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A criterion for the existence of subobject classifiers
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Abstract. We give a criterion for the existence of subobject classifiers of cocomplete
categories with a small, dense subcategory.
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1. Introduction

It often occurs that a cocomplete category £ has a small and dense
subcategory C. In this case, there is an adjunction between the category £
and the category Set®” of presheaves over C , which enables us to construct
& objects from presheaves over C.

In this paper, we give a criterion for the existence of a subobject classi-
fier in £ expressed as a condition in the presheaf category. Moreover we give
the subobject classifier concretely by using the presheaves if there exists a
subobject classifier.

This criterion is used heavily in the proof of the existence of subobject
classifier in the category of functional bisimulations [6]. We expect this
applicable to other similar problems.

We proceed as follows. In Section 2 we recall general facts on the
adjunction between a cocomplete category £ and the category of presheaves
over the small category C when there is a functor from C to £. Here, we do
not assume that C is a subcategory of £. Then we introduce the notion of
dense functors. When a functor A from C to £ is dense, the category £ is a
reflective subcategory of the presheaf category of C. Hence £ is a complete
category since presheaf category is complete, and thus a subobject functor
Sub : £°P — Set exists.

In Section 3 we give a criterion for the existence of subobject classifier
of £, to the effect that the presheaf Sub(A(—)) is in £, i.e., there exists an
object ) € £ such that Sub(A(—)) =2 £(A(-), ) holds.
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When we are dealing with a concrete category, it is usually difficult to
find concretely in £ itself a specific {2 which satisfies the above condition.
We explain a method of constructing € objects via presheaves over C by
making use of the above adjunction, in Section 4. As an example of this
construction, we give a terminal object in £. In the case there exists a
subobject classifier in £, we give it by using presheaf category. This enables
us to modify the criterion slightly, which is more effective for checking it in
concrete cases.

2. A basic adjunction

Let A : C — £ be a functor from a small category C to a cocomplete
category €. Define a functor R : £ — Set®” by R(E) = £(A(-), E).

Proposition 2.1 ([4, pp. 41-42]) The functor R has a left adjoint L :
Set®™” — £. The functor L is given for each presheaf P by

LP = Colim (/P’Eicis) .

Recall that the category [ P of elements of a presheaf P is defined as
follows.
e Its object is a pair (C,p) of an object C € C and p € P(C).
e An arrow u : (C,p) = (C',p') is a C arrow u : C — C’ such that
p - u = p, where p’ - u := P(u)(p).
The functor 7p : [P — C is the projection (C,p) — C, and the
composition of functors

/Pﬁcﬁe (1)
is a diagram in £ with the indexing category [ P. We often write the
diagram (1) simply by A o 7p.

Outline of proof. First we define a bijective correspondence

Set’” (P,R(E)) = £(LP,E)

for each presheaf P and an object E € €.

Let 7 € Set®” (P,R(E)). Consider the diagram A o mp and take a
cocone 7 : Aomp — E with T,y = 7¢(p) for each object (C,p) € [ P,
where 7¢ is the component of the natural transformation 7 at C' € C. Since
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the category £ is cocomplete, there exists a universal cocone p:Aomp —
Colim(Aomp) = LP. By the universality of the cocone p, we have a unique
€ arrow g : Colim(A o mp) — E satisfying g o K(cp) = T(c,p) for each object
(C,p) € [ P. 1t is easy to show that the correspondence 7 —s g is bijective
and natural for P and E. OJ

Definition 2.2 For each object E € £, we call the functor
(A(-)/E)3cAc

the canonical diagram of E. Here A(—)/E is the comma category. Its
object is a pair of C € C and an £ arrow f : A(C) — E, and its arrow
from (C, f : A(C) = E) to (C',g: A(C") - E) is aC arrow u : C — C'
such that f = g o A(u). The functor 8 : (A(=)/E) — C is the projection:
(C,f)—C.

For each object E € &, there always exists a cocone v : Aod — E
defined by v(c ) = f for each object (C, f) € A(-) /E, which we call the
canonical cocone of E.

Definition 2.3 A functor A : C — € is called dense if the canonical
cocone of E is universal for each object E € £.

We call a subcategory is dense when the inclusion functor is dense.
Note that the canonical diagram of E is nothing but the diagram A o
Tr(E) : [ R(E) — . Hence if the functor A :C — £ is dense, then

LR(E) = Colim ( / RE)"cA 5)
= Colim((A(-)/E)3cA¢)~E.

The following fact on the above adjunction L 4 R is known.

Proposition 2.4 (See [2]) Let L + R be the adjunction of Proposition
2.1. Then the following three conditions are equivalent to each other.
1. The functor A:C — £ is dense.
2. The right adjoint functor R is full and faithful.
3. The counit € : LR — Idg : € — £ of the adjunction is a natural
isomorphism, i.e., the E-component cg : LR(E) — E is isomorphic
for each object E € £.

Proof.  Because the equivalence between 2 and 3 is well-known, we have



120 H. Watanabe

only to show the equivalence between 1 and 3. By the adjunction L 4 R in
[Proposition 2.1, we have the bijective correspondence

Set’”(R(E),R(E)) = E(LR(E), E)

for object E € £ and R(E) € Set®”, and the counit e : LR(E) —
E corresponds to the identity transformation idg(g) under this bijective
correspondence.

If we assume A is dense, then we have eg is isomorphic. Conversely if
we assume € is isomorphic, then the canonical cocone has the universality.
Hence 1 and 3 are equivalent. U

When the functor A is dense, the functor R : & — Set®” is full and
faithful by [Proposition 2.4. Consequently the category £ is a reflective
subcategory of Set®”. Since the category Set®” is complete, we obtain by
using [1, Proposition 3.5.3]:

Proposition 2.5 If the functor A : C — £ is dense from a small category
C to a cocomplete category £, then the category £ is complete. Hence a
cocomplete category with a small, dense subcategory is complete.

The monic arrows in £ are preserved by the functor R.

Lemma 2.6 The £ arrow m : E1 — Ey is monic if and only if the arrow
R(m) : R(E1) = R(E3) is monic in Set®” .

Proof.  First we assume m : E; — E, be a monic arrow in €. Let o, 3 :
P — R(E,) be Set®”” arrows. Suppose that R(m)oa = R(m)o3. We must
show ac = B¢ at each object C € C. Let z be any element of P(C). Then we
have R(m)s(ac(z)) = R(m)o(Bc(x)). Since R(m)o(ac(x)) = mo ac(z)
and R(m)(Bc(z)) = mo Be(x), we have m o ac(x) = m o fc(z), whence
ac(z) = Bc(x) because m is monic. It follows then ac = B¢ at each C € C
since z was arbitrary. Thereby we have a = 3 and conclude that R(m) is
monic in Set®”" .

The reverse direction follows from the fact that a faithful functor reflects
monics. 0

3. The subobject classifier

Let £ be a cocomplete category and assume, throughout this section,
the existence of a dense functor A : C — £ from a small category C to €.
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We consider the condition under which such £ has a subobject classifier.
As we have seen in the previous section, the category € is complete by
[Proposition 2.5. Hence we have the following two properties for the category
E:
e There exists a terminal object 1 in £.
e The pullbacks exist in £. In particular, the pullbacks of monic arrows
exist in £. Hence there exists a subobject functor Sub : £°P — Set.
We first define the Set®”” arrows.
Let j : Ey — E be any subobject of E € £. We define a Set®” arrow
X;j : R(E) — Sub(A(—)) whose C component ;. : R(E)(C) — Sub(A(C))
is given by

Xic(f) = f71()

for f € R(E)(C) = E(A(C), E). In the above definition, f~1(j) is a subob-
ject of A(C) defined by the following pullback:

Next we define a Set®” arrow ¢ : R(1) — Sub(A(—)) whose C' compo-
nent ¢ is given by

Ec(lae)) = ida),

where | denote the unique £ arrow from E to 1.
Then we have the following result.

Lemma 3.1 For each subobject j : Ey — E of E € £, the following
diagram is a pullback in Set™ :
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R(E) R(1)
R(j) 3
R(E) - Sub(A(-))

Proof.  We examine only the commutativity of the above diagram, since
the other assertion is shown by routine arguments.

We fix a subobject j : Ey — E. In order to show the commutativity
of the above diagram, we check the commutativity at each C component.

Take any f € R(Eo)(C) = E(A(C), Ey). Then we have
Xic(R()c(f) = xjc(io f) =idac

since (j o £)~1(j) = id g(c, and
§c(R('By) o (f)) = €c('By © f) = Ec(la(e)) = ida(o)-

Then x;, 0 R(j)c = éc o R(!g,) ¢ since f was arbitrary. Hence the commu-
tativity x; o R(j) = € o R(!g,) because C was also arbitrary. O

Recall the condition that the category £ has a subobject classifier is
given by the statement that the subobject functor Sub : £°P — Set is
representable. Here, the assumption on &, that it has a dense functor A :
C — & from a small category C, cut down the condition as follows.

Theorem 3.2 Let A:C — &€ be a dense functor from a small category C
to a cocomplete category £. Then the following two conditions are equiva-
lent:
1. The presheaf Sub(A(—)) € Set®™ is in £, i.e., there exists an object
2 € € such that the following isomorphism holds.

Sub(A(-)) = E(A(-), ) = R(Q) (2)
2. There exists a subobject classifier in &.

Proof. 1. = 2.

Assume that the presheaf Sub(A(—)) is in £. Consider a Set®” arrow
from R(1) to R(2) given by the composition of the arrow £ and the isomor-
phism of the assumption (2). Since the functor R is full and faithful, this
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Set®” arrow determines a unique £ arrow: t : 1 — Q. This t is obviously
monic by Lemma 2.6.
Now we show the following to show the existence of the subobject clas-
sifier in &:
(i) For each object E € £, there is a bijection

Sub(E) = £(E,Q),

(ii)) This bijection is natural for E € £.

First we show the existence of bijections. Define a map ®g : Sub(E) —
E(E, Q) by sending a subobject j € Sub(E) to an £ arrow g : E — € such
that R(g) is equal to the composite of Set®™ arrow x; and the isomorphism
of the assumption (2), where the well-definedness of this map ® is assured
by the fullness and the faithfulness of the functor R.

Then, for the above subobject j of E and the arrow g = ®g(j), the
following diagram is a pullback in Set®” by Lemma 3.1.

R(Eo) — R(1)

Hence we obtain the following pullback in £ since R is full and faithful.

1

Ey

E

g

In particular, for each C' € C the map ®4) coincides with the C-
component of the natural isomorphism (2). Moreover the following pullback
holds for each r € Sub(A(C)):
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This means that each correspondence under each C component
Sub(A(C)) = E(A(C), Q) of (2) gives a pullback as above.

Now we show that ®p is injective. Suppose i,j € Sub(E) and satisfies
®p(i) = ®r(j) = g. Then there exist two pullback diagrams: One is a
diagram which pulls back t along g producing ¢, and the other is pulling
back t along g producing j. Hence 7 = j and ®f is injective.

Next we show that ®g is surjective. Fix any g € £(F,2) and take a
subobject j of E given by pulling back t along g. Put h = ®g(j) and we
show g = h for this h. By the previous observation for ®r, we have the
following pullback diagram:

Ey

E Q

h

Remember that each object E € £ is given by the colimit of the canon-
ical diagram

A~ /EScAce

since the functor A : C — £ is dense. Let u: Ao d — E be the canonical
cocone of above diagram. Consider the subobjects given by pulling back j
along the coprojections of y. Here each subobject determines an £ arrow
with codomain €2 by the isomorphism of assumption (2), which amounts to
determine a cocone v : Ao d — () of a canonical diagram of E with the
vertex ().

As we have seen in the previous observation, each pair of a subobject
and an arrow under the bijective correspondence given by the C-component
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of (2) constitute a pullback diagram. Hence we have

ho e, =ve,n =90 ue,

for each object (C, f) € A(~)/E because v(c, s is the unique arrow which
corresponds both to the subobject pulling back t along g o pc,s) and the
one pulling back t along h o (C,1)-

Since the colimit of the canonical diagram A o 8 is E, the cocone v
determines a unique arrow from F to Q2. Hence g = h and we have shown
that ® g is surjective.

The naturality of the bijection follows by routine diagram chasing.

2. = 1.

The reverse direction is obvious. Wl

Note that when the presheaf Sub(A(-)) is in £, namely the isomor-
phism Sub(A(~)) = R(2) holds, then the subobject classifier is given by the
€ arrow t : 1 — Q such that R(t) is equal to the composite of ¢ : R(1) —
Sub(A(—)) and the isomorphism.

By [l’heorem 3.2, we obtain

Corollary 3.3 Under the same assumption as in Theorem 3.2, the unit
Nsub(A(-)) : Sub(A(—)) = RLSub(A(-)) of the adjunction has a retraction
if and only if there exists a subobject classifier in £.

Proof. First we assume Nsub(A(-)) has a retraction. Then the unit
NSub(A(~)) Decomes an isomorphism since R is full and faithful. By using
the [Theorem 3.2, the category € has a subobject classifier.

Next we assume that £ has a subobject classifier. Then there exists
an object Q2 € £ with an isomorphism Sub(A(-)) & R(Q) by Theorem 3.2.
Because the unit 7 is a natural transformation, we have the following com-
mutative diagram for the isomorphism:

Sub(A(-)) —— R(Q)

T1Sub(A(-)) NR()

RLSub(A(-)) — RLR(Q)

In the above diagram, both the top and the bottom horizontal arrows are
isomorphisms. Moreover the right vertical NR(n) 18 an isomorphism because
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the counit eq : LR(2) —  is an isomorphism by [Proposition 2.4. This
implies gup(4(—)) 18 an isomorphism, and hence has a retraction. 0

4. The construction of £ objects via presheaf category

4.1. Preliminary

Now we study the construction of £ objects from the category Set®”
of presheaves by using the left adjoint functor L : Set¢” — €.

To begin with, we introduce a notation for the “components” of the
unit 5 of the adjunction L 4 R. Because the P component of the unit 7 is
a natural transformation np : P — RLP, the component of np at object
C eCisamapnpc: P(C) - RLP(C)(=E(A(C), LP)). Define an £ arrow
n{;P : A(C) = LP by

“;I;P = npc(p)

for each object C € C and p € P(C). Then we have the following Corollary
to [Proposition 2.1l.

Corollary 4.1 Let P be a presheaf over C. The collection of £ arrows

{ngp L A(C) = LP | (C.p) € / p} (3)

constitutes a universal cocone of the diagram Ao wp.

Proof. By the naturality condition on the unit np : P — RLP, the
collection (3) is a cocone of Aomp. From [Proposition 2.1l we have a bijective
correspondence

Set’” (P, RLP) = £(LP,LP) (4)

for object P € Set’” and LP € £. The identity arrow idyp on LP € &€
corresponds to np under the correspondence (4), which means that the
cocone (3) is universal. O

For each Set®” arrow a : P — Q, the £ arrow La : LP — LQ has a
following property.

Lemma 4.2 Let a: P — Q be a Set®” arrow. For each p € P(C) with



A criterion for the existence of subobject classifiers 127

C €C, the following diagram commutes:

A(C)
LQ
V \()
LP > L
La @

Proof.  From the naturality condition on the unit N : idggicor = RL for
Set®” arrow a, we have the following commutative diagram:

P «a

Q

np nQ

RLP ——— RL
R(La) @

By considering the C-component of the above diagram, we get

LQ _ LpP
Fac(p) = Lacoky
for each p € P(C). O]

The counit g has a following property.

Lemma 4.3 The following diagram commutes for each & arrow f :
A(C) > FE withC e C :

A(C)
LR(E)
Ky f
LR(E) - E
EE

Proof.  From one of the triangular identities of the adjunction L - R, we
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have the following commutative diagram.

R(E) — ") RLR(E)

idp ) Ries)
R(E)
The C component of above diagram gives
f=¢€go n?R(E)
for every f € E(A(C), E). O

4.2. The terminal object
We can give the terminal object in £ as follows.

Lemma 4.4 Under the same assumption as in Theorem 3.2, let 1 be a
terminal object in Set®” . Then the object L1 € £ is a terminal object in

£.

Proof. Let 1 be a terminal object in €. Then 1 2 R(1). By applying the
functor L and by using denseness of A, we have L1 =~ LR(1) = 1. Hence
L1 is a terminal object in £. [

4.3. The subobject classifier

In case there exists a subobject classifier in £, we can give it by using
the presheaves. This enables us to restate the [Theorem 3.2 in a bit different
form, which is more useful for us to check its existence in a concrete category.

Corollary 4.5 Under the same assumption as in Theorem 3.2, the £ ar-
row L€ : LR(1) — LSub(A(-)) is a subobject classifier if the category &
has a subobject classifier.

Proof.  Suppose that we have a subobject classifier in £. By using Corol-
lary 3.3, the unit ngyp(a(—)) : Sub(A(—)) — RLSub(A(-)) is an isomor-
phism. Now recall the construction of the subobject classifier in the proof
of Theorem 3.2, according to which, the subobject classifier is given by the
& arrow t : 1 — L Sub(A(—)) which satisfies

R(t) = nsub(a(-)) °&- (5)
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Since R is full and faithful, both the existence and the uniqueness of such
an arrow are guaranteed.

By the naturality diagram of the unit 7 for the Set®” arrow ¢ and by
the equation (5), we have the following commutative diagram:

RLR(1)
R(LE)

RL Sub(A(-))

Because the unit 7pg(;) is an isomorphism and the functor R is full and
faithful, the underlying subobjects t and L& of L Sub(A(—)) are isomor-
phic. Hence we conclude that the £ arrow L¢ : LR(1) — L Sub(A(-)) is a
subobject classifier. 0

By (Corollary 3.3, if there exists a subobject classifier in £, then the unit
Nsub(A(-)) has a retraction. Now we characterize this retraction.

Corollary 4.6 Under the same assumptions as in Theorem 3.2, there ex-

ists a subobject classifier in € if and only if x ¢ is a retraction of the unit
Nsub(A(-)) : Sub(A(—)) = RL Sub(A(-)).

Proof. ~ Assume the existence of a subobject classifier in £. Then the
unit Ngyp(4(-)) : Sub(A(—)) — RL Sub(A(-)) is an isomorphism by Corol-
lary 3.3. Since the unit 7 is a natural transformation, the following diagram
commutes, and since both ng(;y and 7 Sub(A(—)) are isomorphic, the diagram
is a pullback in Set®”.

R(1) —Y . RLR(1)
3 R(L)
Sub(A(-)) RL Sub(A(-))
nSub(A(—))

By using for monic arrow L¢ we have the following pullback
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diagram:

RLR(1)

R(L¢) 3
RL Sub(A(—)) —» Sub(A(-))
XLg

By the above two diagrams and the pullback lemma, we get the follow-
ing pullback diagram:

RLR(1)

- RLR(1)

R(L¢) R(L£)

RL Sub(A(-))

» RLSub(A(-))
T1Sub(A(-)) © XL¢

Because the functor R is full and faithful, we have the following pullback

diagram, where h : L Sub(A(—)) — LSub(A(-)) is a unique £ arrow satis-
fying R(h) = nsub(a(-)) © XLé:

LR(1)

LR(1)

L¢ L¢

L Sub(A(-)) - L Sub(A(-))

Since L is a subobject classifier by Lemma 4.5, and since the character-
istic arrow of the subobject classifier L¢ is an identity on L Sub(A(—)), we
have h = idLSub(A(—))' Hence we obtain nSub(A(—-)) O XL¢ = idRLSub(A(—))

i.e., XL¢ is an inverse of ngyp(a(~))- Thereby xL¢ is a retraction of ngup(a(-))-
The reverse direction follows by Theorem 3.3. U
The above [Corollary 4.6 enable us to check effectively the existence

of subobject classifier in concrete cases. In order to show the existence of
subobject classifier in £, we have only to check the following equation holds
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in Set®”.

XLe © Msub(A(-)) = 1d sub(a(-)) (6)

Here the equation (6) is equivalent to the following condition: When
the universal cocone of the diagram [Sub(A(-)) — C — £ is given, in
accordance with the notation in Section 4.1, by the collection

{mfsllb(f‘(—)) : A(C) — LSub(A(=)) | (C,r) € / Sub(A(—))} :

the following diagram is a pullback for each coprojection s S*P4(~))

cocone.

of the

~ LR(1)
r L¢

A(C) > LSub(A(-))

L Sub(A(-)
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