On the diameter of closed minimal submanifolds in a real projective space

Changyu XIA

(Received May 27, 1998)

Abstract. In this note, we prove an optimal lower bound estimate for the diameter of closed minimal submanifolds in a real projective space.

Key words: diameter, minimal submanifolds, real projective space.

1. Introduction

Many results for the *pinching problem* of closed minimal submanifolds in a rank one symmetric space have been obtained in the past years. One can find various *curvature pinching theorems* about them (cf. [2], [3], [6], [8]). In [1], Chen proved an optimal volume pinching theorem for the above minimal submanifolds. To author's knowledge, few is known about the *diameter pinching problem* of the same kind of minimal submanifolds. In this paper, we obtain an optimal lower bound for the diameter of closed minimal submanifolds in a real projective space.

Theorem 1 Let M^n be an n-dimensional connected immersed closed minimal submanifold in $RP^m(1)$, the m-dimensional real projective space of curvature 1. Then the diameter of M^n satisfies $d(M^n) \geq \frac{\pi}{2}$ with equality holding if and only if M^n is totally geodesic.

2. A Proof of Theorem 1

Before proving Theorem 1, we list the following

Lemma 1 [4] An immersed closed minimal submanifold in a Riemannian manifold N of positive sectional curvature must intersect every closed totally geodesic hypersurface of N.

Proof of Theorem 1. Let p be an arbitrary fixed point of M^n and denote by $RP_p^{m-1}(1)$ the closed totally geodesic hypersurface of $RP^m(1)$ which is

¹⁹⁹¹ Mathematics Subject Classification : 53C20, 53C42.

farthest from p, thus the distance measured in $RP^m(1)$ between p and any point $\tilde{p} \in RP_p^{m-1}(1)$ is $\frac{\pi}{2}$. From Lemma 1, we know that $M_p^n := M^n \cap RP_p^{m-1}(1)$ is nonempty. Since the extrinsic distance is less than or equal to the intrinsic one on M^n , any minimal geodesic γ in M^n from p to $\tilde{p} \in M_p^n$ has length greater than or equal to $\frac{\pi}{2}$. Thus the diameter of M^n satisfies $d(M^n) \geq \frac{\pi}{2}$. This completes the proof of the first part of Theorem 1.

If M^n is totally geodesic, it is well known that $d(M^n) = \frac{\pi}{2}$. Now we assume conversely that $d(M^n) = \frac{\pi}{2}$. In this case we know from the proof of the first part that for any pair of points $p \in M^n$ and $\tilde{p} \in M_p^n$, any minimal geodesic γ in M^n from p to $\tilde{p} \in M_p^n$ has length $\frac{\pi}{2}$ and so it is a minimal geodesic in $RP^m(1)$ and is orthogonal to $RP_p^{m-1}(1)$ at $\tilde{p} \in M_p^n$. Thus for any $p \in M^n$, the intersection of M^n with $RP_p^{m-1}(1)$ is transversal and consequently M_p^n is an (n-1)-dimensional closed submanifold of $RP^m(1)$. Now, for any $p \in M^n$, we denote by $RP_p^n(1)$ the *n*-dimensional closed totally geodesic submanifold of $\mathbb{R}P^m(1)$ which passes through p and has the same tangent space as M^n at this point. We claim that for any $p \in M^n$, $M_p^n =$ $\widetilde{RP_p^n}(1) \cap RP_p^{m-1}(1)$. To see this, we fix a point $p \in M^n$ and let $q \in M_p^n$ be an arbitrary point. Then the distance between p and q measured in M^n and in $RP^{m}(1)$ is the same number $\frac{\pi}{2}$. Now we take a normal minimal geodesic $\gamma: [0, \frac{\pi}{2}] \to M^n$ which connects p and q. Then $\gamma'(0) \in T_p M^n = T_p \widetilde{RP_p^n}(1)$ and γ is a minimal geodesic in $RP^m(1)$ and therefore $\gamma \subset \widetilde{RP}_p^n(1)$. This implies that $q = \gamma(\frac{\pi}{2}) \in \widetilde{RP_p^n}(1) \cap RP_p^{m-1}(1)$ which in turn implies that $M_p^n \subset \widetilde{RP_p^n}(1) \cap \widetilde{RP_p^{m-1}}(1)$ by the arbitrarity of $q \in M_p^n$. On the other hand, since both M_p^n and $\widetilde{RP_p^n}(1) \cap RP_p^{m-1}(1)$ are closed (n-1)-dimensional submanifolds of $RP^{m}(1)$ and $\widetilde{RP_{p}^{n}}(1) \cap RP_{p}^{m-1}(1)$ is connected, we conclude therefore that $M_p^n = \widetilde{RP_p^n}(1) \cap RP_p^{m-1}(1)$. This proves our claim. We are now in a position to prove that M^n is totally geodesic. In fact, for a fixed point $p \in M^n$, since any minimal geodesic in M^n from p to $\tilde{p} \in M_p^n$ is a minimal geodesic in $RP^m(1)$ and $M_p^n = \widetilde{RP_p^n}(1) \cap RP_p^{m-1}(1)$ is totally geodesic in $\mathbb{R}P^m(1)$, we know that for any $q \in M_p^n$, M^n is totally geodessic at q. Now we take a point $\tilde{p} \in M_p^n$, then $p \in M_{\tilde{p}}^n$ and therefore M^n is totally geodesic at p by the arguments just made. Since p is arbitrary, M^n is totally geodesic. This completes the Proof of Theorem 1.

Remark. By using Lemma 1, one can also show that the diameter of a closed minimal submanifold in a unit sphere is greater than $\frac{\pi}{2}$. Since the

complex projective space $CP^2(\frac{4}{3})$ of complex dimension 2 and of holomorphic sectional curvature $\frac{4}{3}$ can be isometrically and minimally imbedded in a unit sphere $S^7(1)$ of dimensin 7 (see [7]) and the diameter of $CP^2(\frac{4}{3})$ is $\frac{\sqrt{3}\pi}{2}$, one can't expect that the lower bound for the diameter of closed minimal submanifolds in a unit sphere is achieved at the totally geodesic spheres. Therefore the following problem remains open.

Problem What is the optimal lower bound for the diameter of closed minimal submanifolds in a unit sphere?

References

- Chen B.Y., On the total curvature of immersed manifolds I-V. Amer. J. Math. 93 (1971), 148–162; Amer. J. Math. 94 (1972), 799–809; Amer. J. Math. 95 (1973), 636–642; Bull. Inst. math. Acad. Sinica 7 (1979), 301–311; Bull. Inst. Math. Acad. Sinica 9 (1981), 509–516.
- [2] Chen B.Y. and Ogiue K., On totally real submanifolds. Trans. Amer. math. Soc. 193 (1974), 275–266.
- [3] Chern S.S., do Carmo M. and Kobayashi S., Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields (F. Browder, ed.), Springer-Verlag, Berlin, (1970), 59–75.
- [4] Kenmotsu K. and Xia C.Y., Intersections of minimal submanifolds in manifolds with partially positive curvature. Kodai Math. J. 18 (1995), 242–249.
- [5] Kenmotsu K. and Xia C.Y., Hadamard-Frankel type theorems for manifolds with partially positive curvature. Pacific J. Math. 176 (1996), 129–139.
- [6] Lawson B., Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 89 (1969), 187–197.
- [7] Sakamoto K., Planar geodesic immersions. Tohoko Math. J. 29 (1977), 25-56.
- [8] Simons J., Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62–105 (1968).

Departamento de Matemática IE Universidade de Brasília Campus Universitário 70910-900-Brasília DF Brasil E-mail: xia@Ipe.mat.unb.br