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On the Schur indices of certain irreducible characters
of finite Chevalley groups
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Abstract. Let G be a finite Chevalley group of split type. We shall give some sufficient
conditions subject for that G has irreducible characters of the Schur index equal to 2.
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Introduction

Let Fy be a finite field with ¢ elements of characteristic p. Let G be a
connectecd, reductive algebraic group defined over F;, and let F: G —» G
be the corresponding Frobenius endomorphism of G. In the following, if
H denotes an F-stable subgroup of G, then the group of F-fixed points
of H will be denoted by H. Let B be an F-stable Borel subgroup of G,
and let U be the unipotent radical of B. Then U is F-stable and U is
a Sylow p-subgroups of G. According to a theorem of Gel’fand-Graev-
Yokonuma-Steinberg, if A is a linear character of U in “general position”,
then the character A® of G induced by X is multiplicity-free (see Steinberg
[13, Theorem 49, p. 258] and Carter [2, Theorem 8.1.3]). In [5], R. Gow has
initiated to study the rationality-properties of the characters A¢ where A
runs over certain linear characters of U and, using the results obtained there,
he obtained some informations about the Schur indices of some irreducible
characters of G (also cf. A. Helversen-Pasoto [7]). He has treated the case
that G = GL,, SL, and Spy,. In , we have obtained some results
about the rationality of the A when G is a general reductive group. Our
intension here is to get more precise results when G is a simple algebraic
group. The twisted cases are treated in [12]. So, in this paper, we shall treat
the untwisted cases. We shall obtain some sufficient conditions subject for
that the Schur index of any irreducible character of G is equal to one and
some sufficient conditions subject for that G has irreducible characters of
the Schur index equal to 2.

1991 Mathematics Subject Classification : 20G05.
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We note that the results of this paper have been announced in [11].

1. Linear characters of U

Let K be an algebraic closure of Fj,. Let G be an simple algebraic group
over K. We assume that G is defined and split over Fy,. Let F': G — G be
the corresponding Frobenius endomorphism of G. We shall fix an F-stable
Borel subgroup B of G and an F-stable maximal torus T of G contained in
B. Let U be the unipotent radical of B. Let R, R* and A be respectively
the set of roots of G with respect to T', the set of positive roots determined
by B and the set of corresponding simple roots. For a root «, let U, be
the root subgroup of G associated with a. Let X = Hom(T, K*) be the
character module of T. Then F' acts on X by (Fx)(t) = x(F(t)) for x € X,
t € T. As T splits over Fy, we have F(t) =t9,t € T, so we have Fy = qx,
X € X.

Let U. = (Uq | @ € RY — A). Then U. is an F-stable normal subgroup
of U and contains the derived group of U. It is known that if p is not a
bad prime for G, then U. coincides with the commutator subgroup of U.
We have U/U. = [[oca Ua = [laca Fy (we note that each U, is F-stable
since G splits over Fy).

Let A be the set of all linear characters A of U such that A | U. = 1,
and let Ag be the set of all A in A such that A\ | U, # 1 for all o € A.

Lemma 1 (Gel'fand-Graev [4], Yokonuma [15], Steinberg [13]) If X\ €
Ag, then XC is multiplicity-free.

For a subset J of A, put Ty = (,csKera (we put Ty = T). Then,
for any such J, T'; is an F-stable subgroup of T'.

Lemma 2 (cf. Yokonuma [15], Steinberg [13, Exercise on p. 263]) If A €
Ao, then there is a set S of subsets J of A such that S contains A and ¢
and that (A%, X% g =¥ c5 [Tyl

This is proved in [12]. The next lemma is also proved in [12].

Lemma 3 ([12, Proposition 1]) Let c be the order of the centre Z of
G. Then if X € Ay, there is a positive integer r such that (A\¢,\%)g =
r(g—1) +c.

Let A € Ag. Let 71, ..., 7. be all the irreducible characters of the centre
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Z. For 1 < i < ¢, put Ty; = Ind¥,(A;). Then it is easy to see that
G = I'yx1+ -+ +Tx. and that (by using Lemma 3)

1 -1
(Txis Tajla = 64 - . (MG, 2% g = dsj {r(qc ) + 1}
(1=, 5<0¢).

(0;; denotes Kronecker’s delta.)

Our purpose is to study the rationality properties of the A¢, \ € A.
For that purpose we study the rationality of the AB. If p = 2, then U /U.
is an elementary abelian 2-group, so that all the AB are realizable in Q.
Therefore in the rest of this paper, we shall assume that p # 2.

Let ¢, be a fixed primitive p-th root of unity, and let m be the Galois
group of Q((p) over Q. Then 7 acts on ﬁ'q = Hom(Fg, C*) naturally. Let
X € ﬁq, x # 1. For a € Fy, we define x, € ﬁq by xa(z) = x(az), z € Fy.
Then we have F, = {x, | a € Fo}and {x° |o €} = {xo | a € F,*}.

B acts on A by A(u) = A(bub™!), b € B, A € A; B fixes Ag. Fix a
character X in Ao, and set L = {b € B | A’ = A7®) for some 7(b) € }. Put
M = LNT. Then we have L = MU (semidirect product) and we see easily
that

M = {teT| for some z € F,* : a(t) = z for all a € A}.

This shows that L is independent of the choice of A in Ag and the mapping
b — 7(b) is a homomorphism of L into 7 with kernel ZU (Z is the centre
of G). Let f be an element of T such that (7(f)) = 7(L) and put o = 7(f).

Let A be any character in A such that A # 1. Let ny,...,n. be as
before all the irreducible characters of Z (¢ = |Z]). For 1 < i < ¢, put
Wi = IndIZU(niA). Then we see easily that ui, ..., . are mutually different
irreducible characters of L and we have A\l = H1 A+ e

Now, if x is an ordinary character of a finite group and k is a field
of characteristic 0, tnen k(x) denotes the field generated over k by the
values of x. Then we see easily that Q(AL) = Q((,)'*) and, for 1 <4 < ¢,
Q(ui) = Q\)(m). Put k = Q(A*) and k; = Q(u;) (1 £ i < ¢). For
1 =4 = c, let A; be the simple direct summand of the group algebra k;[L]
of L over k; associated with u;. Let h = (M : Z). Then f" is an element of
Z. For 1 <7< ¢, put 6; = n;(f*). Then we see that, for 1 < i < ¢, 4; is
isomorphic over k; to the cyclic algebra (6;, ki((,), 0:) over k;, where o; is a
certain extension of o to k;((p) over k; (see Yamada [14, Proposition 3.5]).
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2. Calculation of the group M

Let X denote as before the character module Hom(T', K*) of T. Let
P(R) and Q(R) denote respectively the weight-lattice of R and the root-
lattice of R. Then P(R) D X D Q(R). We say that G is adjoint if X =
Q(R). By [9], we see that if G is adjoint, then 7 induces an isomorphism of
M with m and f can be chosen so that (f) = M.

Let Y = Hom(K*,T) be the cocharacter module of T' written ad-
ditively. Then the pairing (x,A) = deg(x o A) defines a perfect pairing
(,): X xY — Z. Suppose that dimT = ¢. Let {x1,...,x¢} be a basis of
X over Z and let {)q, ..., As} be the basis of Y dual to it, i.e., (xi, Aj) = &;;.
Then each element t of T' can be written uniquely as

t=h(z1,...,20) = Ai(z1) -+ Aelze)  (71,...,70 € KX).
Recall that we have Fy; = qx;, 1 <1 < 4.

Lemma 4 Assume that A = {ay,...,a¢} and, for 1 < i < ¢, let oy =
Z;Zl sijXj(sij € Z). Then, fort € T, t = h(z1,...,x), t lies in M if and
only if £;9 = xj for 1 < j < £ and Hle ;% = ... = H§=1 z;% =z for
some x € F,>.

Proof.  Let t = h(z1,...,x¢) be an element of T. Then, as F(t) = t9, it
is easy to see that F'(h(z1,...,z¢)) = h(x19,...,2¢7). Therefore F(t) =t if
and only if z;9 = x; for 1 £ i < £. Next, we have

a;(t) = az(H Aj(ﬂ?j))

Therefore the assertion in the lemma follows. U

In the following, 7 is a fixed primitive element of F;; and v = nla—1/(p=1)
a primitive element of F,. If m is an integer, then we denote by ordym the
exponent of the 2-part of m. Put d = (X : Q(R)).

Lemma 5 (cf. Gow [5, 6]) Assume that G is of type (Ag), £ 2 1. Then
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Z~Z/(d,q—1)Z and we have: (i) if 2| £(¢+1)/d or ordad > ordy(p—1),
then (M) = m and f can be chosen so that M = (f) x Z and fP~! = 1.
Assume that 2 { £(£ + 1)/d and ordad < orda(p — 1). Then: (ii) if q is
square, then T(M) = m and f can be chosen so that fP~! = ¢, where ¢ is
the unique element of Z of order 2; (iil) if ¢ is non-square and ordod =
orda(p — 1), then (7 : 7(M)) = 2 and f can be chosen so that M = (f) x Z
and fP~U/2 = 1, (iv) if q is non-square and ordyd < ordy(p — 1), then
(m:7(M)) =2 and f can be chosen so that fP~1/2 = ¢

Proof. ~ We use the notation of Bourbaki [1]. By [1, P1.I, (VIII)], we have
P(R) = (o1,...,04—1,w) 7, where

1
(+1

w=¢€1— (14 +eet1) = {— i+ 1)as,

”M*‘

so that P(R)/Q(R) = (W+Q(R))=Z/({+1)Z. Therefore as a basis {x;}
of X, we can take: x; =a; for 1 i</ —1and xy = f (=i + 1)y
Thus a; = x; for 1 £ i < £ —1 and ap = dx, — Zzzl(f—iJr Dx;. It
follows from that, for t = h(xy,...,z,) € T, we have t € M if and
only if z1,...,z, € Fg* and, for some z € F,*, 1 = -+ = 241 = x and

~lyp—(-1) ... %% =z, ie.,

2t = /2, (1)

First, as Z = (,eca Kera (Z is the centre of G; we see easily that Z is
equal to the group of F-rational points of Z), we have Z = {h(1,...,1,y) |
yeF*, y'=1}=Z/(d,q—-1)Z.

Next, we note that we have 7(M) = 7 if and only if the equation (1)
has a solution in F,* for z = v, and when 7(M) = m f can be chosen so
that M = (f) x Z and fP~! = 1 if and only if that solution can be found
in F,*. We also note that when 7(M) # 7 we have (7 : 7(M)) = 2 if and
only if the equation (1) has a solution in F,* for £ = v2, and if this is the
case, then f can be chosen so that M = (f) x Z and f(P~1/2 = 1 if and
only if that solution can be found in (F,*)2.

Now the group (F,*)¢ = {y? | y € F,*} is the cyclic subgroup of F,*
of order a = (p—1)/(d,p—1) and the element v¥(**1)/2 of F,X has the order
b=(p—1)/(€(¢+1)/2,p—1). Therefore, for x = v, the equation (1) has a
solution in F,* if and only if b | a, ie., (d,p—1) | (¢(£+1)/2,p — 1). But,
as d | £(£ + 1), the latter condition is satisfied if and only if d | £(£ + 1)/2
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(i.e. 2| £(£ + 1)/d) or ordad > orda(p — 1) (Case (i)).

Suppose therefore that 2 1 £(£ + 1)/d and ordad < orda(p — 1). If ¢ is
square, then y = n{(a—1/2(p=1)&¢+1)/d i 5 solution of the equation (1) for
z = vin F;* and y?~! = —1 (Case (ii)). Assume that ¢ is non-square.
Then (g—1)/(p—1) is odd and (d,q—1) { (((¢—1)/(p—1))t(£+1)/2,9—1).
This means that the equation (1) has no solutions in Fy* for z = v. But,
for z = 12, the equation (1) has a solution in F,*, e.g., y = v{¢FD/d (cf.
y(P=1)/2 = _1). As (F,*)* is a cyclic group of order ((p—1)/2)/(d, (p—1)/2)
and v2#¢+0/2 is of order ((p —1)/2)/(£(¢€ +1)/2,(p — 1)/2), the equation
(1) has a solution in (F,*)? for z = v? if and only if (d, (p — 1)/2) | (£(¢+
1)/2,(p—1)/2), i.e., orded > orda(p —1)/2, i.e., ordad = orda(p — 1) (Cases
(iii), (iv)).

This proves Lemma 5. O

We note that the case G = SLy,; of was treated by Gow
([5, 6)).

Lemma 6 Assume that G is non-adjoint and of type (By), £ 2 2 (i.e.
G = Sping,1). Then Z ~ Z[2Z. And: (i) if 4| £({+1), thenT(M) =7
and f can be chosen so that M = (f) x Z and fP~! = 1. Assume that
4106 +1). Then: (ii) if q is square, we have T (M) = m and fP~! =
€, where € is the generator of Z; (iii) if q is non-square and p = —1
(mod 4), we have (7 : 7(M)) = 2 and f can be chosen so that M = (f) x Z
and f®~1/2 = 1, (iv) if q is non-square and p = 1 (mod 4), we have
(m:7(M)) =2 and fP~D/2 = ¢,

Proof. By [1, PL.2, (VIII)], we have P(R) = (w,ay,...,qp), where
@ = 4+Y¢ 1ia;. So P(R)/Q(R) = @+ Q(R)) = Z/2Z. As G is non-
adjoint, we have X = P(R). Therefore, as a basis {x;} of X, we can take:
X1 = %Zleiai, xi = a; (2 <1 =/{). So se have o = 2x1 — EfZQ iXi,
a; = x; (2 =1 = ). Therefore, by Lemma 4, we see that M consists
of those elements h(y,z,...,z) with € F,* and y € F;* such that
y? = f¢+1D/2 I particular, by solving the last equation for z = 1, we
get Z = {h(£1,1,...,1)} ~ Z/2Z. For z = v, a solution y of the equa-
tion y? = 2f1)/2 can be found in F,* if and only if 2 | (¢ + 1)/2, and
if this is the case, then y = vf@t1)/4 is a solution of that equation (Case
(i)). Assume that 41 £(£+ 1). Then £(¢+1)/2 is odd. Hence we see that,
for z = v, solutions y of that equation can be found in Fi,* if and only if
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(q—1)/(p—1) is even, i.e., g is square, and if this is the case, then y = n
with ¢ = (£(£+1)/2) - (¢ —1)/2(p — 1) is a solution and y?~! = —1 (Case
(ii)). Assume that g is non-square. Then, for z = 2, we can find a solution
y of the equation y? = £¢f¢+1)/2 i F,*, and we see that a solution y can be
found in (F,*)* if and only if (p — 1)/2 is odd, i.e., p = —1 (mod 4), and if
this is the case, then y = v*#(¢+1)+P-1) i5 4 golution in (F,*)? (Cases (iii),
(iv); in case (iv), y = v*¢1D/2 is a solution in F,*).

This proves [Lemma 6. O

Lemma 7 (cf. Gow [5]) Assume that G is non-adjoint and of type (Cy),
€22 (ie., G= Spy). Then Z ~ Z/2Z and: (i) if q is square, we have
(M) = 7 and fP~! = ¢, where € is the generator of Z; (i) if q is non-
square and p = —1 (mod 4), we have (7 : 7(M)) = 2 and f can be chosen
so that M = (f) x Z and f®~1/2 = 1, (iii) #f ¢ is non-square and p = 1
(mod 4), then (7 :7(M)) =2 and fP~1/2 = ¢,

Proof. By [1, PL.3, (VIII)], we have P(R) = (ay,...,ap_1,@1), where
W = Yitlos + say = 1oy (mod Q(R)), hence P(R)/Q(R) = (300 +
Q(R)) ~ Z/2Z. Since G is non-adjoint, we have X = P(R). So, as a basis
{x:} of X, we can take: x; = a; (1Si<0—1), x4 = 2ay. Therefore we
have a; = x; (1 =i < /¢ —1), ap = 2xs. Hence, by Lemma 4, we see that
M consists of those elements h(z,...,z,y) with z € F,* and y € F;* with
y? = z. Clearly we have Z = (h(1,...,1,41)) ~ Z/2Z. We see easily that,
for z = v, the equation y? = z has no solutions in F,* and has a solution in
Fg* if and only if ¢ is square. Thus case (i). Assume that ¢ is non-square.
Then we see that, for z = 12, the equation y? = z has a solution in F,* and
has a solution in (F,*)? if and only if (p—1)/2 is odd, i.e., p = —1 (mod 4).
Thus (i) and (iii). (We can take: (i) y = na=1/2(=1); (i) y = p(P+1)/2,
(iil) y = v.)

This proves Lemma 7. O
Lemma 8 Assume that G is non-adjoint and of type (Dy), £ = 3. Then
Z~Z[(dq—-1)Z (d=(P(R): X)) if 210, Z ~Z/2Z x Z/2Z if 2| ¢
andd =4, and Z ~ Z /2Z if 2| ¢ and d = 2. And the following holds:

(I) X = P(R) (G = Sping,); (i) either (a) if 4 | £({ — 1) or (b) if
ordy({ —1) =1 and p = —1 (mod 4), then 7(M) = 7 and f can be chosen
so that M = (f) X Z and fP~! = 1; (ii) if q is square and either (a) if
ordaf =1 or (b) if orday(/—1) =1 and p=1 (mod 4), then 7(M) = 7 and
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[ can be chosen so that |(fP~1)| = 2; (iii) if q is non-square and either
(a) if orda(¢ —1) =1 and ords(p—1) =2 or (b) if ordel =1 and p= —1
(mod 4), then (7 : 7(M)) =2 and f can be chosen so that M = (f) x Z and
F=U2 =1, (iv) if q is non-square and either (a) if ordy(£—1) =1 and
orda(p—1) 2 3 or (b) if ordel =1 and p =1 (mod 4), then (7 : 7(M)) = 2
and f can be chosen such that |(fP~1/2)| = 2.

(I) G = S0y (d =2): We have 7(M) = 7 and f can be chosen so
that M = (f) x Z and fP~! = 1.

(III) G = HSpiny,(2 | ¢, d=2): (i) if 4|4, then T(M) =7 and f
can be chosen so that M = (f)x Z and fP~1 =1; (ii) if ordol =1 and q is
square, then T(M) = m and fP~! = ¢, where € is the generator of Z; (iii) if
ordaf = 1, q is non-square and p = —1 (mod 4), then (7 : 7(M)) = 2 and
f can be chosen so that M = (f) x Z and fP~Y/2 =1, (iv) if ordgl = 1,
q is non-square and p = 1 (mod 4), then (n: 7(M)) = 2 and fP~1/2 = ¢,

Proof.  First we assume that ¢ is odd. Then, by [1, PL.4, (VIII)], we have
P(R) = (Q(R),we), where

1 1 1
Wy = 5 {al + 209 4+ -+ + (f - 2)&3_2 + §(€ — 2)ag_1 + 55045} .
Wy is congruent modulo Q(R) to @, where

1 1 1
—(Oq +a3+'°'+04e—2——0¢13—1+§a£) (4]£-1),

_ 2 2
w =
1 1 1
“lon+as+-+ap o+ a1 —zap) (4]L+1).
2 2 2
Therefore we have P(R) = (ay,...,0p_1,0).

The case X = P(R): As a basis {x;} of X, we can take: y; = o
(1=i<f-1), x¢=. So we have a; = x; for 1 <4 </ —1 and

{4Xe—2(X1+X3+"'+Xe—2)+Xe—1 (4]€-1),
—4dxe+2(x1+ X3+ Fxe—2) +xe-1 (4]L+1).

Therefore we see that M consists of those elements h(z,...,z,y) with z €
F,* and y € F;* such that
y' =zt (2)

By solving the equation (2) for z = 1, we see that Z = {h(1,...,1,y |
y*=1, y€ F,*} ~ Z/(4,q— 1)Z. Let us calculate the group M. We see
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easily that the equation (2) has a solution y in F,* for = v if and only if
(a)4|€—1or(b)4|£+1and (p—1)/2is odd, and that in case (a) (resp.
in case (b)) y = v 1/4 (resp. y = v¢=P)/4) is a solution of the equation
(2) for x = v (Case (i)). Assume that 4{¢—1 and p =1 (mod 4). Then
we see that the equation (2) has a solution y in F,,* for £ = v if and only if
q is square, and if this is the case y = n* with i = 2—(‘11)—11) %l is a solution
and y?~1 = —1. Assume that ¢ is non-square (41 ¢ —1 and p = 1 (mod 4)).
Then we see that the equation (2) for z = v has a solution y in F,* and
y can be found in (F,*)? if and only if ordg( —1)=2. Iforda(p— 1) = 2,
then we may take y = v* with 1 = T + 5= L (then y»~1/2 = 1), and if
ordy(p — 1) 2 3, then we may take y = v~1)/2 (then y(P~1/2 = _1).

The case d = 2(SOq): We have X = (a1, ..., 1, 5(c— - ay)). So,
as a basis {x;} of X, we can take: xy; = a; (1 <1 S 0—1), x¢ = 5(ep_1—ay).
Hence we have a; = x; for 1 £ 4 </ —1 and ap = —2x, + x¢—1. Therefore
we see that M consists of those elements h(z,...,z,y) with £ € F,* and
y € F,* such that y?> = 1, and that Z = {h(1,...,1,+1)} ~ Z/2Z. Clearly
we can take f = h(v,...,p,1).

Next we assume that £ is even. Then we have P(R) = (Q(R), @1, Wy),
where w; is as above and

1
53_125{(11—}—2(124-- (f 2)013 2 + fae 1+ = (f 2)ag}
Put:
. 1
W = §(a1+a3+---+ae—3+az—1),
—/! 1
= §(a1 +ag+ -+ a3+ ag).

\

Then wy_; = @', Wy = @ (mod Q(R)) if 4|4, and Wy = &, Wy = &’
(mod Q(R)) if ordef = 1. Therefore we have P(R) = (Q(R),w’,w").

The case X = P(R)(Sping): Let x; = a; for 1 < i <0 -2 x4y =W
and x¢ = @’. Then {x1,...,xe} is a basis of X, and we have: a; = x;
(1Si=£€-2), 001 =2xp-1— (X1 +x3+ -+ xe—3) and ap = 2xy —
(x1 + x3+ -+ xe—3). Therefore, by Lemma 4, we see that M consists
of those elements h(z,...,z,y,2) with x € F,* and y,z € F;* such that
y? = 22 = 2%/2. Ttis clear that Z = {h(1,...,1,+1,+1)} ~ Z/2Z x Z/2Z.
Let us calculate the group M. First, it is easy to see that, for x = v, the
equations y? = 2% = z%/2 have solutions y, z in F,* if and only if /2 is
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even and if this is the case then y = z = v¥/* are solutions (Case (I), (i)).
Suppose therefore ordy¢ = 1. Then we see that, for z = v, the equations
y? = 22 = z%? have solutions y, z in Fg* if and only if (¢ — 1)/(p — 1)
is even, i.e., ¢ is square, and if this is the case then y = z = 7' with
i = %(% - £+ g — 1) are solutions and y?~! = 22=1 = —1 (Case (I), (ii)).
Assume that ¢ is non-square (ordsf = 1). Then we see that, for x = 12, the
equations y? = 22 = z%2 have solutions y, z in F,* and that y, z can be
found in (F,*)? if and only if (p — 1)/2 if odd. In fact, if p = —1 (mod 4),
then taking y = z = v* with i = % + p%l, we have y(P—1)/2 = ;(p-1)/2 — 1
and if p = 1 (mod 4), taking y = z = v¥/2, we have y®~1/2 = ;(0-1/2 — _1
(Cases (I), (iii), (iv)).

The case d = 2: Three cases occur: (o) @ + @’ € X(SO0q), (B)
wy—1 € X (HSpiny,), (v) @, € X (HSpiny,).

Case (a): We have X = (ay,..., a1, 3(p_1 + ag)). So, as a basis {x;}
of X, we can take: x; = o; (1 <1 < ¢—1), xo = 5(ap—1+ ). Then we have
o; = xi for 1 =4 =¢—1and ay = 2x)¢ — x¢—1. Therefore, by Lemma 4,
we see that M consists of those elements h(z,...,z,y) with z € F,* and
y € Fg* such that y* = 2. Thus we have Z = {h(1,...,1,£1)} ~ Z/2Z
and we can take: f = h(v,...,v,v).

Case (3): Assume that 4 | £. Then we have X = (a1,...,a_1,@"). And,
as a basis {x;} of X, we can take: y; = a; (1S i</¢—-1), x, =@". So
we have o; = x; for 1 S 4 < /¢ —1and ay = 2xp — (x1 + X3 + -+ + Xe—3).
Hence, by Lemma 4|, we see that M consists of those elements h(z, ..., z,y)
with 2 € F,* and y € F;* such that y? = z%2. Hence we have Z =
{h(1,...,1,£1)} ~ Z/2Z and we have take: f = h(v,...,v,v%4).

Assume that ordo/ = 1. Then we have X = (ay,...,ap_9,@,ap). So,
as a basis {x;} of X, we can take: x; = a; (1 <71 <4-2), o1 = &,
X¢e = . Then we have o; = x; for 1 £ i< /¢ —-2and i = /¢ and ayp_; =
2x0-1 — (x1 + x3 + -+ + x¢—3). Therefore, by Lemma 4, we see that M
consists of those elements h(z,...,z,y,x) with z € F,* and y € F,;* such
that y2 = z%2. Thus we have Z = h(1,...,1,+1,1)} ~ Z/2Z. As £/2
is odd, we see that, for z = v, the equation y? = z%2 has no solutions in
F,* and has a solution in F,* if and only if (g — 1)/(p — 1) is even, i.e.,

1ig=1 ¢

q is square. If q is square, then y = n* with ¢ = -Q-(fﬁ - 5) is a solution

of that equation for t = v and y?~! = —1. Assume therefore that g is
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non-square. Then we see that, for z = 2, that equation has a solution y in
F,* and y can be found in (F,*)? if and only if (p — 1)/2 is odd. In fact,
if p= —1 (mod 4), then y = v¥+P~1/2 ig 4 golution and yP=U/2 = 1. If
p=1 (mod 4), then y = v¥/2 is a solution.

Case (y): Similar to the case (3).
This completes the proof of Lemma 8. O

Lemma 9 Assume that G is a non-adjoint group of type (Eg). Then
Z~27/(3,q—1)Z and 7(M) = and f can be chosen so that M = (f)x Z
and fP~1 =1.

This lemma is proved in [10].

Lemma 10 Assume that G is a non-adjoint group of type (E;). Then
Z ~Z[2Z and we have: (i) if q is square, then T(M) =7 and fP~! = ¢,
where € is the generator of Z; (ii) if q is non-square and p = —1 (mod 4),
then (m : 7(M)) = 2 and f can be chosen so that M = (f)x Z and fP~1/2 =
1, (iii) o q is non-square and p = 1 (mod 4), then (7 : 7(M)) = 2 and
fle-1/2 — ¢,

Proof. By [1, PL.6, (VIII)], we have P(R) = (Q(R),@,), where @y =
(a2 + a5 + a7) (mod Q(R)), so that we have P(R) = (o1, ..., a6, 5(a2 +
as + az)). Therefore, as a basis {x;} of X, we can take: y; = a; (1 <
i < 6), x7 = %((12 + as + a7). Hence we have a; = y; for 1 <4 < 6 and
a7 = 2x7 — x2 — X5. Therefore, by Lemma. 4, we see that M consists of
those elements h(z,...,r,y) with € F,* and y € F,* such that y? = 3.
"Hence Z = {h(1,..., 1,£1)} = Z/2Z. 1t is easy to see that, for z = v, the
equation y? = z® has no solutions y in F,* and has a solution y in F,*
if and only if ¢ is square. If ¢ is square, then y = n* with i = g:—i -3 - %
is a solution and y?~! = —1. We see that, for z = v2, that equation has
a solution y in F,* and y can be found in (F,*)? if and only if (p — 1)/2
is odd. In fact, if p = —1 (mod 4), then y = »* with i = 3 + ’—’5—1 is a
solution and y®~1/2 = 1 and if p = 1 (mod 4), then y = v3 is a solution
and yP~1/2 = _1.

This proves Lemma 10. H

3. The Hasse invariants of the algebras A;

Let A € A, A # 1. Let the y;, k, the k; and the A; be as in §1.
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First we assume that 7(M) = m and f can be chosen so that M = (f)xZ
and fP~! = 1 (this occurs when G is adjoint or G is non-adjoint of any
one of the following types: (Ay) 2 | £(£ + 1)/d or ordad > orda(p — 1);
(Bg) 4| £(£+ 1), (Dg) (Sping,) either (a) 4 | £(¢£ — 1) or (b) orda(£ —1) =1
and p = —1 (mod 4); (Dg) (SO2); (Dr) (HSping,)4 | £; (Ee)). Put o = 7(f).
Then, as 7((f)) = 7 = Gal(Q({y)/Q), o is a generator of Gal(Q(({p)/Q),
so we see easily that k = @Q and, for 1 < i < ¢, ki = Q(n:) (= the field
generator over @@ by the values of ;). Let us fix i (1 £ 4 =< ¢). Then, as
fP~1 =1, we have §; = n;(1) = 1. So A; is isomorphic over k; to the cyclic
algebra (1, k;(p),0:) ~ k; (similar). Thus we have mq(u;) = mg, (us) = 1.
Here, if ¢ is an irreducible character of a finite group and E is a field of
characteristic 0, then mg(§) denotes the Schur index of £ with respect to
E.

Let Q denote an algebraic closure of Q. Then Gal(Q/Q) acts on the
set C = {p1,...,pc}. Let X be the set of orbits of Gal(Q/Q) on C. For
z € X, put pgy = ,c, 4 Then, as mq(p) =1 for all 4 € C, by a theorem
of Schur (see, e.g., Feit [3, (11.4)]), each p, is a Q-irreducible character of
L. Therefore \F' = Y,y u is realizable in Q. Therefore AG = (A)C s
realizable in Q.

Thus we get

Proposition 1 Recall that p # 2. Assume that G is adjoint or a non-
adjoint group of any one of the following types: (Ag) 2 | £ + 1)/d or
ordod > ordg(p—1); (By) 4 | £(€+1); (Dy) (Spiny,) either (a) 4 | £(£—1) or
(b) orda(£ —1) =1 and p = —1 (mod 4); (Dg) (SOq); (De) (HSping,)4 | £;
(Eg). Then, for any A € A, AC is realizable in Q.

Next, we assume that G is a non-adjoint group of any one of the fol-
lowing types: (A¢) 2 1 £(£ + 1)/d, ordad < orda(p — 1) and g square;
(Bg) 4 1 £(£+ 1) and q square; (Cy) q square; (D) (Sping,)g square and
(a) ordaf = 1 or (b) orda(/ — 1) = 1 and p = 1 (mod 4); (D,) (HSpiny,)q
square and ordyl = 1; (E7) q square. Then, by Lemmas 5-10, we see that
7(M) = 7 but there is no f such that M = (f) x Z and fP~! =1.

In the following, if E is a finite extension of @) (that is E is an algebraic
number field of finite degree) and B is a finite dimensional central simple
algebra over E, then, for any place v of E, h,(B) denotes the Hasse invariant
of F at F,.

We arrange the characters 7y, ...,7. of Z (¢ = |Z|) as follows: If Z is
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cyclic, then we fix a generator z of Z and a primitive c-th root e of unity
and we assume that 7;(z) = (' for 1 S i< c. If Z ~ Z/2Z x Z/2Z (this
case occurs when G = Spiny, with ordy¢ = 1, and in this case we have Z =
{h(1,...,1,£1,4£1)}), then we assume that ni(h(1,...,1,-1, — )) (—-1)%,
1 < i = 4 (we note that f can be chosen so that fP~1 = h(1,...,1, -1 ,—1)).
Then we have b = Q, k; = Q(1:) (1 £4 < ¢) and 4; ~ k;®¢((— ) ,Q(Cp), )
(1=iZ¢).

If i is even, then A; splits in k;. Suppose that t 1s odd. Put A =
(=1,Q(¢p), ). Then we have hoo(A) = hy(A) = % (mod 1) and h,(A) =0
(mod 1) for any finite place r of Q different from p. If Z ~ Z /2Z or
Z[2Z x Z/2Z, then k; = Q and A; = A. Suppose that Z is cyclic and
that Z # Z /2Z. Let v be any place of k;. Then if v is infinite, we have
ho(A;) = % (mod 1) or = 0 (mod 1) according as v is real or imaginary. If
v is a finite place of k; such that v { p, then h,(4;) = 0 (mod 1). Suppose

that v | p and put f; = [(k;), : Qp]. Then hy(4;) = 2f; (mod 1).

Lemma 11 Assume that G is of type (A;) where 2 + £( + 1)/d, 1 <
ordy(€+1) < ordy(p—1) and g is square or G = Spin,, where ordy(£—1) = 1,
p =1 (mod 4) and q is square. Let ¢ = p*'s with (2,s) = 1. Recall that i
is odd. Then 2t f; if and only if any odd prime divisor of ¢/ (c,i) divides
p® — 1. In particular, if G = Spin,,, then f; is odd.

Proof.  Put ¢; = ¢/(c,i). c¢; is equal to the order of ¢.!. Then f; is
equal to the smallest positive integer h such that p* = 1 (mod ¢;). The
integers h = 1 such that p® = (mod ¢;) form the semigroup generated
by fi. So f; divides 2s since ¢ = 1 (mod ¢;). Hence f; is odd if and only
if f; divides s. But, if f;|s, then p/i — 1 | p* — 1, s0 p* = 1 (mod ¢;),
hence f;|s again. Therefore it suffices to show that the condition that
¢i | p° — 1 is equivalent to the condition which is stated in the lemma. For
an integer m, let V(m) be the set of odd prime divisors of m. Then we
have V(p® —1)NV((g—1)/(p° — 1)) = @ since (p* — 1,(g — 1)/(p* — 1)) =
(p° — 1,2") = a power of 2. Suppose that V(e;) € V(p® —1). Then, for
any r € V(c;), r divides p* — 1, so that the r-part r¢ of ¢; divides p°—1
since r is an odd divisor of ¢ — 1 = (p* — 1)((qg — 1)/(p®* — 1)). And we have
ordac; (= orda(£+41)) < ordy(p—1) = ordy(p® —1). Thus we have seen that
ord,c; < ord,(p® — 1) for any prime divisor r of ¢;. Hence ¢; divides p®— 1.
Conversely, if ¢; divides p°® — 1, then clearly V(c¢;) C V(p® — 1). This proves
the lemma. U]
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Suppose that G is of type (A;) where g is square, 2 { £({ + 1)/d and
ordod < ordy(p — 1). Let ¢ be the odd part of ¢. Then ¢; is equal to the
2-part of ¢, so V(c¢;) = 0. Hence f; is odd and hy(4;) = § (mod 1) if v is
any place of k; lying above p. Hence we have mq,(u;) = 2. Here, if x is an
irreducible character of a finite group and if F is a field of characteristic 0,
then mg(x) denotes the Schur index of x with respect to E.

Suppose that G = Spiny, where ord2(¢ — 1) = 1 and ¢ is an even power
of p =1 (mod 4) (cf. Lemma 8). Then Z ~ Z/4Z. Suppose that i is odd.
Then ¢; = 4, so V(c;) = 0. Hence f; is odd and we have mq, (1) = 2.

Thirdly, we assume that G is a non-adjoint group of any one of the
following types: (Ag) 21 £(£+ 1)/d, ordad = orda(p — 1) and g non-square;
(By) 41 £(¢ + 1), ¢ non-square and p = —1 (mod 4); (Cy) g non-square
and p = —1 (mod 4); (Dy) (Sping,)q non-square, orda(¢ — 1) = 1 and
ordy(p — 1) = 2; (Spiny,)q non-square, orda¢ = 1 and p = —1 (mod 4);
(HSpin,,)q non-square, orda¢ = 1 and p = —1 (mod 4); (E7) q non-square
and p = —1 (mod 4). Then we have (7 : 7(M)) = 2 and f can be chosen
so that M = (f) x Z and f®P=1/2 =1 (cf. Lemmas 5-10). In this case k is

the quadratic subfield of Q((p), i.e., k = Q(\/(—l)(P—l)/2p). For1<i =g,
we have 6; = 1, so A; splits in k;. Hence any AC is realizable in k.

Finally, we assume that G is a non-adjoint group of any one of the
following types: (Ag) et £(£+ 1)/d, ordad < orda(p — 1) and g non-square;
(By) 4 1 £(£+1)g non-square and p = 1 (mod 4); (C;) g non-square and p = 1
(mod 4); (D) (Sping,)q non-square, ords(¢ — 1) = 1 and orda(p — 1) 2 3;
(Spin,,)q non-square, orde? = 1 and p = (mod 4); (HSping,)q non-square,
ordyf =1 and p = 1 (mod 4); (E7) ¢ non-square and p = 1 (mod 4). Then
we have (7 : 7(M)) = 2 and f can be chosen so that |(fP~1D/2)| = 2. We
arrange the characters 7y,...,n. of Z as before. Then k is the quadratic
sub-field of Q((,) and if ¢ is even A; splits in k;. Assume that i is odd. Then
we have A; ~ k; ® B, where B is the cyclic algebra (—1,k((p),0) over k.
By [8, Proposition 1], we see that B has non-zero Hasse invariants only at
two real places of k and no others. Thus we have mp(u;) = 2 or 1 according
as p; is real or not.

Assume that G is of type (A;) and orded = 1. Let ¢ be the odd part of
c. Then ¢; = 2 and A; = B. Hence we have mp(p;) = 2. Assume that G is
of type (B;). Then i = 1 and A; = B. So we have mg(p1) = 2. Similarly,
if G is of type (Cy), then we have mp(u1) = 2. Assume that G is of type
(Dy). If Z o¢ Z/AZ, then k; is real, so we have mp(us) = 2. lf Z # Z/AZ,
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then k; is not real, so we have mpg(u;) = 1. Assume that G is of type (F7).
Then k; = k, so we have mp(u;) = 2.

4. The Schur index

Let G be a simple algebraic group, defined and split over a finite field
Fy, and let G be the group of its F-rational points. Let y be any irreducible
character of G. We assume that there is a linear character \ in A such that
(A% x)g = 1 or that when p is a good prime for G p 1 x(1). We assume
that p # 2.

Theorem 1 ([10]) We have the following.
(i) We have mg(x) < 2.
(ii) If p= -1 (mod 4), then we have mou/=p)(x) = 1.
(iii) If p=1 (mod 4), then, for any finite place v of Q(1/p), we have
mQ(yp) (X) = 1.
(iv) If q is square, then, for any prime number r # p, we have
mQr(X) = 1'

By proposition 1 and the argument in the proof of Corollary 4 in [10],
we get:

Theorem 2 In the following cases, we have mg(x) =1: (i) G adjoint;
(i) (A¢) 2| £(€+1)/d or ordad > ordy(p—1); (By) 4| £(€+1); (Dy) (Spiny,)
either 4 | £(€ — 1), or, orda({ — 1) = 1 and p = —1 (mod 4); (SOq);
(HSping,)4 | ¢; (Es).

Similarly, by the arguments in §3, we get:

Theorem 3 Let k be the quadratic subfield of Q((p). Then in the follow-
ing cases we have my(x) = 1: (Ag) 24 £(¢ +1)/d, ordad = ordy(p — 1) and
q non-square; (Sping,)q non-square, ordy(¢ — 1) = 1 and ordy(p — 1) = 2.

Theorem 4 Assume that G is non-adjoint. Let A € Ag. Then in any
one of the following cases AC contains an irreducible character of the Schur
index 2 over Q : (Ay) either (a) q square, 21 €(€+1)/d, ordad < ordy(p—1),
or (b) g non-square, 2 t £(£ 4+ 1)/d, ordad = 1 < orda(p — 1); (By) either
(a) 414(£+1), q square, or (b) 41 £(¢ + 1), ¢ non-square, p =1 (mod 4);
(C) either (a) q square, or (b) q non-square, p = 1 (mod 4); (Spiny,) either
(a) ordel = 1, q square, or (b) ordyf = 1, q non-square, p = 1 (mod 8), or
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(¢) orda(£—1) = 1, q square, p = 1 (mod 4); (HSpiny,) either (a) ordal = 1,
q square, or (b) ordol = 1, ¢ non-square, p = 1 (mod 4); (E7) either (a) q
square, or (b) q non-square, p =1 (mod 4).

Proof. ~ We repeat the argument in the proof of of [12]. Assume
that G is a non-adjoint simple group of type (A;) where ¢ is square, 2 {
¢(£+1)/d and ordad < orda(p—1). Then we see from the argument in §3 that
k = Q and there is an irreducible character p; of L such that my, (p;) = 2
(XA € Ag). By the arguments in §1, we see that Iy ; is multiplicity-free and
(Tx:,T'as)e is odd. Let X be the set of all the irreducible components of
['x;. Then, by Schur’s lemma, we see that, for any x € X, we must have
x | Z = x(1)n;. Therefore we find that Q(I'y;) C k;. We show that there
is a character x in X such that my, (x) = 2. Suppose, on the contrary, that
we have my, (x) = 1 for all x € X (cf. [Theorem 1 (i)). Then we see from the
theorem of Schur that Ty ; is realizable in k;. But, then, as (I'x; | L, us)1 =
(T4, Tai)c is odd, we must have mg,(p;) = 1, a contradiction. Therefore
X must contains a character x such that my, (x) = 2. The remaining cases
can be treated similarly. O
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