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On the diameter of closed minimal submanifolds
in a real projective space
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Abstract. In this note, we prove an optimal lower bound estimate for the diameter of
closed minimal submanifolds in a real projective space.
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1. Introduction

Many results for the pinching problem of closed minimal submanifolds
in a rank one symmetric space have been obtained in the past years. One
can find various curvature pinching theorems about them (cf. [2], [3], [6],
[8] ) . In [1], Chen proved an optimal volume pinching theorem for the above
minimal submanifolds. To author’s knowledge, few is known about the
diameter pinching problem of the same kind of minimal submanifolds. In
this paper, we obtain an optimal lower bound for the diameter of closed
minimal submanifolds in a real projective space.

Theorem 1 Let M^{n} be an n-dimensional connected immersed closed \min-

imal submanifold in RP^{m}(1) , the m-dimensional real projective space of
curvature 1. Then the diameter of M^{n} satisfies d(M^{n}) \geq\frac{\pi}{2} with equality
holding if and only if M^{n} is totally geodesic.

2. A Proof of Theorem 1

Before proving Theorem 1, we list the following

Lemma 1 [4] An immersed closed minimal submanifold in a Riemannian
manifold N ofpositive sectional curvature must intersect every closed totally
geodesic hypersurface of N .

Proof of Theorem 1. Let p be an arbitrary fixed point of M^{n} and denote
by RP_{p}^{m-1}(1) the closd totally geodesic hypersurface of RP^{m}(1) which is
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farthest from p, thus the distance measured in RP^{m}(1) between p and
any point \tilde{p}\in RP_{p}^{m-1}(1) is \frac{\pi}{2} . From Lemma 1, we know that M_{p}^{n}:=

M^{n}\cap RP_{p}^{m-1}(1) is nonempty. Since the extrinsic distance is less than or
equal to the intrinsic one on M^{n} , any minimal geodesic \gamma in M^{n} from p to
\tilde{p}\in M_{p}^{n} has length greater than or equal to \frac{\pi}{2} . Thus the diameter of M^{n}

satisfies d(M^{n}) \geq\frac{\pi}{2} . This completes the proof of the first part of Theorem 1.
If M^{n} is totally geodesic, it is well known that d(M^{n})= \frac{\pi}{2} . Now we

assume conversely that d(M^{n})= \frac{\pi}{2} . In this case we know from the proof of
the first part that for any pair of points p\in M^{n} and \tilde{p}\in M_{p}^{n} , any minimal
geodesic \gamma in M^{n} from p to \tilde{p}\in M_{p}^{n} has length \frac{\pi}{2} and so it is a minimal
geodesic in RP^{m}(1) and is orthogonal to RP_{p}^{m-1}(1) at \tilde{p}\in M_{p}^{n} . Thus for
any p\in M^{n} , the intersection of M^{n} with RP_{p}^{m-1}(1) is transversal and
consequently M_{p}^{n} is an (n-1)-dimensional closed submanifold of RP^{m}(1) .
Now, for any p\in M^{n} , we denote by \overline{RP_{p}}^{n}(1) the n-dimensioanl closed totally
geodesic submanifold of RP^{m}(1) which passes through p and has the same
tangent space as M^{n} at this point. We claim that for any p\in M^{n}., M_{p}^{n}=

\overline{RP_{p}}^{n}(1)\cap RP_{p}^{m-1}(1) . To see this, we fix a point p\in M^{n} and let q\in M_{p}^{n} be
an arbitrary point. Then the distance between p and q measured in M^{n} and
in RP^{m}(1) is the same number \frac{\pi}{2} . Now we take a normal minimal geodesic
\gamma : [ o, \frac{\pi}{2}]arrow M^{n} which connects p and g . Then \gamma’(0)\in T_{p}M^{n}=T_{p}\overline{RP_{p}}^{n}(1)

and \gamma is a minimal geodesic in RP^{m}(1) and therefore \gamma\subset\overline{RP}_{p}^{n}(1) . This
implies that q= \gamma(\frac{\pi}{2})\in\overline{RP_{p}}^{n}(1)\cap RP_{p}^{m-1}(1) which in turn implies that
M_{p}^{n}\subset\overline{RP_{p}}^{n}(1)\cap RP_{p}^{m-1}(\underline{1)}by the arbitrarity of q\in M_{p}^{n} . On the other
hand, since both M_{p}^{n} and RP_{p}^{n}\underline{(1)}\cap RP_{p}^{m-1}(1) are closed (n-1)-dimensional
submanifolds of RP^{m}(1) and RP_{p}^{n}(1)\cap RP_{p}^{m-1}(1) is connected, we conclude
therefore that M_{p}^{n}=\overline{RP_{p}}^{n}(1)\cap RP_{p}^{m-1}(1) . This proves our claim. We are
now in a position to prove that M^{n} is totally geodesic. In fact, for a fixed
point p\in M^{n} , since any minimal geodesic in M^{n} from p to \tilde{p}\in M_{p}^{n} is
a minimal geodesic in RP^{m}(1) and M_{p}^{n}=\overline{RP_{p}}^{n}(1)\cap RP_{p}^{m-1}(1) is totally
geodesic in RP^{m}(1) , we know that for any q\in M_{p}^{n} , M^{n} is totally geodessic
at q . Now we take a point \tilde{p}\in M_{p}^{n} , then p\in M_{\tilde{p}}^{n} and therefore M^{n} is
totally geodesic at p by the arguments just made. Since p is arbitrary, M^{n}

is totally geodesic. This completes the Proof of Theorem 1. \square

Remark. By using Lemma 1, one can also show that the diameter of a
closed minimal submanifold in a unit sphere is greater than \frac{\pi}{2} . Since the
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complex projective space CP^{2}( \frac{4}{3}) of complex dimension 2 and of holomor-
phic sectional curvature \frac{4}{3} can be isometrically and minimally imbedded
in a unit sphere S^{7}(1) of dimensin 7 (see [7]) and the diameter of CP^{2}( \frac{4}{3})

is \frac{\sqrt{3}\pi}{2} , one can’t expect that the lower bound for the diameter of closed
minimal submanifolds in a unit sphere is achieved at the totally geodesic
spheres. Therefore the following problem remains open.

Problem What is the optimal lower bound for the diameter of closed
minimal submanifolds in a unit sphere?
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