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A criterion for the existence of subobject classifiers
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Abstract. We give a criterion for the existence of subobject classifiers of cocomplete
categories with a small, dense subcategory.
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1. Introduction

It often occurs that a cocomplete category \mathcal{E} has a small and dense
subcategory C . In this case, there is an adjunction between the category \mathcal{E}

and the category Set^{C^{op}} of presheaves over C , which enables us to construct
\mathcal{E} objects from presheaves over C .

In this paper, we give a criterion for the existence of a subobject classi-
fier in \mathcal{E} expressed as a condition in the presheaf category. Moreover we give
the subobject classifier concretely by using the presheaves if there exists a
subobject classifier.

This criterion is used heavily in the proof of the existence of subobject
classifier in the category of functional bisimulations [6]. We expect this
applicable to other similar problems.

We proceed as follows. In Section 2 we recall general facts on the
adjunction between a cocomplete category \mathcal{E} and the category of presheaves
over the small category C when there is a functor from C to \mathcal{E} . Here, we do
not assume that C is a subcategory of \mathcal{E} . Then we introduce the notion of
dense functors. When a functor A from C to \mathcal{E} is dense, the category \mathcal{E} is a
reflective subcategory of the presheaf category of C . Hence \mathcal{E} is a complete
category since presheaf category is complete, and thus a subobject functor
Sub : \mathcal{E}^{op} – Set exists.

In Section 3 we give a criterion for the existence of subobject classifier
of \mathcal{E} , to the effect that the presheaf Sub(A(-)) is in \mathcal{E} , i.e., there exists an
object \Omega\in \mathcal{E} such that Sub(A(-)) \cong \mathcal{E}(A(-), \Omega) holds.
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When we are dealing with a concrete category, it is usually difficult to
find concretely in \mathcal{E} itself a specific \Omega which satisfies the above condition.
We explain a method of constructing \mathcal{E} objects via presheaves over C by
making use of the above adjunction, in Section 4. As an example of this
construction, we give a terminal object in \mathcal{E} . In the case there exists a
subobject classifier in \mathcal{E} , we give it by using presheaf category. This enables
us to modify the criterion slightly, which is more effective for checking it in
concrete cases.

2. A basic adjunction

Let A : C -
\mathcal{E} be a functor from a small category C to a cocomplete

category \mathcal{E} . Define a functor R:\mathcal{E}arrow Set^{C^{op}} by R(E)=\mathcal{E}(A(-), E) .

Proposition 2.1 ([4, pp. 41-42]) The functor R has a left adjoint L :
Set^{C^{op}}

– \mathcal{E} . The functor L is given for each presheaf P by

LP= Colim(\int P^{\pi_{P}A}arrow Carrow \mathcal{E})

Recall that the category \int P of elements of a presheaf P is defined as
follows.

\circ Its object is a pair (C,p) of an object C\in C and p\in P(C) .
\circ An arrow u : (C,p) – (C’,p)’ is a C arrow u : C – C’ such that

p’)u=p, where p’u:=P(u)(p’) .
The functor \pi_{P} : \int P - C is the projection (C,p)\vdash\Rightarrow C , and the

composition of functors

\int P^{\pi_{P}A}arrow Carrow \mathcal{E} (1)

is a diagram in \mathcal{E} with the indexing category \int P . We often write the
diagram (1) simply by A 0\pi_{P} .

Outline of proof First we define a bijective correspondence

Set^{C^{op}}(P, R(E))\cong \mathcal{E}(LP, E)

for each presheaf P and an object E\in \mathcal{E} .
Let \tau\in Set^{C^{op}}(P, R(E)) . Consider the diagram A 0\pi_{P} and take a

cocone \tilde{\tau} : A\circ\pi_{P} -arrow E with \tilde{\tau}_{(C,p)}=\tau_{C}(p) for each object (C,p) \in\int P ,
where \tau_{C} is the component of the natural transformation \tau at C\in C . Since
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the category \mathcal{E} is cocomplete, there exists a universal cocone \mu : A 0\pi_{P}arrow

Colim(yl o\pi_{P} ) =LP. By the universality of the cocone \mu , we have a unique
\mathcal{E} arrow g : Colim(yl \circ\pi_{P} ) -arrow E satisfying g\circ\mu_{(C,p)}=\tilde{\tau}_{(C,p)} for each object
(C,p) \in\int P . It is easy to show that the correspondence \tau- g is bijective
and natural for P and E . \square

Definition 2.2 For each object E\in \mathcal{E} , we call the functor

(A(-)/E)arrow Carrow \mathcal{E}\partial A

the canonical diagram of E . Here A(-)/E is the comma category. Its
object is a pair of C\in C and an \mathcal{E} arrow f : A(C)arrow E, and its arrow
from (C, f : A(C) - E) to (C’, g : A(C’) - E) is a C arrow u : C – C’
such that f=g\circ A(u) . The functor \partial : (A(-)/E)arrow C is the projection:
(C, f)-\neq C .

For each object E\in \mathcal{E} , there always exists a cocone \nu : A 0\partial – E
defined by \nu_{(C,f)}=f for each object (C, f)\in A(-)/E , which we call the
canonical cocone of E.

Definition 2.3 A functor A : C - \mathcal{E} is called dense if the canonical
cocone of E is universal for each object E\in \mathcal{E} .

We call a subcategory is dense when the inclusion functor is dense.
Note that the canonical diagram of E is nothing but the diagram Ao

\pi_{R(E)} : \int R(E) – \mathcal{E} . Hence if the functor A : Carrow \mathcal{E} is dense, then

LR(E)= Colim(\int R(E)arrow C^{A}arrow \mathcal{E})\pi_{R(E)}

=Colim((A(-)/E)arrow Carrow \mathcal{E})\cong E\partial A .

The following fact on the above adjunction L\dashv R is known.

Proposition 2.4 (See [2]) Let L -I R be the adjunction of Proposition
2.1. Then the following three conditions are equivalent to each other.

1. The functor A : Carrow \mathcal{E} is dense.
2. The right adjoint functor R is full and faithful.
3. The counit \epsilon : LR -arrow Id_{\mathcal{E}} : \mathcal{E}

-arrow \mathcal{E} of the adjunction is a natural
isomorphism, i.e. , the E-component \epsilon_{E} : LR(E) -arrow E is isomorphic
for each object E\in \mathcal{E} .

Proof. Because the equivalence between 2 and 3 is well-known, we have
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only to show the equivalence between 1 and 3. By the adjunction L\dashv R in
Proposition 2.1, we have the bijective correspondence

Set^{C^{op}}(R(E), R(E))\cong \mathcal{E}(LR(E), E)

for object E\in \mathcal{E} and R(E)\in Set^{C^{op}} and the counit \epsilon_{E} : LR(E)arrow

E corresponds to the identity transformation id_{R(E)} under this bijective
correspondence.

If we assume A is dense, then we have \epsilon_{E} is isomorphic. Conversely if
we assume \epsilon_{E} is isomorphic, then the canonical cocone has the universality.
Hence 1 and 3 are equivalent. \square

When the functor A is dense, the functor R : \mathcal{E}
-

Set^{C^{op}} is full and
faithful by Proposition 2.4. Consequently the category \mathcal{E} is a reflective
subcategory of Set^{C^{op}} Since the category Set^{C^{op}} is complete, we obtain by
using [1, Proposition 3.5.3]:

Proposition 2.5 If the functor A:Carrow \mathcal{E} is dense from a small category
C to a cocomplete category \mathcal{E} , then the category \mathcal{E} is complete. Hence a

cocomplete category with a small, dense subcategory is complete.

The monic arrows in \mathcal{E} are preserved by the functor R .

Lemma 2.6 The \mathcal{E} arrow m:E_{1}arrow E_{2} is monic if and only if the arrow
R(m) : R(E_{1})arrow R(E_{2}) is monic in Set^{C^{op}}

Proof. First we assume m : E_{1}arrow E_{2} be a monic arrow in \mathcal{E} . Let \alpha , \beta :
Parrow R(E_{1}) be Set^{C^{op}} arrows. Suppose that R(m)\circ\alpha=R(m)\circ\beta . We must
show \alpha_{C}=\beta_{C} at each object C\in C . Let x be any element of P(C) . Then we
have R(m)_{C}(\alpha_{C}(x))=R(m)_{C}(\beta_{C}(x)) . Since R(m)_{C}(\alpha_{C}(x))=mo\alpha_{C}(x)

and R(m)_{C}(\beta_{C}(x))=mo\beta_{C}(x) , we have mo\alpha_{C}(x)=mo\beta_{C}(x) , whence
\alpha_{C}(x)=\beta_{C}(x) because m is monic. It follows then \alpha_{C}=\beta_{C} at each C\in C

since x was arbitrary. Thereby we have \alpha=\beta and conclude that R(m) is
monic in Set^{C^{op}}

The reverse direction follows from the fact that a faithful functor reflects
monic. \square

3. The subobject classifier

Let \mathcal{E} be a cocomplete category and assume, throughout this section,
the existence of a dense functor A : C -

\mathcal{E} from a small category C to \mathcal{E} .
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We consider the condition under which such \mathcal{E} has a subobject classifier.
As we have seen in the previous section, the category \mathcal{E} is complete by
Proposition 2.5. Hence we have the following two properties for the category
\mathcal{E} :

\circ There exists a terminal object 1 in \mathcal{E} .
\circ The pullbacks exist in \mathcal{E} . In particular, the pullbacks of monic arrows

exist in \mathcal{E} . Hence there exists a subobject functor Sub: \mathcal{E}^{op}
- Set.

We first define the Set^{C^{op}} arrows.
Let j : E_{0}arrow E be any subobject of E\in \mathcal{E} . We define a Set^{C^{op}} arrow

\chi_{j} : R(E) -arrow Sub(A(-)) whose C component \chi_{j_{C}} : R(E)(C) -arrow Sub(A(C))
is given by

\chi_{ic}(f)=f^{-1}(j)

for f\in R(E)(C)=\mathcal{E}(A(C), E) . In the above definition, f^{-1}(j) is a subob-
ject of A(C) defined by the following pullback:

f^{-1}(j)|o
|j

E_{0}

A(C) E
f

Next we define a Set^{C^{op}} arrow \xi : R(1) -arrow Sub(A(-)) whose C comp0-
nent \xi_{C} is given by

\xi c(!_{A(C)})=id_{A(C)} ,

where !_{E} denote the unique \mathcal{E} arrow from E to 1.
Then we have the following result.

Lemma 3.1 For each subobject j : E_{0} – E of E\in \mathcal{E} , the following
diagram is a pullback in Set^{C^{op}} :
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R(E_{0})R(!_{E_{0}}) R(1)

R(j)\downarrow \downarrow\xi

R(E)\overline{\chi_{j}} Sub(A(-))

Proof. We examine only the commutativity of the above diagram, since
the other assertion is shown by routine arguments.

We fix a subobject j : E_{0}\mapsto E . In order to show the commutativity
of the above diagram, we check the commutativity at each C component.
Take any f\in R(E_{0})(C)=\mathcal{E}(A(C), E_{0}) . Then we have

\chi ic(R(j)_{C}(f))=\chi ic(jof)=id_{A(C)}

since (j\circ f)^{-1}(j)=id_{A(C)} , and

\xi c(R(!_{E_{0}})c(f))=\xi c(!_{E_{0}}of)=\xi c(!_{A(C)})=id_{A(C)} .

Then \chi_{j_{C}}oR(j)_{C}=\xi_{C}oR(!_{E_{0}})_{C} since f was arbitrary. Hence the commu-
tativity \chi_{j}\circ R(j)=\xi oR(!_{E_{0}}) because C was also arbitrary. \square

Recall the condition that the category \mathcal{E} has a subobject classifier is
given by the statement that the subobject functor Sub : \mathcal{E}^{op}arrow Set is
representable. Here, the assumption on \mathcal{E} , that it has a dense functor A :
Carrow \mathcal{E} from a small category C , cut down the condition as follows.

Theorem 3.2 Let A:Carrow \mathcal{E} 6e a dense functor from a small category C

to a cocomplete category \mathcal{E} . Then the following two conditions are equiva-
lent:

1. The presheaf Sub(A(-)) \in Set^{C^{op}} is in \mathcal{E} , i.e. , there exists an object
\Omega\in \mathcal{E} such that the following isomorphism holds.

Sub(A(-)) \cong \mathcal{E}(A(-), \Omega)=R(\Omega) (2)

2. there eziste a subobject classifier in \mathcal{E} .

Proof. 1 . \Rightarrow 2 .
Assume that the presheaf Sub(A(-)) is in \mathcal{E} . Consider a Set^{C^{op}} arrow

from R(1) to R(\Omega) given by the composition of the arrow \xi and the isomor-
phism of the assumption (2). Since the functor R is full and faithful, this
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Set^{C^{op}} arrow determines a unique \mathcal{E} arrow: t : 1-arrow\Omega . This t is obviously
monic by Lemma 2.6.

Now we show the following to show the existence of the subobject clas-
sifier in \mathcal{E} :

(i) For each object E\in \mathcal{E} , there is a bijection

Sub(E)\cong E(E, \Omega ),

(ii) This bijection is natural for E\in \mathcal{E} .
First we show the existence of bijections. Define a map \Phi_{E} : Sub(E) -arrow

\mathcal{E}(E, \Omega) by sending a subobject j\in Sub(E) to an \mathcal{E} arrow g:Earrow\Omega such
that R(g) is equal to the composite of Set^{C^{op}} arrow \chi_{j} and the isomorphism
of the assumption (2), where the well-definedness of this map \Phi_{E} is assured
by the fullness and the faithfulness of the functor R .

Then, for the above subobject j of E and the arrow g=\Phi_{E}(j) , the
following diagram is a pullback in Set^{C^{op}} by Lemma 3.1.

R(E_{0})-R(1)

R(j)| \downarrow R(t)

R(E)\overline{R(g)}R(\Omega)

Hence we obtain the following pullback in \mathcal{E} since R is full and faithful.

E_{0} 1

j| |t

E \Omega

g

In particular, for each C\in C the map \Phi_{A(C)} coincides with the C-
component of the natural isomorphism (2). Moreover the following pullback
holds for each r\in Sub(A(C)) :
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r\downarrow 0
1\downarrow t

A(C)\overline{\Phi_{A(C)}(r)}\Omega

This means that each correspondence under each C component
Sub(A(C))\cong E(A(C), \Omega ) of (2) gives a pullback as above.

Now we show that \Phi_{E} is injective. Suppose i,j\in Sub(E) and satisfies
\Phi_{E}(i)=\Phi_{E}(j)=g . Then there exist two pullback diagrams: One is a
diagram which pulls back t along g producing i , and the other is pulling
back t along g producing j . Hence i\cong j and \Phi_{E} is injective.

Next we show that \Phi_{E} is surjective. Fix any g\in \mathcal{E}(E, \Omega) and take a
subobject j of E given by pulling back t along g . Put h=\Phi_{E}(j) and we
show g=h for this h . By the previous observation for \Phi_{E} , we have the
following pullback diagram:

j|E_{0} 1[

t

E \Omega

h

Remember that each object E\in \mathcal{E} is given by the colimit of the canon-
ical diagram

A(-)/Earrow Carrow \mathcal{E}\partial A

since the functor A : C arrow \mathcal{E} is dense. Let \mu : A 0\partialarrow E be the canonical
cocone of above diagram. Consider the subobjects given by pulling back j
along the coprojections of \mu . Here each subobject determines an \mathcal{E} arrow
with codomain \Omega by the isomorphism of assumption (2), which amounts to
determine a cocone \nu : A 0\partial -arrow\Omega of a canonical diagram of E with the
vertex \Omega .

As we have seen in the previous observation, each pair of a subobject
and an arrow under the bijective correspondence given by the C-component
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of (2) constitute a pullback diagram. Hence we have

ho\mu_{(C,f)}=\nu_{(C,f)}=go\mu_{(C,f)}

for each object (C, f)\in A(-)/E because \nu_{(C,f)} is the unique arrow which
corresponds both to the subobject pulling back t along go\mu_{(C,f)} and the
one pulling back t along ho\mu_{(C,f)} .

Since the colimit of the canonical diagram A 0\partial is E , the cocone \nu

determines a unique arrow from E to \Omega . Hence g=h and we have shown
that \Phi_{E} is surjective.

The naturality of the bijection follows by routine diagram chasing.
2 . \Rightarrow 1 .
The reverse direction is obvious. \square

Note that when the presheaf Sub(A(-)) is in \mathcal{E} , namely the isomor-
phism Sub(A(-)) \cong R(\Omega) holds, then the subobject classifier is given by the
\mathcal{E} arrow t : 1– \Omega such that R(t) is equal to the composite of \xi : R(1)arrow

Sub(A(-)) and the isomorphism.
By Theorem 3.2, we obtain

Corollary 3.3 Under the same assumption as in Theorem 3.2, the unit
\eta_{Sub(A(-))} : Sub(A(-)) – RL Sub(A(-)) of the adjunction has a retraction
if and only if there exists a subobject classifier in \mathcal{E} .

Proof. First we assume \eta_{Sub(A(-))} has a retraction. Then the unit
\eta_{Sub(A(-))} becomes an isomorphism since R is full and faithful. By using
the Theorem 3.2, the category \mathcal{E} has a subobject classifier.

Next we assume that \mathcal{E} has a subobject classifier. Then there exists
an object \Omega\in \mathcal{E} with an isomorphism Sub(A(-)) \cong R(\Omega) by Theorem 3.2.
Because the unit \eta is a natural transformation, we have the following com-
mutative diagram for the isomorphism:

Sub(A(-))– R(\Omega)

\eta Sub(A(-)) 1 \downarrow\eta_{R(\Omega)}

RL Sub(A(-)) arrow RLR(\Omega)

In the above diagram, both the top and the bottom horizontal arrows are
isomorphisms. Moreover the right vertical \eta_{R(\Omega)} is an isomorphism because
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the counit \epsilon_{\Omega} : LR(\Omega) – \Omega is an isomorphism by Proposition 2.4. This
implies \eta_{Sub(A(-))} is an isomorphism, and hence has a retraction. \square

4. The construction of \mathcal{E} objects via presheaf category

4.1. Preliminary
Now we study the construction of \mathcal{E} objects from the category Set^{C^{op}}

of presheaves by using the left adjoint functor L:Set^{C^{op}}
-

\mathcal{E} .
To begin with, we introduce a notation for the “components” of the

unit \eta of the adjunction L\dashv R . Because the P component of the unit \eta is
a natural transformation \eta_{P} : P - RLP, the component of \eta_{P} at object
C\in C is a map \eta_{PC} : P(C) - RLP(C)(=\mathcal{E}(A(C), LP)) . Define an \mathcal{E} arrow
\kappa_{p}^{LP} : A(C)-arrow LP by

\kappa_{p}^{LP}:=\eta_{PC}(p)

for each object C\in C and p\in P(C) . Then we have the following Corollary
to Proposition 2.1.

Corollary 4.1 Let P be a presheaf over C. The collection of \mathcal{E} arrows

\{\kappa_{p}^{LP} : A(C) -arrow LP|(C,p)\in\int P\} (3)

constitutes a universal cocone of the diagram A 0\pi_{P} .

Proof By the naturality condition on the unit \eta_{P} : P – RLP, the
collection (3) is a cocone of A\circ\pi_{P} . From Proposition 2.1, we have a bijective
correspondence

Set^{C^{op}}(P, RLP)\cong \mathcal{E}(LP, LP) (4)

for object P\in Set^{C^{op}} and LP\in \mathcal{E} . The identity arrow id_{LP} on LP\in \mathcal{E}

corresponds to \eta_{P} under the correspondence (4), which means that the
cocone (3) is universal. \square

For each Set^{C^{op}} arrow \alpha : P – Q, the \mathcal{E} arrow L\alpha : LParrow LQ has a
following property.

Lemma 4.2 Let \alpha : Parrow Q be a Set^{C^{op}} arrow. For each p\in P(C) with
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C\in C , the following diagram commutes:

A(C)

LP LQ
L\alpha

Proof. From the naturality condition on the unit \eta : id_{Set^{c\circ p}} - RL for
Set^{C^{op}} arrow \alpha , we have the following commutative diagram:

\alpha

P Q

\eta_{P}\downarrow
\downarrow\eta_{Q}

RLP\overline{R(L\alpha)}RLQ

By considering the C-component of the above diagram, we get

\kappa_{\alpha_{C}(p)}^{LQ}=L\alpha 0\kappa_{p}^{LP}

for each p\in P(C) . \square

The counit \epsilon_{E} has a following property.

Lemma 4.3 The following diagram commutes for each \mathcal{E} arrow f :
A(C) -arrow E with C\in C :

A(C)

LR(E) E
\epsilon_{E}

Proof. From one of the triangular identities of the adjunction L\dashv R , we
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have the following commutative diagram.

R(E)\underline{\eta_{R(E)}}RLR(E)

|R(\epsilon_{E})

R(E)

The C component of above diagram gives

f=\epsilon_{E}0\kappa_{f}^{LR(E)}

for every f\in \mathcal{E}(A(C), E) . \square

4.2. The terminal object
We can give the terminal object in \mathcal{E} as follows.

Lemma 4.4 Under the same assumption as in Theorem 3.2, let 1 be a

\mathcal{E}te.rminal
object in Set^{C^{op}} Then the object L1\in \mathcal{E} is a terminal object in

Proof. Let 1 be a terminal object in \mathcal{E} . Then 1\cong R(1) . By applying the
functor L and by using denseness of A , we have L1\cong LR(1)\cong 1 . Hence
L1 is a terminal object in \mathcal{E} . \square

4.3. The subobject classifier
In case there exists a subobject classifier in \mathcal{E} , we can give it by using

the presheaves. This enables us to restate the Theorem 3.2 in a bit different
form, which is more useful for us to check its existence in a concrete category.

Corollary 4.5 Under the same assumption as in Theorem 3.2, the \mathcal{E} ar-
row L\xi : LR(1) -arrow L Sub(A(-)) is a subobject classifier if the category \mathcal{E}

has a subobject classifier.
Proof. Suppose that we have a subobject classifier in \mathcal{E} . By using Corol-
lary 3.3, the unit \eta_{Sub(A(-))} : Sub(A(-)) -arrow RL Sub(A(-)) is an isomor-
phism. Now recall the construction of the subobject classifier in the proof
of Theorem 3.2, according to which, the subobject classifier is given by the
\mathcal{E} arrow t : 1-arrow L Sub(A(-)) which satisfies

R(t)=\eta_{Sub(A(-))}\circ\xi . (5)
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Since R is full and faithful, both the existence and the uniqueness of such
an arrow are guaranteed.

By the naturality diagram of the unit \eta for the Set^{C^{op}} arrow \xi and by
the equation (5), we have the following commutative diagram:

\eta_{R(1)}

R(1) RLR(1)

|R(L\xi)

RL Sub(A(-))

Because the unit \eta_{R(1)} is an isomorphism and the functor R is full and
faithful, the underlying subobjects t and L\xi of L Sub(A(-)) are isomor-
phic. Hence we conclude that the \mathcal{E} arrow L\xi : LR(1) -arrow L Sub(A(-)) is a
subobject classifier. \square

By Corollary 3.3, if there exists a subobject classifier in \mathcal{E} , then the unit
\eta_{Sub(A(-))} has a retraction. Now we characterize this retraction.

Corollary 4.6 Under the same assumptions as in Theorem 3.2, there ex-
ists a subobject classifier in \mathcal{E} if and only if \chi_{L\xi} is a retraction of the unit
\eta_{Sub(A(-))} : Sub(A(-)) – RL Sub(A(-)).

Proof Assume the existence of a subobject classifier in \mathcal{E} . Then the
unit \eta_{Sub(A(-))} : Sub(A(-)) -arrow RL Sub(A(-)) is an isomorphism by Corol-
lary 3.3. Since the unit \eta is a natural transformation, the following diagram
commutes, and since both \eta_{R(1)} and \eta_{Sub(A(-))} are isomorphic, the diagram
is a pullback in Set^{C^{op}}

\eta_{R(1)}

R(1) RLR(1)

\xi| \downarrow R(L\xi)

Sub(A(-))
\overline{\eta_{Sub(A(-))}}RL

Sub(A(-))

By using Lemma 3.1 for monic arrow L\xi we have the following pullback
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diagram:

RLR(1) R(1)

R(L\xi)\downarrow \downarrow\xi

RL Sub(A{-) )
\chi L\xi

arrow Sub(A{-) )

By the above two diagrams and the pullback lemma, we get the follow-
ing pullback diagram:

RLR(1) RLR(1)

R(L\xi)\downarrow |R(L\xi)

RL Sub(A{-) )
\overline{\eta_{Sub(A(-))}0\chi_{L\xi}}RL

Sub(A{-) )

Because the functor R is full and faithful, we have the following pullback
diagram, where h:L Sub(A{-) ) -arrow L Sub(A(-)) is a unique \mathcal{E} arrow satis-
fying R(h)=\eta_{Sub(A(-))}0\chi_{L\xi} :

L\xi|LR(1) LR(1)|L\xi

L Sub(A{-) )
\vec{h}L Sub(A{-) )

Since L\xi is a subobject classifier by Lemma 4.5, and since the character-
istic arrow of the subobject classifier L\xi is an identity on L Sub(A(-)), we
have h=id_{LSub(A(-))} . Hence we obtain \eta_{Sub(A(-))}\circ\chi_{L\xi}=id_{RLSub(A(-))} ,
i.e., \chi_{L\xi} is an inverse of \eta_{Sub(A(-))} . Thereby \chi_{L\xi} is a retraction of

\eta_{Sub(A(-)),\square }
, \cdot

The reverse direction follows by Theorem 3.3.

The above Corollary 4.6 enable us to check effectively the existence
of subobject classifier in concrete cases. In order to show the existence of
subobject classifier in \mathcal{E} , we have only to check the following equation holds
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in Set^{C^{\circ p}}

\chi L\xi 0\eta Sub(A(-)) =id Sub(A(-)) (6)

Here the equation (6) is equivalent to the following condition: When
the universal cocone of the diagram \int Sub(A(-)) -arrow Carrow \mathcal{E} is given, in
accordance with the notation in Section 4.1, by the collection

\{ \kappa_{r}^{LSub(A(-))} : A(C) -arrow L Sub(A(-)) |(C, r) \in\int Sub(A(-))\} ,

the following diagram is a pullback for each coprojection \kappa_{r}^{LSub(A(-))} of the
cocone.

o LR(1)

r| \downarrow L\xi

A(C)\overline{LSub(A(-))}L Sub(A(-))
\kappa_{r}
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