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On stability of periodic solutions of the Navier-Stokes
equations in unbounded domains
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Abstract. We consider the stability of periodic solutions of the Navier-Stokes equations
in unbounded domains @ C R™ (n > 3), which belong to BC(R; L™! N L™2) for some
n/2 < m1 < n < my. We show that if the periodic solution w is small in L>°(0,00; L™1 N
L™2) for some m; < n < mgy and if the initial disturbance a is small in L™ (), then w
is stable.
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1. Introduction

Let € be an exterior domain in R™ (n > 4), i.e., a domain having a
compact complement R"\(2, the half space R (n > 3), or the whole space
R" (n > 3) and assume that the boundary 02 is of class C?*#(0 < u < 1).
The motion of the incompressible fluid occupying €2 is governed by the
Navier-Stokes equations:

@—Aw+w-Vw+V7r:f, divw=0 z€Q, te R,
(N —8) ot

w=0 on 09, w(z,t) >0 as |z| = oo,
where w = w(z,t) = (w'(z,t),...,w™(z,t)) and © = 7(z,t) denote the

unknown velocity vector and the unknown pressure of the fluid, respec-
tively, while f = f(z,t) = (fl(=z,t),..., f*(z,t)) is the given external
force. In [13], Kozono-Nakao constructed periodic strong solutions in un-
bounded domains for some periodic external force f. Their solutions belong
to BC(R; L™ N L*) for some n/2 < r < n.

The purpose of the present paper is to show the stability of such solu-
tions. If w(z,0) is initially perturbed by a, then the perturbed flow v(z, t)
is governed by the following Navier-Stokes equations:
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%—Av+v-Vv+Vq=f, divv=0 in Q,¢t>0,

(N=51) { v=0 on 0Q,t>0, v(x,t) >0 as |z| = oo,

v(z,0) = w(z,0) + a(x) for z €

\

We show that if the periodic solution w is small in L*°(0, co; L™ N L™2) for
some my < n < my and if the initial disturbance a is small in L™(Q), then
there is a unique global strong solution v of (N — S1) such that the integrals

/ lv(z,t) — w(z,t)["de for n<r<oo
Q

converge to zero with definite decay rates as t — 00.
Let w and v be solutions of (N — S) and (N — S7), respectively. Then
the pair of functions u = v — w, p = ¢ — 7 satisfies

g—,l:—Au+w-Vu+u-Vw+u'Vu+Vp:0,

(N -8 divu=0 in Q,t>0,
u=0 on 0O,t>0, u(z,t) >0 as |z|] = 00, ul=0=a.

Thus our problem on the stability for (N — S) can now be reduced to in-
vestigation into existence of global strong solutions to (N — S§’) and their
asymptotic behavior. If w = 0, our problem coincides with the initial
boundary value problem for the usual nonstationary Navier-Stokes equa-
tions. Kato constructed a global strong solution of (N — S) having
a decay property by the iteration method. His method needs the global
estimate supg;ceot/?||Vu(t)||ln < oo. On the other hand, the periodic
solution w prevents us from getting this estimate. Hence we introduce a
notion of mild solution as Kozono-Ogawa [15]. We first construct a global
mild solution having a decay property. Then we shall show that this mild
solution can be identified locally in time with the strong solution. Since the
time interval of existence of strong solutions is characterized by the L
norm of the initial data, we may conclude that our mild solution is actually
a strong one.

In Section 2, we shall state the main results. Section 3 is devoted
to preparing some fundamental lemmas. Finally, we shall prove the main
results in Sections 4 and 5.
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2. Results

Throughout this paper we impose the following assumption on the do-
main.

Assumption 2.1 (Case 1) Q is the half-space R} or the whole space
R"™, where n > 3.

(Case 2) € is an ezterior domain in R™ with C?*TH(u > 0)-boundary
0f), where n > 4.

Before stating our results, we introduce some notations and function
spaces. Let CgS denote the set of all C*-real vector functions ¢ =
(¢1,...,¢") with compact support in € such that divg = 0. L] is the clo-
sure of UG5, with respect to the L™-norm || ||,; (-,-) denotes the L?-inner
product and the duality pairing between L" and L™, where 1 Jr+1/r" =1.
| llroo;r and || [lr,c0 denote the L°°(0,T; L") and L*(0,00; L")-norms,
respectively. H&,’; denotes the closure of CgS, with respect to the norm

1@z = Nl + IVllr,

where V¢ = (8¢'/0z;;1,7 = 1,...,n). When X is a Banach space, its
norm is denoted by || - || x. Then C™([t1,t2); X) is the usual Banach space,
where m = 0,1,2,... and ¢; and ty are real numbers such that t; < ts.
BC™([t1,t2); X) is the set of all functions u € C™([t1,t2); X) such that
SUDy, <t<t, ||§Ztu—ngt)||x < 00. In this paper, we denote by C various constants.
In particular, C = C(x, ..., *) denotes the constant depending only on the
quantities appearing in the parentheses.

Let us recall the Helmholtz decomposition:

L" = L, & G,(direct sum), 1<r < o0,

where G, = {Vp e L";p € L] (Q)}. For the proof, see Fujiwara-Morimoto

loc

[6], Miyakawa [18], Simader-Sohr and Borchers-Miyakawa [1]. P, de-
notes the projection operator from L onto L] along G,. The Stokes oper-
ator Ar on Ly is then defined by A, = —P,A with domain D(4,) = {u €
W2 ();ulaq = 0} N LY. It is known that

(L7)*(the dual space of L7) = LT,

A7 (the adjoint operator of A,) = A,

where 1/r +1/r" = 1. It is shown by Giga [7], Giga-Sohr [9] and Borchers-
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Miyakawa [1] that for every § < w < 7 and every 1 < r < 0o, the resolvent
set p(—A,) of —A, contains the sector X, = {\ € C;|arg)\| < w} and there
is a constant M, depending only on r and w such that

I(Ar + N BLe LE) < Mpw|A™ (2.1)

holds for all A € X, where B(X,Y) is the set of bounded operators from X
to Y. Therefore — A, generates a uniformly bounded holomorphic semigroup
{e7tAr;t > 0} of class Cy in L7. Moreover, there holds

l|ul|wer < C|(14+ Ar)ull, for all u€ D(A,) (2.2)

with a constant C = C(r).

Since Pou = Pyu for all u € L"NLI(1 < r,q < c0) and since A,u = Agu
for all u € D(A,) N D(Ay), for simplicity, we shall abbreviate P.u, Pyu as
Pu foru € L"NLY and Ayu, Aqu as Au for u € D(A;)ND(Ay), respectively.

Our definition of strong and mild solutions of (N —S) and (N — §’) are
as follows:

Definition 1 Let a € L?. A measurable function u on 2 x (0,T) is called
a strong solution of (N — S’) on (0,7T) if

(i) weC([0,T); L) NCH((0,T); Ly);

(i) wu(t) € D(A,) for t € (0,T) and A,u € C((0,T); L});

(iii) w satisfies

0
au—i—AquP(u-Vu) + P(u-Vw) + P(w-Vu) =0
in L? on (0,7) and u(0) = a.

Similarly as above, for an external force f € C((0,T); Ly) we define the
strong solution of (N — S) on (0,T'), so we do not write its definition here.
Next we define a mild solution of (N — §’) as Kozono-Ogawa [15].

Definition 2 Let a € L? and let w € L*(0,T; L) for some m > n.
Suppose that n < r < co. A measurable function u on Q x (0,T) is called
a mild solution of (N — S’) in the class S,(0,T) if

(i) we BC([0,T); L?) and tA—/"/2y(.) € BC([0,T); Ly);

(i) limgy 10 t/D2||u(t)]|, = 0;
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(iii) wu satisfies
(u(t),9) = (e a,6) + / 46, u(s))ds
+ [ w(s) - Ve, u(e)s

+ [ (s V46, w(s))ds

forallg € C§, and all 0 < t < T.

As Kozono-Ogawa [15], we can show that if u is a mild solution in the
class S-(0,T), then the integrals on the right-hand side of (iii) in
2 is well-defined and that (iii) holds for all ¢ € L¥ (1/n' =1 —1/n).

Remark 2.1. By the similar argument given by Brezis [4] and Kato [12], we
see that the condition (ii) follows from (i) and (iii), so (ii) is not necessary.
The proof of this fact, however, is not brief. Hence we impose the condition
(ii) for simplicity.

Our results are stated as follows.

Theorem 2.1 Let a € Ly and let w € L*®(0,T; L™ N L™2) for some
my, mg with 2n/(2n — 3) < m; < n < my. There are positive numbers
A1(m1,ma,n), Aa(n) such that if

[wllmi00 + [lwllmz,0 < 1/A1, (2.3)
lalln < A2(1 = M (l[wlmy,c0 + [[wllms,00))?, (2.4)

then there is a unique mild solution u of (N — ') in the class San(0,00)
with the decay property

lu@ll; < Ct 21 for n<I<om, (2.5)
Jim flu(t)]l, = 0. (2.6)

Theorem 2.2 Let (2.3) and (2.4) hold. For every 2n < r < 0o, there are
positive numbers m (my1, mg,n,r), na(n,r) such that if

”w||m1,oo + ”w”mz,oo < 1/m, (2.7)
lalln < n2(1 = m(l[wllmy,c0 + lwllmg,e0))?, (2.8)
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then the mild solution u given in Theorem 2.1 has the additional decay
property

lu@®)|; < Ct 3G for 2n<i<r. (2.9)

Theorem 2.3 In addition to the hypotheses of Theorem 2.1, assume
moreover that w is a strong solution of (N — S) on (0,00) for some ez-
ternal force f € C((0,00); LY). Then the mild solution given in Theorem
2.1 is a strong solution of (N — S’) on (0, 00).

Remark 2.2. When Q) = R", R} with n > 3 and when ) is an exterior
domain in R"™ with n > 4, for small periodic force f, Kozono-Nakao con-
structed the strong periodic solution w with [2.3); their solution w belongs
to BC(R; L") for 2 <r <n with Vw € BC(R;L?) for n/2 < g<n. If fis
sufficiently small, then ||w|| 0 (0,00;) + [|VW]| oo (0,00;19) 18 also sufficiently
small. By the Sobolev inequality, w € BC(R; L?) for all p € [r,nqg/(n —q)].
Since ng/(n — ¢) > n, this implies [2.3). Maremonti [16], also showed
the existence of the periodic solutions in the three-dimensional whole space
R3 and the half space Ri. It seems to be an open question whether there
exists a periodic solution in three-dimensional exterior domain.

3. Preliminaries

Let us first recall the following LY — L"-estimate for the semigroup
{e"}ix0.

Lemma 3.1 (Kato [11], Ukai [21], Giga-Sohr [9], Iwashita [10], Borchers-
Miyakawa [1], [2])

le™all,

n

(0 Pally, 1<g<r< o0, (3.1)

INA

Mgt

1
T

)_%||a||q, l1<g<r<oo in (Casel),
(3.2)

n/1
Vet all, < My, ¢35

Mé,rt_%(%_%)_%ﬂaﬂq, 1<qg<r<n in(Case 2)
(3.3)

”ve_tAaHr

IA

for all a € L and all t > 0, where Mg, Mé,r are constants depending only
on q, r.
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Concerning r = 0o, we have
Lemma 3.2 (Chen[5], Borchers-Miyakawa [1], [3])
le™alloe < Moot 24 lafly, 1< g < 2n, (3.4)
for all a € LT and all t > 0, with the constant My« depending only on q.
By Lemma 3.1, we have the following lemmas.

Lemma 3.3 Let 0 < T < oco. (i) Suppose that u is a measurable

function with tlg—au() € L*>(0,T; LZ/") for some 0 < a < 1 and that
w € L*(0,T; L7 N L™2) for some my, my with g <my < n < m;.
Then there holds

t
/ (w(s) - Ve~ =944 u(s))ds| + ‘ / Ve =944 1(s))ds
0
< C(Oé, my, ma, )(“w”m1,00;T + ”w“mmw;T)

l—a a—1
'(SUP s HU(S)Hn/a>t ||l = (3.5)
O<s<t

forall 0 <t <T.

(ii) In (Case 1), let 0 < 8 <mn, and let 1 < m} < n < ms.
In (Case 2), let 0 < 8 < n—2, and let ﬁ1<m1<n<m2

Suppose that u € L*°(0,T; L /ﬁ) and that w € L°°(0,T; Ly’ N L7?). Then
there holds

/ (w(s) - Ve =94y, u(s))ds / (u(s) - Ve-lt-9)Ag, w(s))ds
0 0

< C(8,my, ma, n)(|[wl|ms oo;r + 1ellmz, o0 ) 1wl 3 0011l 2

(3.6)

+

forall 0 <t <T.

Proof.  We here prove only (i); statement (1) is proved similarly. Let
1/6; = 1—a/n—1/m; (i = 1,2). Since —a—7 < mp < n < my implies
d; < n, we have by Lemma 3.1 and the Holder 1nequahty that for ¢t > 2

/Ot(w(s) Ve~ (t=s)4g u(s))ds
. w(s) - Ve t=944 u(s))ds
< [ 1w(s) - Ve g u(s))d
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t

+ | |(w(s)- Ve U=, u(s))|ds
l—a
< (Mo (50 55 u(s)lz )l e
n—a 0<s<t “
t—1 __n 1 a-1
/ (t—s) 2™ 2572 ds
0
l—o
Mo (sup 5l ) [0l oir
n—a O0<s<t
t __n _1 o-1
/ (t— 5) 72 2s—z—ds} lol.  (37)
t__l n—o

A direct calculation shows

L n 1 - t—-1 _n 1 o-
/2(t_3)"m 25°T ds + . (t—s) T 25°7 ds
0 =

[\

241 3 11—
< |Bm ey 2P m 1—(£>2(1 | et
- a+1 n—mi 2
321:22( 1 ™ )t = for t>2 (3.8)
a+l n—-m

and

¢ —n_ _1 a— a=1 2
/ (t—S) 2mg ZSTlds S (t— 1)71 ma
t—1 mo —nn

<25 ™ 4% (t>92), (39

mo —n

since 25 < £ for t > 2. By (3.7), (3.8) and (3.9) we have

/Ot(w(s) Ve =94 u(s))ds

< Co(a, my, ma,n) (H’w“ml,oo;T + ||w||mz,oo;T)

l-a a1
[ sup 55 Julo)lz )7 16l =, (3.10)
0<s<t
for t > 2, where
1 mq mao 3-a
— / ’n .
CO(aa ml)mZ’n)_{M-n_'f—a,él (a +1 + n— m1)+Mn—_a’62 mo — n}2 ’
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For 0 <t < 2, we have by Lemma 3.1 that

/Ot(w(s) Ve =94y u(s))ds

l—a
< Mo g 0l e sp. 5 (o))
O<s<t

n—ao’

B(EE, 31— 2 ))eF 5 g o

2
< 2%(1 T”LZ)M’ loa
> +,52||w||m2,oo;T Sup § 2 HU(S)Ilg
n-e O<s<t
az1
B(eF, 5(1= )t 7 il = (3.11)

From and we obtain for al 0 <t < T

t
| wls) - Ve ¢4 u(s))ds

0
S C(CY, myi,ma, n) (”w“ml,oo;T + ”w”TnZ,OO;T)

(p sl‘T“||u<s)ng)t“T”||¢nﬂ_a, (3.12)

0<s<t

where . .

Cla,my,ma,n) = Cola,ma,ma,n) + 22" ma)pg' o (e 11— o).
The second term on the left hand side of car: bae handled in the same
way as above and we get the conclusion. [

Lemma 3.4 Let 0 < T < 00 and let v and w be measurable functions
with w € L*(0,T; LZM) and t 7 v(-) € L>(0,T; LZ/O‘) for some 0 < ~,
a < 1. Then for 6 € [a,a+7] and 0 < 8 < %+g—%—%(>0),

Fuath) = | [ (wls) - Ve, o)

— /Ot(w(s) Ve (t=s)Ag, v(s))ds

1-a
< [ sup Il ) (500, 5% (s}
0<s<T 0<s<T
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- /Ot<v<s> Ve (=94 w(s))ds
< ¢ sup, lutelloy,) (0,5 (o)

0<s<T

a_ v —l4a
2

X(WPta 38 4 htam 330 ||¢) 2,

forallh>0and 0 <t <t+h<T, where C is independent of w, v, ¢ and
T. For § € [a,2q)] and0<ﬁ<%—a+%(>0),

Fu(t,) = | [ (0ls) Ve, o())ds

— /Ot(v(s) Ve (=944 u(s))ds

—a 2
< o sup 55 (e

0<s<T

x (WPEE0 4 Rt 3 gy,

forallh>0and 0 <t<t+h<T.

Proof.  Concerning the inequality for Fy, ,(t, h), we have

Fap(th) < | [ (wls) - e (-4, u(s))ds
t
+ /t(w(s) Ve 3474 _ 1)¢,u(s))ds
0
== Il ‘I‘ I2

n n
e 2 nop from Lemma 3.1 we

SinceO>—%+%—%—:2X > —1 and
obtain

t+h —(t+h—s)A
B [ Il llo ) el Ve s

—y—a

l—o
< ¢ sup (sl ) sup 55 (o)l

0<s<T

Since 0 > —1+3 -2 28> —1and |(e" - )y, < OO A%
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(1 < p < ), we obtain
t
I < [ 1)l 05) a4~ 1)
t t—s %_'2'_%_5
< 0 [ 1wl lolhye(5°)
x [[(e7" = 1)e™ T 49|| o ds
l—a
< O o Iw(e)luys ) (sup, 55 (o)l
0 0<s<T

<s<T

ds

n—y—a

t — Q (7
xhﬂ/ ST (- 5)3 753 1 Pds ]| a
0 "
l-a $_a_
< (s [0, )  sup 5 (o) W25 4] 2,
0<s<T 0<s<T

Hence we get the inequality for Fy . The assertion on Fyw and F,, can
be handled similarly, so we may omit its proof. ]

Concerning the mild solution, we have

Lemma 3.5 Let h € (0,T) and let u be a mild solution of (N -9 in

the class S-(0,T), (n < r < 00). Then u(- + h) is also a mild solution of
(N = 5") in the class 5.(0,T — h) with initial data u(h).

Proof.  Since u is a mild solution, there holds
(u(h), §) = (¢ a,0) + [ (uls) - Ve~ =44, ()
h
+/ (w(s) - Ve~ (h=9)4y, u(s))ds
0
h
+ [ (u(s) Ve, (s))ds
0
for all ¢ € LQ’. Substituting e 7*4¢ into ¢, we have
(e_tAu(h)v¢) = ( (t+h)A ’¢) /h(u(s) ’ ve (t+h= ¢7 ( ))
0
+/ VB (t+h— SA¢, ( ))ds
[ () - e =g, ()
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Hence we see that

(u(t + h), @) — (e~ u(h), ¢)
= /0 (u(s 4 h) - Ve =94 u(s+ h))ds

+/ (s+h)-Ve =948 u(s + h))ds

+ / Ve (=944 w(s + h))ds
for all ¢ € C§%,. This completes the proof of Lemma 3.5. ]

Concerning the uniqueness of mild solutions, we have

Lemma 3.6 (Uniqueness) Leta € L? andletw € L*(0,T; L") for some
m > n. Suppose that n < r < co. Then the mild solution of (N — S') is
unique within the class S, (0,T).

Proof.  Following we give the proof. Let u and v be mild solutions of
(N —8) in S.(0,T) with the same initial data a. Set

D(t) = sup |lu(s) = v(s)|ln

0<s<t

K(t) = sup s 2)u(s)]lnys + sup s 2([u(s)]lnys,
0<s<t 0<s<t

where 8 = n/r. Similarly to the proof of [Lemma 3.3, we have by (iii) in
and Lemma 3.1 that

[(u(t) = v(t), ®)| < {C.K(t) + Bt2"7)} D(t) @] =,

for all ¢ € C§%, and all 0 <t < T, where Cx = M'n_ _ » B(15E, 118y and

n—-1°'n—1-08 2 2
By= M. (1/6 =1—1/m — 1/n). By duality we have
n—1

D(t) < (CLK(t) + Byt2==)D(t), 0<t<T.

Since lim;—, 1o K(t) = 0, we can choose small positive number ty such that
D(to) < 3D(to), which implies

u(t) =v(t) for 0<t <At
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Next we show that u(t) = v(t) for tg <t < T, by Lemma 3.5, Let
D™t) = sup [u(s+h)— V(s + h)||n,
0<s<t

K'(t) = sup s (s +)laya + sup 0PV u(s + )
s

K.

]

(1-8)/2 (1-8)/2
Sup § u(8)||ln/g + sup s v(s ,
ogsg:r ()l ossg’r [v(8)lln/8

for 0 <t <t+h<T. We easily show

1-8 —48 1-p
t72 <Ky, ? tz

K"t) <

forall h>tgandall 0 <t < T — h.

Suppose that u(t;) = v(t;) for some t; > t;. Then, by we
see that u(- 4 ¢1) and v(- + t;) is mild solutions in the class S,(0,T — t1)
with same initial data u(t;). By the above argument we have

DY (t) < (C.KY(t) + B,t20-%))Dh (1), 0<t<T—t,.

SEY "
Letting £ = min{1/(4C,t, 2 K*)ﬂ_i_l,l/(élB*)%}, we obtain D' (¢) <
3D (¢) which implies

u(t) =v(t) for t; <t <t +¢.

Since £ can be chosen independent of ¢;, we can repeat the same argument
as above for ¢ > t; +¢ and we have u(t) = v(t) for all ¢ € [0, T). This proves
Lemma 3.6 ]

4. Proof of Theorems 2.1 and 2.2

Proof of [Theorem 2.1. Let us construct the mild solution according to the
following scheme:

wl(t) =™, (4.1)

(uj+1(t)v¢) = ( tha' ¢ +/ UJ Ve (t=s) ¢,U1( )) S
+/ Ve (t— s)A¢,uJ( )) (4.2)
+ [ i) Ve Mg wiopas, j-01....
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for all ¢ € C§5, and all 0 <t < co. Indeed, we can see that there is a func-
tion uj1 satisfying with tY/4u;,1(-) € L*(0,00); L") if tt/4y;(+) €
L>®(0,00); L2™). To see this, we assume that

sup tl;_anuj(t)“z < K4j<oo forsome 0<a<1/2. (4.3)
0<t<oo ¢

From Lemma 3.1, we obtain

t
[ tus(s) - 94, uj(s))ds
<Moo (Kaj)?Blo, 52)6° ||g]] . (4.4)

n—a’'n—2a

for all ¢ € Cg, and all 0 <t < oc. By (i), we have

/t(w(s) -Ve_(t—S)Aqﬁ, u;(s))ds| + l/t(uj(s) -Ve_(t's)Ad),w(s))dS
0 0
< C(a,m1, ma, n)([[wlmy,00 + [[0]lma,00)

(p sl—"f||uj<s>||n/a)t“7‘l||¢|| . (45)

O<s<t n-a

for all 0 < t < oo. Obviously we have
- - a-1
(7 a, )| < le™“allz ¢l o < Mpnt'Z [allnllgll =, (46)

Hence it follows from [4.4), [4.5), (4.6) and duality that under the assump-

tion (4.3), there is a unique function u;j;1(t) € LY satisfying for all
t > 0 with

a—1
sup t 7 |[uj41(t)|z
0<t<oo

< M, z2llalln + Ci(@, n)(Ka,;)®
+ Cy(a, m1, ma, n)(Jwllmi 00 + [Wllmg,c0) Kaj- (4.7)

Now we have

l-a lwa, _
sup ¢ 2 luo(®)|z = sup ¢ [le™allz < Ma,zllalla,

0<t<oo 0<t<oo
which show (4.3) is true for j = 0 with Ko = My »|la|l». Therefore by
induction we see that for all j = 0,1..., there is a unique function w4,

satisfying and (4.3) with j replaced by j 4 1 and that
Kaj+1 = Kap + C1(Kaj)? + Ca([[wllmy,co + [1wllms 00 Kay-  (4:8)
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Moreover, we can see that u; € C(0, oo; Ly *). Indeed we have

(ujr1(t +h) —uj1(t), @)
= (™™ = 1)e™a,¢) + Fuu, (t, h) + Fua, (,h) + Fu, (2, )

J

for all ¢ € CF5, and all 0 < t < t + h, where F, ,(t, h) is defined in
3.4. From Lemma 3.1 we obtain

(e = 1)e~"a, )|
< C(a, B,m)h* P25 Jaflullgll o, (0< B <1).

Hence from this estimate, and duality it follows that u; €
(0, oo;LZ/a). If we assume for some 0 < o < 1/2 that

G m, M, 1) (1m0 + [0l o0) < 1 (49)
4Mn,§- lallnCi(e,n) < (1= Cao(llwllm,,co + “w”mz,OO))Q, (4.10)

then the sequence {Ko,;}22, is bounded with

1= Colllwll| = /(1 = Calllwll])2 — 4Ka 0C1 (@, n)

< =k
™I 2C1(a,n) *
(4.11)
for all j =0,1,..., where |||w||| = [|w|lm;,0c0 + ||W]lmg.00- Note that kg <

_—[ﬂ—l—QCIga’?u!H‘ From now on we assume and (4.10) for some 0 < o < 1/2.

Set v; = u; —u;_1(u—y = 0). By (i) we see that
|(vj41(2), 8)]
t
| i)+ ey 5))ds
0

t
+ [ aoa(s) - Ve 94, uy(5))ds

t’ws- e (=944 4.(s))ds
+ [ wis)-v b, v;(5))d

vi(s) - Ve (t=3) w(s))ds
+ [ (0y(5) - Ve 96, w(s)a

l1—o a—1
< (2Cika+ Callwll) ( sup 55 (9l ) ¢°7" o)

<S<OO n—o

(4.12)
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Letting Co3 = 2C1(a, n)ka + Co(||w|lmy,00 + |wllmg,00), from duality we
obtain

l—a l—a
sup s z“nij(s)ugsca,B( sup 7" ||Uj(5)||g>,
0<s<oo 0<s<oo

j=0,1,...,

which yields

l1—o - l:_g
sup 57 o (s)]l2 < <ca,3>f( sup 57 ||UO(3)H§)

0<s<o0 0<s<o0

< Mn,g||a||n((]a,3)j. (4.13)

Since (4.11) implies 0 < Cqu,3 < 1 and since u; = S v, yields a
limit u € C((0, 00); LY*) with t3%u(-) € BC((0, 00); Ly’ such that

sup tl—;—aﬂuj(t) —u(t)[jn =0 as j— oo. (4.14)
0<t<oo <«
Following Kozono-Ogawa [15], we can show limt_,+0t1;2a'||u(t)||£ = 0.

Indeed it follows that

sup B le " al|=
0<t<T “

< sup t%‘gne_m(a—&)nz + sup tl—TaHe_tA&Hz
0<t<T * o<t<T «

< My zllo =@l + Mz s8] 277 (4.15)

forall @ € L* N LY* and all 0 < T < oo. Since (4.3)~(4.11) hold with
n/a

0 < t < oo replaced by 0 < t < T for arbitrary T' > 0 and since Ly N Lo
is dense in L7, (4.11) with the aid of yields

sup ¢2 [fu; ()
0<t<T

We next show u € BC([0,00)); Ly) if and (4.10) hold for a = 1/2.
From now on we assume that and (4.10) hold for a = 1/2. Since w €
L*®(0,00; L™ N L™2), we can take 0 <y < 1 such that « +y >1and w €
L>(0, oo; LY. Then, in the similar way to proving u; € C((0, 00); 2/0‘),
by (with § = 1) and duality, we have u; € C((0,00); Ly). From
Lemma 3.1, we obtain

“UO(t)”n < Mn,n”a“n

sup t 2 ||u(t)]l= >0 as T —0. (4.16)
<t<T ¢

”%i
o<t<
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[ tusts) - e, s))ds
)*B(3,
/Ot(w(s) Ve (t=9)4g, u;(s))ds

<M oo |wllnoo(ky) B3, D] =,

n—1'2n—3

[ wi(6) - 9o ()

n— 1 2n—3

<M. . (k

1
n—1'n-—1 2)

=

for all ¢ € CF5,, t > 0, which yield the following uniform estimate:

Sup_[uz4afln < Mn,nnaan'_n_,L(k 2B(3, 1)
0<t<oo —1'n-1

—~

DO

1 1
2 2

1’2n—

Concerning continuity of u; at t = 0 in L?, as above we obtain
les41(t) — alln

2
<lle™a—al+ Ml o (sup 5 us(s)]ln ) BG,3)

n=1'n=1 \g<s<t

ML folee (S0 55l ) B, 3),
0<s<t

n—1’2n-3

which yields with the aid of (4.16) lim;—, ¢ ||uj(t) — a|l, = 0. Concerning
v;(= uj — uj_1), as (4.12) we have

|(vi31(t), 9|
<M o kB (s sty (o)lan ) 1012,

n—1'n-1 0<s<oo

1
FOMLa oo TolnoB () (500 st ) 6l
n—1’2n-1 0<s<oo

which implies by duality that

sup [[vj1(s)ln < C(n,w,k1yn) sup 5% [[v;(s)2n

0<s<oo 0<s<oo

for j=0,1,... . (4.17)
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From this and [4.13) with o = 1/2 we obtain

l

sup [[u(s) = um(s)lln = sup v;(s)
0<s< O0<s<oo ]:m+1 n
-1 .
< CMp 2nlalln Z (Ca3) for 1>m>0.
j=m

(4.18)

Hence it follows from (4.18) and 0 < Cy3 < 1 that the limit u belongs to
u € BC([0,00); Ly).

To see that u is desired mild solution of (N —S’) in the class S2,(0, 00),
we need to prove that u satisfies (iii) in Definition 2. By Lemma 3.1 and
(4.14), we have

‘/Ot(’u,j(s) Ve t=94g ui(s))ds — /Ot(u(s) Ve =944 u(s))ds

t
< /0 (s (3)ll2n + llu(s)ll2n) 15 (5) = u(s)llznl Ve~ ]| 2 ds

1
<oM'a o ks sup sillui(s) — us)lonB(, DIl =,

n—1"n-1 20<s<oo
—0 as j—o oo (¢€Cgy),
t

\/Ot(w(s) Ve (t=9)Ag u;(s))ds — / (w(s) - Ve (=946 u(s))ds

0

1
<My an |wllnoo sup s3luj(s) = us)llanB(z, DIl 2,
n—1’2n—-3 0<s<00

—0 as j—= oo (¢€Chy)

/ t(uj(s) Ve =944 w(s))ds — / t(u(s) Ve =944 w(s))ds
0 0

—0 as j—o oo (¢€Chy)

which yield (iii) in Definition 2. Obviously we can choose A1, Az such that
(2.3) and [2.4) imply and (4.10) with a = 1/2: A1 > Ca(5, m1,ma, n),

1 . . . . . /
A2 < 7 Cr @) o This proves the existence of a mild solution of (N —5’)

in the class S5, (0,00) under the conditions and [2.4).
Now it remains to show (2.5) and (2.6). Since u € L*°(0,00; L") and
t1/4u(.) € L*(0,00; L*), we get (2.5) by the Holder inequality.

For the proof of (2.6), we first consider the case a € Lg N L3, Let us
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prove u € BC((0, 00); L n/4 ) when a € LN L3 To prove this, we need
to show

sup |luj(t)]lsa < Nj<o0 j=0,1,2,...
0<t<oo 4

under the condition a€Lln L3 Set m = m; in (Case 1) and m =
max{mi, 522} in (Case 2). From Lemma 3.1 and (ii) with
B=4/3, we obtaln

< n 3n n n
|(uo(t), )| < Msn sl l|g]] sa_,

t
| uss) - e, s s)ds
SMlsn e B(z, ki Nil¢ll o,

3n—4’6n—11

t
/0 (w(s) - Ve =g, u;(s))ds
< C(my, ma, 1) ([ wllm oo + [0l 00) Nl $]]_sn_

< 20 (ma, ma, ) |[wl|[V; 9] so_,

/t(ug'(S) Ve =940 w(s))ds
0
< 20(m1,m2,n)|||w|||Nj||<l5||§§'_l—4

for all ¢ € CG5,, t > 0. By duality we may take N, as
Nj+1 = Man snllaf|sn + {B1(n)ky + Ba(ma, ma,n)|||w||[}N;.

Since

2M"’2"”a”" < 2Mn,2n“a”n < 2Mn,2n”a’”n
1= Collfwll] = (1= Colf|wll])? = (1 = A|lfw]]])?

we see that the conditions [2.3), [2.4) imply B;(n )ké + By (my, mg,n)|||w]|| <
1, by arranging \; larger and )\ smaller if necessary. By standard argument,
we have u € BC((0,00); L*) if a € L*NLE™*. This and (2.5) imply (2.6).

We next show that (2.6) is true in general. Set U = {a € L?;||a||, <
A2(1 = Ai]l|w|]|)?}. Obviously we can define a map F by

ki <

< 2Mn,2n)\2a

1
2

F:ae€Uw u=Faec BC([0,00); LY)
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where v is the unique mild solution of (N —.5’) in the class S2,(0, 00) with
u(0) = a. As we have seen, there holds

lim [|(Fa)(t)ln =0 for each a€UnN L34, (4.19)
We can show that

sup ||(Fa)(t) — (Fa)(t)|l. < Clla—dll, for each a,a €U,
0<t<oo
(4.20)

where C is independent of @ and a. Indeed by Definition 2, Lemma 3.3 (ii)
and duality we have
sup [|(Fa)(t) — (Fa)(t)]ln
0<t<oo
< Mn,n”a ~alln + MIL _2n_
n—1'2

n-—

( sup t1/4||(Fa)(t)||2n+OsuP t1/4“(Fd)(t)”2n)

0<t<oo <t<oo
X Sup [(Fa)(t) = (Fa) ()|l
+ C(ma, mg, n)([[wllm,co + [[wllma,00)
X Sup I(Fa)(t) — (Fa)(®)l|n- (4.21)

2|||w]|| £ 2/A1, we see that implies (4.20), by arranging A; larger and
Ao smaller if necessary. Hence, as [15, p.29], it is follows from (4.19) and
(4.20) that

Since supg<<oo t'/*[|(Fa)(t)ll2n < k1 < 2Mn,2n A2 and [|wlm,c0+|w]lma 00 <

limsup |(Fa(t)||n =0 for each a € U.

t—o0

This proves [I’heorem 2.1 0

As for the proof of [Theorem 2.2, we have tl_g/ru(~) € L*(0,00;L7),
provided and (4.10) hold for a = n/r. By Hoélder inequality we have
(2.9). This proves [Iheorem 2.2.

5. Proof of Theorem 2.3

Let L$2 ([0,00); L™) denote the set of all measurable functions u such

that u € L*(0,T;L™) for all T > 0. To prove Theorem 2.3, we need the
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following local existence theorem:

Theorem 5.1 (Local existence) Let a € L? N Ly for some a € (0,1)
and let w be a measurable function on (0,00) with w € L*>(0,00; L™) for
some m > n and tY2Vw(-) € L ([0,00); L™). Then there exists a mild
solution u of (N — S') in the class Sn/a(0,T*) satisfying

t
u(t) = e *a - / e (=)4P(u . Vutw Vutu- Vw)(s)ds in L}
0

where

— {{ 1 ]— ( 1 )mm}
= min , )
16(Cy + C4)Mz n ||| 2(Cy + Cs)||w]lm,c0
C1 :CI(avn):M,—”— n B(a71——g)’

n—a’'n—2 2
Ci=Q 2 M B35, %)+ Qam Mlum  B(3(1- 2),1),

ntm "
531-2), Q= 1Pl gre,re)-
Moreover if there is positive number & € (0,1) such that

we O[T L), Vwe C™([¢,T*]; L")
for all £ € (0,T*), then u is also a strong solution of (N — S') on (0,T%).

R

IR

a1

-+

C5:2M n mn B(a

n—o’mn—moa—n

wl

Remark. In case w = 0, the existence interval T* was obtained by Giga

8].

Proof of [Theorem 5.1. Let us construct the strong solution according to
the following scheme:

up(t) = e g, (5.1)

I

t
uj+1(t) = e_tAa—/ e‘(t_s)AP(uj-Vuj)(s)ds
0

t
—/ e_(t_s)AP(w-Vuj)(s)ds
0

— /Ot e~ =4P(y; . Vw)(s)ds. (5.2)

Then we can see that for 0 < T < oo

1-a .
sup ¢°7 |[uj(t)|lnja < Koy <00, j=0,1,..., (5.3)
o<t<T
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sup t%||Vuj(t)||n < L? <oo, j=0,1,.... (5.4)
0<t<T

Suppose that and are true. Then, multiplying by ¢ and
integrating by parts, we obtain the identity [4.2). We have by Lemma 3.1
and the Holder inequality that

/t(w(s) - Ve_(t_s)Aqb, u;(s))ds| + }/t(Uj(S) -Ve'(t—S)Aqb,w(s))ds
0 0

1—a a—1 1
< Callwlmoorr( sp 5 fui(5) e )¢5 T

<s<t
(5.5)
As in the proof of Theorem 2.1, by (4.4) and (5.5) we have that
1 n
Kai < Koo+ Calosn)(KZ,)" + Cslwllmog T KL
(5.6)

Concerning [5.4), we have

IVuo(t)lln < My, yllallnt ™12,

t
”V/ e~ U=AP(y; - Vuy)(s)ds
0

n

T 7T l-a a\y;—1/2
<Qa+1M/a+1 KoiLi B(% 3)t ”

nta,j g

t
HV/ e~ (=) Ap(y . Vu;)(s)ds
0

n

<Q’annm

n+m

|wllm,eoLj B(5(1 = 1), 5)t72m,

nl

t
HV/ e~ =)AP(u; - Vw)(s)ds
0

n

< Qo Ma KL lI() 2Vl B(152, )72,

1)

where Q; = || Pr||g(z-,1r). Hence [5.4) is true with j replaced by j +1, with
LTy = Mylalh + Qua, Mla  B(52, $)KL, () 7V seir
+ Ca(Kq + w275 LT (5.7)

where Cy = Q =, M’ B(15%,%)+Q am M,nm s ,B(3(1—2),2). There-

afi ik n+m

fore by 1nduct10n we get and [5.4) for ] =0,1,... . Let C4(T) =




Stability of periodic Navier-Stokes flows 169

1-— C5||w||m,ooT%(1“%). Since we may take Kg’o = Mn n ||a||n , by
(5.6) we have

Cs(T) — 1/ (Co(T))? — 4C1 M » |ja]| T2

KT = kL

«a,] < 2C1 a)
7=0,1,..., (5.8)

provided

Co(T) = 1 = Cs||w|lmooT2m) > 0, (5.9)
1O Mz 2 allaT'F < (1= Gyl oo T332 (5.10)
Since Cg(T*) = 1=Cs[|wllm,0oT*2 ") > 1/2, 401 Mz 2 ||al| = T* 3" < 1/4,
T* satisfies and [5.10). Hence, as in the proof ‘of Theor e 2,1 we

n/a

obviously see that there is a limit v € C((0,T*); Ls’") with t 7 “u(’) €
BC([0,T*); Y *) satisfying
sup 7" [[u;(8) = u(t)lnje =0 as j— oo,
0<t<T™

sup tl_Ta“u(t)Hn/a —0 as T — +0.
0<t<T

Moreover we shall show tY/2Vu(-) € L>(0,T*; L"). and (5.8) yield

Lii < Myallalle + Qs Mie_ o B2, 30k 1) * V]l corr
+ Ca(kZ" + [l oo T* 24~ F) LT

H (5.11)

x _2Mn n|la ET*_E_ x
It follows from Cg(T*) > 1/2 and k1™ < “’“CEL(HT‘i) that C4kl™ < 1/2.

By the definition of T* we obviously have C4||w||m,ooT*%(1_%) < 1/2. Thus
we obtain

Calky + [wllmooT" 217 ) < 1. (5.12)
Hence from [[5.11) we see that the sequence {L]"}52 is bounded with
My allalle + Q2 MLn_ B(:52, §)II(: )I/QVan oo K,
LT* < * bl
J i
*3

1- 04(kT* + ”w”m ool (l_%))
LT, (5.13)
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By standard argument, such a bound yields

t1/29u(-) € L®(0,T*; L™).

By [(5.1) and [5.2) we easily show that u; € C(]0,7*); L?) for j =0,1,...
In the similar way to proving [(5.11), we have

sup ||ujt1lln £ Mynllalln
o<t<T*

+ Q2 Mo B - 4,5k (LT + ()2 Voolln,o0ir+)
+Q mn Mm'n. ’ B(l

m+4n

for j = 0,1,..., which yields u € BC([0,7*); L?). Hence as in the proof of
Theorem 2.1, we see that u is a unique mild solution of (N — S’) in the class
S1n/a(0,T*). It follows from (iii) of Definition 2 and integration by parts
that

2m’ 2)||w||m 00" T*LT*T* (1-%)

for all ¢ € G5, all 0 < t < T*. It is easily shown that f; e~ (t=9)Ap(y
Vu)(s)ds, [y e~ 4P (w - Vu)(s)ds and [ e"¢=*)AP(u - Vw)(s)ds belong
to Ly for all 0 <t < T*. Thus we obtain

t
u(t) = e_tAa—/ e (=) AP(y . Vu)(s)ds
0

¢
—/ e~ =94 P(w . Vu)(s)ds
0
t
—/ e~ =94P(y . Vw)(s)ds in L7, (5.14)
0

for 0 < t < T*. Next we shall show that this mild solution u is actually a
strong solution if w satisfies, for some « € (0,1), w € C*([¢,T*]; L*°) and
Vw € C*([¢, T*]; L™) for all £ € (0,T™).

Since w € L*°(0,T*; L™) implies that supy.zp+ s¥||w(s)||n/5 < o0
for 6 = n/m, by (5.14) we have supg 7+ s%‘éuu(s)nn/‘; < o00. Asin
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[14, Lemma A.4], from Lemmas 3.1 and 3.2 we obtain for ' > 0 with
0<d/24+ K <1/2,

lu(t +h) — ut)lo < M(R¥t27F 4 h2-317145), (5.15)

IVu(t +h) = V()] < M(E~t27F £ h3-517148) (5.16)

for all 0 <t < t+ h < T*. From these estimates and the hypotheses on w
it follows that, for some kg > 0,

u-Vu, w-Vu, u-VweC™([¢ T;L")

for all £ € (0,7*). Then a well-known theory of holomorphic semigroup
states that u is a strong solution of (N — S’) on (0,T*) (see, e.g., Tanabe
[20, Theorem 3.3.4]). This completes the proof of Theorem 5.1. O

Proof of [Theorem 2.3. Let w be a strong solution of (N — §) for some
f € C(0,00; L%). By the definition of strong solutions of (N — S) we have
Vw € L*®(e, T; L") for all 0 < € < T < oo, which implies

12V w(- +€) € L2 ([0, 00); L™).

Moreover, as in [14, Lemma A.4], from Lemmas 3.1 and 3.2 we obtain for
some k € (0,1),

w e C™([§, T[; L>), Vwe C*(¢T];L") (5.17)
for all 0 < € < € < T < o0o. Since u is the mild solution in the class

S2n(0,0), we have

sup ||u(s)]l2n < Ae < 00 for € > 0.

8>€ o

Letting o = 1/2 and

1 4 1 o
Te* = min [ :l ’ < ) )
{ 16(01 + 04)M2n,2nAe 2(04 + 05)“w”7712,°°

by Lemma 3.5, and [Theorem 5.1 we see that u is a strong
solution on all interval (t,t+ T}) C (e, 00). Hence we conclude by standard
argument that u is a strong solution on (€, 00). Since € > 0 is arbitrary, this
completes the proof of [Theorem 2.3. ]
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