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Some operators on Lorentz spaces

Enji SATO
(Received March 30, 1998)

Abstract. It is shown that the spaces A(p, q) and M(p, q) defined by Chen and Lai [1]
coincide for 1<p<2 and 1<q<\infty . Also the Banach algebraic properties of Lorentz-
improving operators are investigated.
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1. Introduction

Let G be a locally compact abelian group (LCA group), dx=dm the
Haar measure of G, and \Gamma the dual group. Also the space of bounded regular
Borel measures on G will be denoted by M(G) , and L^{p}(G) the L^{p} space
with the norm || ||_{p} on G .

In this paper, we study the properties of some bounded linear operators
on Lorentz spaces L(p, q)(=L(p, q)(G))(1\leq p, q\leq\infty) .

First we recall some definitions and basic properties of Lorentz spaces.

Definition 1.1 Let f be a complex-valued measurable function on G
which is finite ma.e . The distribution function of f is defined by

m_{f}(y)=m\{x\in G||f(x)|>y\} (y\geq 0) .

The non-increasing rearrangement of f is the function f^{*} defined by

f^{*}(t)= \inf\{y>0|m_{f}(y)\leq t\} (t\geq 0) .

The Lorentz space L(p, q) is defined as the set of equivalence classes of
functions f as above such that ||f||_{pq}^{*}<\infty , where

||f||_{pq}^{*}=\{

( \frac{q}{p}\int_{0}^{\infty}(t^{1/p}f^{*}(t))^{q}\frac{dt}{t})^{1/q} if 1\leq p , q<\infty

sup t^{1/p}f^{*}(t) if 1\leq p\leq\infty , q=\infty .
t\in(0,\infty)

Since f^{*} and f have the same distribution function, it follows that
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||f||_{pp}^{*}=||f||_{p} , so the Lorentz space L(p,p) is equal to L^{p} .
The function || ||_{pq}^{*} is a quasi-norm, but is not in general a norm. For

this reason it is useful to define the function f^{**} by

f^{**}(t)= \frac{1}{t}\int_{0}^{t}f^{*}(s)ds (t >0) ,

and then set

||f||_{(p,q)}=\{

( \int_{0}^{\infty}(t^{1/p}f^{**}(t))^{q}\frac{dt}{t})^{1/q} if 1\leq p , q<\infty

sup t^{1/p}f^{**}(t) if 1\leq p\leq\infty , q=\infty .
t\in(0,\infty)

If 1<p , q<\infty or p=q\in\{1, \infty\} , then L(p, q) is a Banach space with the
norm || ||_{(p,q)} . Also we can prove the inequalities

(p/q)^{1/q}||f||_{pq}^{*}\leq||f||_{(p,q)}\leq p/(p-1)(p/q)^{1/q}||f||_{pq}^{*} ,

where (p/q)^{1/q}=1 if q=\infty . Also we remark that any element of M(G) can
be considered a bounded linear operator on L(p, q) by convolution (cf. [2]).

Now in \S 2, we study the problem posed by Chen and Lai [1; p. 255, Re-
mark]. They define the spaces A(p, q) and M(p, q) concerning with Lorentz
space.

Definition 1.2 Let 1<p<\infty and 1\leq q<\infty . Put

A(p, q)=\{f\in L^{1}(G)|\hat{f}\in L(p, q)(\Gamma)\} ,
M(p, q)=\{\mu\in M(G)|\hat{\mu}\in L(p, q)(\Gamma)\} ,

where \hat{f} (resp. \hat{\mu}) is the Fourier transform (resp. the Fourier-Stieltjes trans-
form) of f\in L^{1}(G) (resp. \mu\in M(G) ). For every f\in A(p, q) (resp. \mu\in

M(G)) we supply a norm by

||f||_{A(p,q)}= \max\{||f||_{1}, ||\hat{f}||_{(p,q)}\}

(resp. || \mu||_{M(p,q)}=\max\{||\mu|| , ||\hat{\mu}||_{(p,q)}\} ),

where ||\mu|| is the total variation norm of \mu .

Then Chen and Lai [1] proposed the following problem:

If 1<p<q\leq 2 , is M(p, q) equal to A(p, q) ?

In this section, we show the equality.
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In \S 3, we study the algebra which concerns with Lorentz-improving mea-
sures. The measures, which act by convolution rnap L^{p} to L^{p+\epsilon} for some
\epsilon=\epsilon(p)>0 and 1<p<\infty , are called L^{p}-improving measures and have
been investigated in a number of recent papers (cf. [4] and the papers cited
therein). Also Grinnell and Hare [2] developed the study of L^{p}-improving
measures, and characterized the class of Lorentz-improving measures on
the Lorentz spaces. We will give a definition of Lorentz-improving opcr-
ators which generalizes Lorentz-improving measures, and investigate tlle
properties of Lorentz-improving operators.

In this paper, for 1\leq p\leq\infty we denote p’ by 1/p+1/p’=1 , T(G) by
all trigonometric polynomials, and C_{j} (j=1,2, . .) by appropriate positive
constants.

2. Chen and Lai’s problem

Throughout this section, let G be a nondiscrete LCA group. Chen
and Lai [1] gives a problem with respect to some operators concerning with
Lorentz spaces. In this section, we consider this problem.

Now Chen and Lai [1; Theorem 3.6 (i)] show the following:

Theorem 2.1 If 1\leq q\leq p\leq 2 , then M(p, q)=A(p, q) .

But they say that we do not know what happens for the case 1<p<
q\leq 2 ([1; p. 255 Remark]). We prove the following result for this problem.

Theorem 2.2 If 1<p<2 and 1<q<\infty , then M(p, q)=A(p, q) .

It is easy to see that the Theorem 2.2 follows from Theorems 2.7 and
2.8. Then we will show those theorems.

To proof of Theorems 2.7 and 2.8, we prepare some lemmas.

Lemma 2.3 For 1<p , q<\infty , there exists \{f_{\alpha}\}\subset L^{1}(G) an approximate
identity of L(p, q) such that f_{\alpha} is a nonnegative function with ||f_{\alpha}||_{1}=1 ,
supp \hat{f}_{\alpha} a compact set, \hat{f}_{\alpha}arrow 1 (\alpha -arrow\infty) on any compact set of F. and
\int_{W^{c}}f_{\alpha}(x)dx-*0 (\alphaarrow\infty) for any neighborhood of unit W

Proof. By Hewitt and Ross [5], there exists a net \{f_{\alpha}\}\subset L^{1}(G) such that
f_{\alpha} is a nonnegative function with ||f_{\alpha}||_{1}=1 , supp \hat{f}_{\alpha} a compact set, \hat{f}_{\alpha}arrow 1

(\alpha -\infty) on any compact set of \Gamma , and \int_{W^{c}}f_{\alpha}(x)dx -arrow 0(\alpha -\infty) for
any neighborhood of unit W Then it is easy to show that f_{\alpha} is in L(p, q) .
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(cf. [8]) Also in the same way as [1; Lemma 3.3], we can show that \{f_{\alpha}\} is
an approximate identity of L(p, q) . We omit the details. \square

Lemma 2.4 For 1<p , q<\infty , we define
\mathcal{F}= { f\in L^{1}(G)| supp \hat{f} is a compact set}.

Then \mathcal{F} is dense in L(p, q)(=L(p, q)(G)) .

Proof. It is easy to see \mathcal{F}\subset L(p, q) . Let \{f_{\alpha}\} be in Lemma 2.3, and
f\in C_{c}(G) . Then by Lemma 2.3, we have

f*f_{\alpha}\in \mathcal{F} , and ||f-f*f_{\alpha}||_{(p,q)} -arrow 0(\alphaarrow\infty) .

So we can show that \mathcal{F} is dense in L(p, q) . \square

It is easy to see the next lemma (cf. [1]).

Lemma 2.5 For 1<p , q<\infty , we define
\hat{\mathcal{F}}=\{\hat{f}|f\in \mathcal{F}\} .

Then \hat{\mathcal{F}} is dense in L(p, q)(\Gamma) .

The next definition was suggested by Saeki and Thome [10].

Definition 2.6 Let \mu be in M(G) . \mu is called in A(p, q)^{\sim} if there exists
a net \{\mu_{\alpha}\}\subset A(p, q) such that \{\mu_{\alpha}\} is bounded in A(p, q) , and \mu_{\alpha}arrow\mu (as
\alphaarrow\infty) in the w^{*}-topology (i.e. \sigma (M(G) , C_{0}(G) )).

Now we can show the following:

Theorem 2.7 If 1<p , q<\infty , then A(p, q)^{\sim}=M(p, q) .

Proof. Let \mu is an A(p, q)^{\sim} By the definition, there exists a net \{\mu_{\alpha}\}\subset

A(p, q) such that \mu_{\alpha}
–

\mu in \sigma(M(G), C_{0}(G)) and ||\mu_{\alpha}||_{A(p,q)}\leq C_{1} . Let \mathcal{F}

be in Lemma 2.4. For f\in \mathcal{F} , we can show

\int fd\mu_{\alpha}=\int\hat{f}(-\gamma)\hat{\mu}_{\alpha}(\gamma)d\gamma ,

where d\gamma is the Haar measure of \Gamma . By the assumption and the duality
(cf. [6]), it follows that

| \int fd\mu_{\alpha}|=|\int\hat{f}(\gamma)\hat{\mu}_{\alpha}(-\gamma)d\gamma|
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\leq||\hat{f}||_{(p’,q’)}||\hat{\mu}_{\alpha}||_{(p,q)}

\leq C_{2}||\hat{f}||_{(p’,q’)} ,

and | \int fd\mu|\leq C_{2}||\hat{f}||_{(p’,q’)}(f\in \mathcal{F}) . On the other hand, let \hat{\mathcal{F}} be in Lemma
2.5. Since \hat{\mathcal{F}} is dense in L(p’, q’)(\Gamma) , by the duality [5] it follows that \hat{\mu}\in

L(p, q)(\Gamma) , ||\hat{\mu}||_{(p,q)}\leq C_{3} , and \mu\in M(p, q) .
Conversely, let \mu be in M(p, q) , and \{f_{\alpha}\} in Lemma 2.3. Putting \mu_{\alpha}=

f_{\alpha}*\mu , it follows that ||\mu_{\alpha}||_{1}\leq||\mu||,\hat{\mu}_{\alpha}=\hat{f}_{\alpha}\hat{\mu} , and ||\hat{\mu}_{\alpha}||_{(p,q)}\leq C_{4}||\hat{\mu}||_{(p,q)} .
Moreover, for f\in \mathcal{F} ( \mathcal{F} in Lemma 2.4) it follows that

\int fd\mu_{\alpha}=\int\hat{f}(-\gamma)\hat{f}_{\alpha}(\gamma)\hat{\mu}d\gammaarrow

\int\hat{f}(-\gamma)\hat{\mu}(\gamma)d\gamma=\int fd\mu(\alphaarrow\infty)

by Lemma 2.3. So we have

\int fd\mu_{\alpha}arrow\int fd\mu(\alphaarrow\infty) (f\in \mathcal{F}) .

Also let g be in C_{0}(G) . Then for any \epsilon>0 , there exists f\in \mathcal{F} with
||f-g||_{\infty}<\epsilon . In fact, \mathcal{F} is a subalgebra of C_{0}(G) , closed under complex
conjugation, and separetes points of G . Therefore, \mathcal{F} is dense in C_{0}(G) by
the Stone-Weierstrass theorem.

Now by the above results, it follows that

| \int gd\mu_{\alpha}-\int gd\mu|\leq||g-f||_{\infty}||\mu_{\alpha}||

+| \int fd\mu_{\alpha}-\int fd\mu|+||f-g||_{\infty}||\mu|| ,

and

\int gd\mu_{\alpha}arrow\int gd\mu(\alphaarrow\infty) .

Therefore \mu is in A(p, q)^{\sim} \square

Theorem 2.8 If 1<p<2 and 1<q<\infty , then A(p, q)^{\sim}=A(p, q) .

Proof Let \mu be in A(p, q)^{\sim} Then there exist a net \{\mu_{\alpha}\}\subset A(p, q) and
C_{5}>0 such that ||\hat{\mu}_{\alpha}||_{(p,q)}\leq C_{5} and \mu_{\alpha}arrow\mu(\alphaarrow\infty) in \sigma(M(G), C_{0}(G)) .
Then in the same way as the first paragraph of the proof of Theorem 2.7,
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it follows that

| \int fd\mu|\leq C_{6}||\hat{f}||_{(p’,q’)} (f\in \mathcal{F}) .

Here, by Hausdorff-Young’s inequality (cf. [2]) and Calderon-Hunt’s inter-
polation theorem (cf. [8]), we can show that

||\hat{f}||_{(p’,q’)}\leq C_{7}||f||_{(p,q’)} (f\in \mathcal{F}) ,

and

| \int fd\mu|\leq C_{7}||f||_{(p,q’)} (f\in \mathcal{F}) .

On the other hand, \mathcal{F} is dense in L(p, q’) by Lemma 2.4. So by the
duality of L(p, q’) (cf. [6]) and Lemma 2.3, it follows that there exists g\in
L(p’, q)(G) such that

\int fd\mu=\int fgdx(f\in \mathcal{F}) , \mu=gdx , and \mu\in L^{1}(G) .

\square

3. Lorentz-improving operators

Throughout this section, let G be an infinite compact abelian group.
In this section, we define Lorentz-improving operators, and characterize
them. Also we give some equivalent conditions of \Lambda_{2}(2, q) -set. Following
Grinnell-Hare [2], we will show it.

Definition 3.1 An operator T is called a Lorentz-improving operator (LI
operator) if there exist p, q , r(1<p<\infty, 1\leq q<r\leq\infty) , and \phi\in l^{\infty}(\Gamma)

such that \overline{Tf}=\phi\hat{f}(f\in T(G)) and T has a bounded extension from
L(p, r) with the norm || ||_{(p,r)} to L(p, q) with the norm || ||_{(p,q)} . Then
we put \hat{T}=\phi . Also we denote by M_{p}(r, q) the set of all T above, and
M_{p}(r, q)^{\wedge}=\{\hat{T}\in l^{\infty}(\Gamma)|T\in M_{p}(r, q)\} .

Here, we remark that M_{p}(r, q) is a commutative Banach algebra without
unit by Yap [12].

Remark 3.2 There exists an LI operator which is not in M(G) . (cf. [4])

Definition 3.3 ([2]) Let 1<p<\infty , 1\leq q<\infty , and E\subset\Gamma E is called
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\Lambda_{2}(2, q) -set if there is some r>q such that

{ f\in L (p, q) |\hat{f}=0 on E^{c} } = { f\in L(p, r)|\hat{f}=0 on E^{c} }.

For 1\leq q<2 , we define

\Lambda_{2}(2, q;E)=supp{ ||f||_{(2,q)}|f\in L^{2} , ||f||_{2}\leq 1,\hat{f}=0 on E^{c} }.

Then we have the following:

Theorem 3.4 The following are equivalent:
(i) T is an LI operator;
(ii) There exist 1\leq q<2 and \alpha\geq 1 such that for any \epsilon>0 and E(\epsilon)=

\{\gamma\in\Gamma||\hat{T}(\gamma)|>\epsilon\} , E(\epsilon) is \Lambda_{2}(2, q) -set with \Lambda_{2}(2, q;E(\epsilon))=O(\epsilon^{-\alpha}) ;
(iii) There exist 1 \leq q<2 and a natural number n such that T^{n} :

L(2, q)’-arrow L^{2} is an LI operator.

The proof of Theorem 3.4 is similar to [2; Theorem 3.4]. We omit the
details.

Theorem 3.5 (cf. [11]) Let E\subset\Gamma , and 1<q<2 . The following are
equivalent:
(i) E is \Lambda_{2}(2, q) -set;
(ii) There exists a positive constant C such that for any g\in L(2, q)’ there

exists h\in L^{2} such that \hat{h}=0 on E^{c},\hat{g}|_{E}=\hat{h}|_{E} , and ||h||_{2}\leq C||g||_{(2,q)}’ ;
(iii) \xi_{E}\in M_{2}(r, q)^{\wedge}for some r(q<r\leq\infty) , where \xi_{E} is the characteristic

function of E ;
(iv) M_{2}(r, q)^{\wedge}|_{E}=l^{\infty}(E) for some r(q<r\leq\infty) ;
(v) There exist r(q<r\leq\infty) and T\in M_{2}(r, q) such that

\inf\{|\hat{T}(\gamma)||\gamma\in E\}>0 .

Proof By [2; Theorem 3.3], (i) is equivalent to (ii).
(ii\Rightarrow iii) We define \hat{T}=\xi_{E} , and have ||Tf||_{2}\leq C_{9}||f||_{(2,q)}’ . By q>1

and the duality, ||Tf||_{(2,q)}\leq C_{9}||f||_{2} . Hence, we may put r=2 .
(iii\Rightarrow iv) Since M_{2}(r, q)^{\wedge}|_{E}\subset l^{\infty}(E) by the definition, it is sufficient

that we show the converse.

Case 1: q<2\leq r . For any \phi\in l^{\infty}(E) , let \Psi(\gamma) be \Psi(\gamma)=\xi_{E}(\gamma)\phi(\gamma) .
Then by (iii) it follows that \xi_{E}\in M_{2}(r, q)^{\wedge}\subset M_{2}(2, q)^{\wedge} , and \xi_{E}\in M_{2}(2, q)^{\wedge} .
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So for any f\in T(G) , it follows that

|| \sum\hat{f}(\gamma)\Psi(\gamma)\xi_{E}(\gamma)\gamma||_{L(2,q)}\leq C_{10}||\sum\hat{f}(\gamma)\Psi(\gamma)\gamma||_{2}

\leq C_{10}||\Psi||_{\infty}||\sum\hat{f}(\gamma)\xi_{E}(\gamma)\gamma||_{2}

\leq C_{11}||\phi||_{\infty}||f||_{L(2,\gamma)} .

Then it follows that \Psi\in M_{2}(r, q)^{\wedge} .

Case 2: q<r\leq 2 . By the assumption, \hat{T}=\xi_{E}\in M_{2}(r, q)^{\wedge}=M_{2}(q’, r’)^{\wedge} .
By the interpolation ([6], cf. [2]), there exists a natural number N such

that T^{N}\in M_{2}(q’, 2) . Let \phi\in l^{\infty}(E) . Then it follows that

|| \sum\phi(\gamma)\xi_{E}(\gamma)\hat{f}(\gamma)\gamma||_{2}\leq||\phi||_{\infty}||\sum\xi_{E}\hat{f}(\gamma)\gamma||_{2}

=||\phi||_{\infty}||T^{N}f||_{2}

\leq C_{12}||\phi||_{\infty}||f||_{(2,q)}’ .

Hence, for \hat{S}=\phi\xi_{E} , S is in M_{2}(q’, 2)=M_{2}(2, q) , and S\in M_{2}(r, q) . there
fore, \phi is in M_{2}(r, q)^{\wedge}|_{E} .

(iv\Rightarrow v) It is clear.
(v\Rightarrow i) First we give the next lemma.

Lemma (cf. [4]) Let T\in M_{2}(p, 2)(2<p<\infty) , and for any \epsilon>0 let
E(\epsilon)=\{\gamma\in\Gamma||\hat{T}(\gamma)|>\epsilon\} . Then E(\epsilon) is \Lambda_{2}(2,p)’ -set with \Lambda_{2}(2,p;E’(\epsilon))=

O(\epsilon^{-1}) , and \xi_{E(\epsilon)}\in M_{2}(p, 2)^{\wedge} .

The proof of this lemma is similar to [4; Theorem 1.5] by applying [2;
Theorem 3.3].

Now let \epsilon_{0}=\inf\{|\hat{T}(\gamma)||\gamma\in E\}(>0) , and E(T, \eta)=\{\gamma\in\Gamma|

|\hat{T}(\gamma)|\geq\eta/2\} for any \eta>0 . Since T\in M_{2}(r, q) , we may assume r<\infty .
Since q>1 and T\in M_{2}(q’, r’) , by Theorem 3.4 there exists a natural
number N such that T^{N}\in M_{2}(q’, 2) . Then since \{\gamma\in\Gamma||\overline{T^{N}}(\gamma)|>\epsilon_{0}^{N}\}=

\{\gamma\in\Gamma||\hat{T}(\gamma)|>\epsilon_{0}\} , E(T^{N}, \epsilon_{0}^{N})\supset E . By T^{N}\in M_{2}(q’, 2) and Lemma,
E(T^{N}, \epsilon_{0}^{N}) is \Lambda_{2}(2, q) -set, and E is \Lambda_{2}(2, q) -set. \square

Remark 3.6 For E \subset\Gamma and 1\leq q<2 , we can prove the same result as
Theorem 3.5 in the same method as [2; Theorem 3.3].

Next we study operating functions and spectra of the Banach algebra
M_{2}(r, q)(1<q<r<\infty) .
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Definition 3.7 Let \Phi be a complex-valued function on [-1, 1]. \Phi is called
an operating function on M_{2}(r, q) if for any T\in M_{2}(r, q) with \hat{T}(\Gamma)\subset[-1,1]

there exists S\in M_{2}(r, q) with \Phi(\hat{T})=\hat{S} .

Then the next result is proved:

Theorem 3.8 Let \Phi_{0} be a bounded function on [-1, 1].
(i) Suppose 2 \leq q<r<\infty (resp. 1 <q<r<2 ). Let \beta_{0}=

(1/2-1/q)/(1/q-1/r) (resp. \beta_{0}=(1/r-1/2)/(1/q-1/r) ), and
n_{0} be the smallest integer such that n_{0}\geq\beta_{0} . Then for any constants
\alpha_{1} , \alpha_{2} , . ’ \alpha_{n0}

\Phi(t)=\alpha_{1}t+ \cdot . +\alpha_{n_{0}}t^{n_{0}}+|t|^{\beta_{0}+1}\Phi_{0}(t)

operates on M_{2}(r, q) .
(ii) Suppose 1<q<2<r<\infty . Let \beta_{1}=\min\{(1/q-1/2)/(1/2-1/r) ,

(1/2-1/r)/(1/q-1/2)\} . Then for any constant \alpha

\Phi(t)=\alpha t+|t|^{\beta_{1}+1}\Phi_{0}(t)

operates on M_{2}(r, q) .

The proof of Theorem 3.8 is similar to [7; Theorem 1] by some interp0-
lations (cf. [2]). We omit the details.

In particular, we can characterize the operating function of M_{2}(2, q) by
[3; Proposition 2] and Theorem 3.8.

Corollary 3.9 Let \Phi be a complex-valued function on [-1, 1], and 1<
q<2 . Then \Phi is an operating function of M_{2}(2, q) if and only if

|\Phi(t)|\leq C_{13}|t| .

Corollary 3.10 Let T be in M_{2}(r,\underline{q)(1}<q<r<\infty) .
Then sp(T, M_{2}(r, q))=\overline{\hat{T}(\Gamma)} , where \hat{T}(\Gamma) is the closure of \hat{T}(\Gamma) .

Proof. Let \Phi_{0}(z) be a bounded function on the complex plane. By [7;
Remark] and Theorem 3.8, z^{N}\Phi_{0}(z) operates on M_{2}(r, q) for sufficiently
large natural number N . Then by [7; Theorem 2]

sp(T, M_{2}(r, q))=\overline{\hat{T}(\Gamma)} .

\square
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