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On some classes of regularization methods for minimization
problem of quadratic functional on a half-space

Milojica JACIMOVIC and Izedin KRNIC
(Received June 20, 1997; Revised May 12, 1998)

Abstract. This paper deals with some classes of a regularization methods of quadratic
functional minimization problem on a half-space of real Hilbert space. We prove the con-
vergence of the regularized solution. Under additional conditions, we obtain an estimate

for convergence rate of the presented methods.
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1. Introduction

We consider the following extremal problem:
J(w) = |Au— f|I* = inf, weU={ueH: (cu)<ps} (1)

Here H and F are real Hilbert spaces; A : H — F' is continuous linear oper-
ator; f € F', c € H, ¢ # 0, are some fixed elements from the corresponding
spaces; [ is given real number.

In practice, instead of the exact operator A and the elements f, c, we
deal with their approximations A, € L(H,F), fs € F, and ¢, € H, such
that

A= Aull < p, If = f5ll <6, lle—coll <o,

where u, § and o are small positive real numbers.

Generally speaking, the problem (1) is unstable with respect to the
perturbations of the initial data A, f, ¢ and the regularization method are
required to solve it , , , @, . Remark that the regularization
methods for the minimization problems

J(u) = ||Au— f||* = inf, uveH (2)
and

J(u) = |Au— f||* = inf, weU={ueH:|u| <R}
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have been studied in [1], [4], [7] and in [3], [7].

In further, we suppose that the sets of the solutions of the problems (1)
and (2) are not empty.

Let us introduce the following notation: R(A) is the range of the opera-
tor A, P is the orthogonal projecting operator from H on R(A)*, u, is the
normal solution (i.e. the solution with the minimal norm) of the problem
(1), and u is the normal solution of the problem (2).

According to the optimality conditions [7], we have that u., satisfy the
operator equality,

A*Auy = A* f. (3)
while for the element u* there exists A* > 0 such that

A*Au, — A*f+ X*c=0 (4)

A*({c,us) —B) =0 (5)

Following the Tikhonov idea of regularization of unstable problem, we can
take the (unique) solution of the problem

Qa(v) = | Ayu — fsll + allul® = inf, weH (6)

for small positive real number o = a(d, u), §, u, as an approximation of a
solution of the problem (1), Remark that the solution of the problem (6)
can be represented by

Uoy = Jo (ALA;L)A;f&

where Go(t) = (a + t)”'. We say that the method (6) is generated by
the system of functions {g,}. The generalizations of the previous method
for the problem (1) were observed in [6]. These generalized methods were
generated with the system of continuous functions g, : [0,a] = R, a > 0,
such that

(Vt € [0,a])(Va > 0)1 — tga(t) > 0 (7)
sup{tP(1 — tga(t)) : t € [0,a]} < y,0,
(0 <p <po, po >0, v, = const) (8)

Real number pg is called the qualification of the system {g,}. The func-
tions go(t) = (a+t)~! satisfy the conditions (7)-(8) with py = 1. However,
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the method (6) generated with the functions g, is not suitable for describ-
ing some algorithms of choosing of the parameter a and for studying of
some iterative methods of regularization. In order to study these problems
we should consider the system of functions {g,}, which satisfy the condi-
tions (7)—(8) with the qualification pg > 1. Notice that the regularizatiom
methods based on the functions {g, for the minimization problem without
constraints were properly observed in [5] and [4]. In this paper we show that
the similar class of the functions can be also used for the regularization of
the problem (1).

2. Algorithms and auxiliary results

It turns out that for studying the extremal problems with constraints,
beside (7), (8), we need an additional condition

(38 > 0)(Vt € [0,a]))(Va > 0) (t+ Ba) ™! < galt) < (Ba)™'  (9)

The examples of the functions that satisfy (9) can be found in [6].
Since

Ballu —v|® < (g3 (AL Au) (v —v),u—v), wveEH,

it follows that the extremal problem

1

—1 1
To(u) = ll9a (A Au)u — 94 (A, Au) AL fsl|* — inf, ue H

has the unique solution wq. Then Tp (wa) = 0i.e wa = ga(A}Au)Aufs. We
shall prove that the following estimate is true

| Ap(wa — u00)||2 <k(a+p)|we — usll, £>0. (10)
Using the conditions J'(ux) = 0 and T}, (wq) = 0, we have that
ggl(A:Au)wa —~ Al fs — A" Ause + A*f = 0.

Multiplying the previous equality by w, — uso and using the properties of
the function g,, we obtain the inequality

| Ap(wa — o) I < (A5 AL — g5 ' (A}, AL)) oo, Wa — thoo)
+ ((A*A — A} Ay )uoo, Wo — Uco)
+ (A5 fs — A*f), wa — Ueo)
that implies the estimation [10}.
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In [6] Theorem 2.4, p. 100, it is proved that if parameter o = (4, )
satisfies

p+ 62

a6, u) — 0,

then

Wa(,u) 7 Uco, (67 H— 0) (11)

Lemma 1 Suppose that the parameter a = a(u) is such that

B
()
Then, for all x € H, we have
1) (I-A,Au9a(ALAL))PT =0, (1 —0),
ii) Baga(A;Au)r — (I - P)z, (u—0)

a(p) =0, =0, (u—=0)

Proof. i) The proof of this part of Lemma can be found in [6], Lemma
2.2., p. 99.

ii) The family of operators {faga(A},A,)} is uniformly bounded, be-
cause

1Baga(AL AL < sup{Boga(t) : t € [0,a]} < 1.
The elements © = A*Aw, w € H, generate a dense subspace in R(A*A) and
15aga(A;Au) A" Aw|
< 1Baga( AL A (A" A = A4, )0l] + | Baga( 47,4y A7 Ayl
<k(p+a)—0

when p,d,0 — 0.
By virtue of Banach-Steinhaus theorem, we have

Baga(A,Au)Pr — 0, (u,6,0 = 0).

Since, 0 < 1 — Baga(t) < —ﬁ—ta, it follows that

I — Baga(ALA))I — P)z| < |4 Au(I — Pzl

Ba
NAAANTPl
Ba o
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Finally, we obtain
Baga (AL ALz = Baga(ALAL) Pz
+ Baga(AL,AL)I — P)z — (I — P)z, (u—0)
O

Lemma 2 If the parameter o = a(u, o) is chosen such that

B+o
a(p, o)

a(p, o) =0, =0 (4,0 —0)

then
i) Baga(A,Au)ce — (I — P)c(p,0 —0)
ii) If c=A"Ah, h € R(A*A), then go(A}Au)ce — h (1,0 = 0).

Proof. ~ We have that
9a(ALAL)Co = ga(ALAL)(co — ) + ga(ALAL)C.
This equality, the estimate
l9a(454,)(co = o)l < K,

and Lemma 1 imply i).
We also may write
9a(A;Ap)co — h
= ga(AZAu)(C —c)+ ga(A* Au)c—h
= ga(ALAu)(Co — ¢) + ga(AAL)(A"A — A[ Ay)h
— (I = AL Auga(ALAL))N.

Therefore, we obtain the inequality

190 (ALAu)co = bl < [|ga(ALAWI - llcs — ]
+ llga(AL AL - |A*A = AL AL - [l
+ (I = AL Auga(ALAL))R]
—I_ * *
< k(L—_+ 1T — A% Auga( AL ALR]).

This inequality, Lemma 1|, i) and the properties of the functions g,, imply
). 0
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Taking into account the optimality conditions (3)—(5) and Lemma 2, it
is easy to prove the following relationship between normal solutions u, and
IUIm.

Lemma 3 i) If c€ R(A*A), i.e. c = A*Ah for some h € R(A*A), then
Ux = Uoo — Ash, where
07 <u‘007 C> S /B

A=Y (o) - B
1T =P’ (Uoo, €) > B
ii) If c ¢ R(A*A), then ux = Uoo — 14 (I — P)c, where

0, (Uso,€) < B or (I—P)c=0

T = <u7<>0 ,C> - ﬁ
I(I = P)el|*’

(Uoo,€) > B and (I — P)c#0

As an approximation of the solution of the problem (1), one can take
the element

Ua = ga(A;Au)(AZAufé — AaCq)

where

0, (wa,ca> < ﬁ

Aa - <wa7 Ca’> - 6
(9 (AZAu)Ca, Co) ’

<waaco> > ﬁ

and wo = ga(A}Au)Aj fs, is the solution of the extremal problem T, (u) —
inf, v € H. The element u, satisfies the equalities

T! (ua) + AaCs =0
Aa({Co,uq) — B) = 0.

Therefore, by virtue of Kuhn-Tucker theorem, we deduce that u, is the
solution of the following extremal problem

To(u) = inf, v € Uy = {u € H : (cq,u) < B}
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3. Convergence and rate of convergence
Theorem 1 Let co,c€ H, f,fs € F, A, A, € L(H, F), are such that
1A = Aull < 1y 1Al < 0, (If = f5ll <6, lle—coll < o

Assume that the system of the functions {ga} satisfies the conditions (7)-

(9).

If the parameter a = a(u, d,0) is chosen such that:

p+6%2+o
a(p,d,0) — 0, o) 0 (u,6,0 = 0)
then
Ua(p,s,0) — Ux (luv 67 o — 0) (12)

If, in addition, the elements us, and Pc can be represented in the form
Uso = (A" A)Pv, Pc= (A*A)™w, v,we H, 0<p, ¢<po (13)
then for
min{ -, 1} _
a=dlp+d+0) 0 F2) ) d = const > 0 (14)
the following inequality is valid

. 1
min{ ;25,744 }

[ = tal| < dp(p+ 6 +0) (15)

Proof.  Suppose that (I — P)c = 0 and ¢ ¢ R(A*A). Then (uwo,c) < B,
1.e. Ux = Uoo. Denote by v, the solution of the extremal problem T, (u) —

inf,u € U. Let us estimate the value ||, —uq||. The element v, is determined
by

Va = ga(A;A#)(A;fé — SaC)
where
0, <waa C> <p

Sa = <waac> —ﬁ

<ga(A2‘LAﬂ)C, C),

(Wa,c) >

Hence

9o (A5 AL) v — A f5 + Sac =0 (16)
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Sa((Va,c) —B) =0 (17)
le(AZAu)Ua - A;.;fé + /\aca =0 (18)
/\a(<ua> Co("ﬁ) =0 (19)

Using the equalities [16)-{19) and taking into account the properties of the
functions g, we obtain the following inequality

o

[va — tall < k—

o

Multiplying the equalities
Vo = Ux = Wa — Uoo — SagalAAu)C

by ga(AZAH)_l(va —u) and using again the properties of the functions G,
we have

Ballva — “*”2 < | Ap(wa — UOO)||2 + Ballwa — “00”2~
Combining these inequalities we obtain
[ta = u]| < [t = vall + [lva — u|

1 o
< m”Au(wa — Uoo)|| + [wa — ool + k.
It follows from and that a5, tend to u, when p,d,0 — 0.

Let us consider the case ¢ € R(A*A). Then the convergence follows
from the equality

(oo, ¢) — B
| AR|[?
<wa7 CO') - /8

— o(ATAL)Cs.
(ga(AzAp)ca,Ca>g ( M l‘)

Ug — Uoy = Wq — Uoo T+

Lemma 2, i) and [II).
Finally, let be (I — P)c # 0. Then the convergence may be derived
as the consequence of the equality

— <u00’6> - ,B
ua—uoo—wa——uoo«i—m(f—lj)c
. WWaco) =5 afga(A;Au)co.

(aB9a(ALAL)Ca, Co)
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Lemma 2, i) and the relation [11.

Thus, it remains to prove the inequality [15), under the additional as-
sumptions (13) and [14]. Firstly, we note that in [6] (Theorem 2.4, pp. 100),
under the condition u., = (A*A)Pv, was proved the following estimate for
0 = tee

_ p, HEO
e = tool| < dp(a? + =—=) (20)

If (Uoo,c) < B3, then implies that (we,c,) < B for small enough u,
0 and 0. Thus, we have that u, = w,. Hence, the inequality is held in
this case, also.

Let us consider the case (ux,c) > 3. In the same way as in [6] (Theorem
2.4., pp 100), for ¢ € R(A*A) we get

~ +
Jtta = twall < dp(Jlwra = wool] + (14 I | 020} 4 08 - E22)
for c€ R(A*A) (21)
and
+
e = el < dp([lwa = tioo + + ”_ai) for (I —P)c+#0.
(22)
Then, the condition (14) and the inequalities [20)-(22) imply the estimate
/l
(15). This completes the proof of Theorem 1. O

Theorem 2 If R(A) is closed subspace of space H, and if

[T

a=dp+d+0)2, d=const>0,

then

=

[te = ]| < k(46 +0)2.

4. Iterative methods of regularization

In ill-posed problem (1) was regularuzed so that it was
embedded in a family of well-posed problems. The solution of the source
problem was obtained as a limit of the solutions of the regularized problems,
when the parameter of regularization « tends to 0. In iterative methods of
regularization, the parameter of regularization is the number of iterations.
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Namely, in this iterative process at every step we solve a well-posed problem.
Under some conditions the obtained sequence of the solutions of these well-
posed problems tend to normal solution of the given problem (1).

Here, we study a class of iterative methods, generated by a continuous
function g : [0,a] — R which satisfies some special conditions.

Let us consider the following iterative process:

vo =0, wp, = Wp_1 — g(A:Au)(AZAHwn_l - Ang)
ho =0, hp, = hp_1 — g(AZA#)(ALA”hn_l — Co)
Uy, = Wy, — Anbn
where
0, (Wn, o) < 0

An =\ (wn,cs) — B
m‘—, (Wn, o) > B

It is easy to see that (u,,c,) < 3. By induction it can be proved that

Un = Z (I-ALAL9(ALA )).Q(AZA#)ALJ%’

n—1
hp, = Z(I—— AZAﬂg(A;AN))]g(A;A”)c(,,

j=0
Introducing the functions
n—1 '
gn(t) =D (1 —tg(t)y =t/ [1-(1-tg(t))"], 0<t<a  (23)
j=0
the equalities given above, can be rewritten in the form

Wn = gn(ALAL) AL fs, hn = gn(ALAu)Co, Un = Wn — Agn (AL AL)Co

The following Lemma shows that the system of functions {g} satisfies
the conditions (7)-(9).

Lemma 4 Assume that g : [0,a] = R is a continuous function such that

(t+v/t) P < g(t) <1/t, t €[0,a], < =max{g(t):te€0,al}.
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Then the functions g, the following conditions:

1 —tg,(t) > 0, max{g,(t) : t € [0,a]} < yn, gn(t) > ny(nyt + 1)~}

sup{t’(1 — tgn(t)) : t € [0,a]} < ypn7?,
(0 <p<n,py> 0,7, = const)
Proof.  Since (t +~/t)™! < g(t), it is obvious that 1 — tg(t) < 1/(1 + yt),
which, taken with Bernoulli inequality and (23) implies g, (t) > ny(nyt +

1)~!. The remain statements were proved in , Lemma 4.1, pp. 37. This
completes the proof of Lemma 4. O

On every step of the iterative procedure the corresponding minimization
problem can be solved only approximately. Therefore the practical iterative
process can be presented by the following scheme:

Wy, =0, w, = Wp—1 — g(AZAu)(A;Auwn—l - AZf&) + Pn
’_lo = O, Bn = }_l'n,—l — g(A;Aﬂ)(A:;A#FLn*l — Cg) + dn

0, <wn,Ca> < /8

<wn7 Ca> - p
(Bm Ca> ’

By induction, one can prove the equalities:

<U_}n7 Ca> > /8

Wy = Wy, + Pp, hp :hn“l‘(jn, Up :wn_j\nhn +ﬁn‘")\nq_n

where

n—1

Pn = ) (I — A%ALg((ALAL) Paej,
3=0

n—1

Gn = D (I = A} Augn(ALAL)) Gnj

j=0

Using the same technique as in the proof of [Theorem 1|, one can prove the
following result:

Theorem 3 Let the following conditions be satisfied:
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1) co,c€H, ffs€F, A/A,€ L(H,F) and
1A = ALl < s ALl < @, (If = foll < blle = coll < 03

2) pugn € H,n = 1,2,... . max{pn,qn} < k(p+6* +0), n =
1,2,...,k = const > 0;

3) n=n(ud,0o)— +oo, (u+ 8 +0) = 0 when u,d,0 = 0;

4) ¢:[0,a] = R is a continuous function with the properties

(t+~/t)7 <g(t) <1/t, te[0,a], ~=max{g(t):t€[0,a]},
and

gn(t) =) n—-11-tg(t)), 0<t<a, n=12...
§=0

Then
Wp — Ux when p,d60 — 0,

where u, s the normal solution of the problem (1).
If, in addition,
5) the elements ux and Pc can be represented in the form (13);
: —1
) e [dn 154 eyretstn]
Then

i 1
min{ 537, 7102}

|us — Wal| < dp(pp+ 6 + 0) q , n=12..

5. Conclusion

At the end, note that gives the potential possibilities of the
method. In practice, we do not have the information of type (13) for the
properties of the solution uy and the element c. In this case, the choice of
the parameter « is not at all easy. In [6], for the operator equations, it was
considered so called aposterior choice of the parameter of regularization a.
This choice does not include any information about the properties of the
solution us. Let us remark that the aposterior choice of the parameter o
for the problem (1) is also possible.
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