One can find various curvature pinching theorems about them (cf. [2], [3], [6], [8]). In [1], Chen proved an optimal volume pinching theorem for the above minimal submanifolds. To author's knowledge, few is known about the diameter pinching problem of the same kind of minimal submanifolds. In this paper, we obtain an optimal lower bound for the diameter of closed minimal submanifolds in a real projective space.

Theorem 1 Let M^{n} be an n-dimensional connected immersed closed minimal submanifold in $R P^{m}(1)$, the m-dimensional real projective space of curvature 1. Then the diameter of M^{n} satisfies $d\left(M^{n}\right) \geq \frac{\pi}{2}$ with equality holding if and only if M^{n} is totally geodesic.

2. A Proof of Theorem 1

Before proving Theorem 11, we list the following
Lemma 1 [4] An immersed closed minimal submanifold in a Riemannian manifold N of positive sectional curvature must intersect every closed totally geodesic hypersurface of N.

Proof of Theorem 1. Let p be an arbitrary fixed point of M^{n} and denote by $R P_{p}^{m-1}(1)$ the closd totally geodesic hypersurface of $R P^{m}(1)$ which is
farthest from p, thus the distance measured in $R P^{m}(1)$ between p and any point $\tilde{p} \in R P_{p}^{m-1}(1)$ is $\frac{\pi}{2}$. From Lemma 1, we know that $M_{p}^{n}:=$ $M^{n} \cap R P_{p}^{m-1}(1)$ is nonempty. Since the extrinsic distance is less than or equal to the intrinsic one on M^{n}, any minimal geodesic γ in M^{n} from p to $\tilde{p} \in M_{p}^{n}$ has length greater than or equal to $\frac{\pi}{2}$. Thus the diameter of M^{n} satisfies $d\left(M^{n}\right) \geq \frac{\pi}{2}$. This completes the proof of the first part of Theorem 1.

If M^{n} is totally geodesic, it is well known that $d\left(M^{n}\right)=\frac{\pi}{2}$. Now we assume conversely that $d\left(M^{n}\right)=\frac{\pi}{2}$. In this case we know from the proof of the first part that for any pair of points $p \in M^{n}$ and $\tilde{p} \in M_{p}^{n}$, any minimal geodesic γ in M^{n} from p to $\tilde{p} \in M_{p}^{n}$ has length $\frac{\pi}{2}$ and so it is a minimal geodesic in $R P^{m}(1)$ and is orthogonal to $R P_{p}^{m-1}(1)$ at $\tilde{p} \in M_{p}^{n}$. Thus for any $p \in M^{n}$, the intersection of M^{n} with $R P_{p}^{m-1}(1)$ is transversal and consequently M_{p}^{n} is an ($n-1$)-dimensional closed submanifold of $R P^{m}(1)$. Now, for any $p \in M^{n}$, we denote by $\widetilde{R P_{p}^{n}}(1)$ the n-dimensioanl closed totally geodesic submanifold of $R P^{m}(1)$ which passes through p and has the same tangent space as M^{n} at this point. We claim that for any $p \in M^{n}, M_{p}^{n}=$ $\widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$. To see this, we fix a point $p \in M^{n}$ and let $q \in M_{p}^{n}$ be an arbitrary point. Then the distance between p and q measured in M^{n} and in $R P^{m}(1)$ is the same number $\frac{\pi}{2}$. Now we take a normal minimal geodesic $\gamma:\left[0, \frac{\pi}{2}\right] \rightarrow M^{n}$ which connects p and q. Then $\gamma^{\prime}(0) \in T_{p} M^{n}=T_{p} \widetilde{R P_{p}^{n}}(1)$ and γ is a minimal geodesic in $R P^{m}(1)$ and therefore $\gamma \subset \widetilde{R P}_{p}^{n}(1)$. This implies that $q=\gamma\left(\frac{\pi}{2}\right) \in \widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$ which in turn implies that $M_{p}^{n} \subset \widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$ by the arbitrarity of $q \in M_{p}^{n}$. On the other hand, since both M_{p}^{n} and $\widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$ are closed ($n-1$)-dimensional submanifolds of $R P^{m}(1)$ and $\widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$ is connected, we conclude therefore that $M_{p}^{n}=\widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$. This proves our claim. We are now in a position to prove that M^{n} is totally geodesic. In fact, for a fixed point $p \in M^{n}$, since any minimal geodesic in M^{n} from p to $\tilde{p} \in M_{p}^{n}$ is a minimal geodesic in $R P^{m}(1)$ and $M_{p}^{n}=\widetilde{R P_{p}^{n}}(1) \cap R P_{p}^{m-1}(1)$ is totally geodesic in $R P^{m}(1)$, we know that for any $q \in M_{p}^{n}, M^{n}$ is totally geodessic at q. Now we take a point $\tilde{p} \in M_{p}^{n}$, then $p \in M_{\tilde{p}}^{n}$ and therefore M^{n} is totally geodesic at p by the arguments just made. Since p is arbitrary, M^{n} is totally geodesic. This completes the Proof of Theorem 1.

Remark. By using Lemma 1, one can also show that the diameter of a closed minimal submanifold in a unit sphere is greater than $\frac{\pi}{2}$. Since the
complex projective space $C P^{2}\left(\frac{4}{3}\right)$ of complex dimension 2 and of holomorphic sectional curvature $\frac{4}{3}$ can be isometrically and minimally imbedded in a unit sphere $S^{7}(1)$ of dimensin 7 (see [7]) and the diameter of $C P^{2}\left(\frac{4}{3}\right)$ is $\frac{\sqrt{3} \pi}{2}$, one can't expect that the lower bound for the diameter of closed minimal submanifolds in a unit sphere is achieved at the totally geodesic spheres. Therefore the following problem remains open.
Problem What is the optimal lower bound for the diameter of closed minimal submanifolds in a unit sphere?

References

[1] Chen B.Y., On the total curvature of immersed manifolds I-V. Amer. J. Math. 93 (1971), 148-162; Amer. J. Math. 94 (1972), 799-809; Amer. J. Math. 95 (1973), 636-642; Bull. Inst. math. Acad. Sinica 7 (1979), 301-311; Bull. Inst. Math. Acad. Sinica 9 (1981), 509-516.
[2] Chen B.Y. and Ogiue K., On totally real submanifolds. Trans. Amer. math. Soc. 193 (1974), 275-266.
[3] Chern S.S., do Carmo M. and Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields (F. Browder, ed.), Springer-Verlag, Berlin, (1970), 59-75.
[4] Kenmotsu K. and Xia C.Y., Intersections of minimal submanifolds in manifolds with partially positive curvature. Kodai Math. J. 18 (1995), 242-249.
[5] Kenmotsu K. and Xia C.Y., Hadamard-Frankel type theorems for manifolds with partially positive curvature. Pacific J. Math. 176 (1996), 129-139.
[6] Lawson B., Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 89 (1969), 187-197.
[7] Sakamoto K., Planar geodesic immersions. Tohoko Math. J. 29 (1977), 25-56.
[8] Simons J., Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62-105 (1968).

Departamento de Matemática IE
Universidade de Brasília
Campus Universitário
70910-900-Brasília DF
Brasil
E-mail: xia@Ipe.mat.unb.br

