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Modular group algebras of coproducts of
countable abelian groups
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Abstract. Suppose G is a coproduct (= a direct sum) of countable abelian groups and
F is a perfect field of char F=p\neq 0 . Then S(FG)/G_{p} is a coproduct of countables and
so G_{p} is a direct factor of S(FG) with a complement which is a coproduct of countables.
Moreover, FH\cong FG as F-algebras for any group H implies H_{\rho}\cong G_{\rho} . In particular, if
G_{t} is p-torsion, then G is a direct factor of V(FG) with the same complementary factor.
Besides, H_{t}\cong G_{t} and there is a totally projective p-group T of length \leq\Omega such that
H\cross T\cong G\cross T . Thus H is a coproduct of countables.

The present results generalize statements obtained by Hill-Ullery in Comm. Algebra
(1997).
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1. Introduction and known facts

Our global aim in the present article is to give a detailed analysis of
the commutative modular group algebra FG when the group G is a coprod-
uct (i.e. a restricted, in other words, bounded direct product) of countable
abelian groups and the field F is perfect of characteristic p>0 . For such
a F algebra FG, V(FG) designates the group of all normed units (i.e. nor-
malized invertible elements) in FG, and its p-component is denoted by
S(FG) . For a subgroup A of G, we define I(FG;A) as a relative augmen-
tation ideal of FG with respect to A , and I_{p}(FG;A) is its nilideal. Recall
that G_{t} and G_{p} are the torsion part (= maximal torsion subgroup) and its
p–primary component, respectively. All other notations and terminologies
follow essentially the excellent books [4].

Further, in the sequel, we shall examine more specially The Direct Fac-
tor Problem for S(FG) and V(FG) and The Isomorphism Problem for FG.
Our strategy is based precisely on the connection between the direct decom-
positions of G and S(FG) . Besides, our technique generalizes and extends
May [7] and is absolute different to Hill-Ullery [5].

Now, for the sake of completeness and for the convenience of the reader,
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we summarize below some well-known and documented classical facts con-
cerning the commutative group rings of coproducts of abelian groups. And
so, we can formulate a fundamental [7, 8]

Theorem (May, 1979-1988) Let G be a coproduct of countable abelian
p-groups and R be a commutative ring with identity of prime characteristic
p which is perfect. Then G is a direct factor of V(RG) and V(RG)/G is a
coproduct of countables. Moreover, RH\cong RG as R-algebras for any group
H if and only if H\cong G .

Remark Actually, the original May’s result [8] is very stronger than the
present, but we consider only this formulation of our interest.

More recently, Hill and Ullery generalized the May’s result for p-mixed
groups with totally projective torsion parts, but and with a length restric-
tion. More precisely, they have proved the following [5].

Theorem (Hill and Ullery, 1997) Suppose G is an abelian group of count-
able torsion - free rank whose G_{t} is totally projective p-primary of length
less than \Omega+\omega and F is a perfect field of characteristic p>0 . Then G
is a direct factor of V(FG) with totally projective complement. Moreover,
the F-isomorphism FH\cong FG for some group H implies that H_{t}\cong G_{t} and
that there is a totally projective p group T such that H\cross T\cong G\cross T

Left-0pen is still the question of whether the group claim can be ex-
tended for lengths \geq\Omega+\omega . Besides, a crucial feature in the cited above
work (cf. [5]) is that G can be decomposed as A\cross B in the chief case for
length \Omega , where A is countable and B is a coproduct of countable p-groups.

Here, we proceed by proving a strong generalization and extension to
the above fact, as we study an arbitrary coproduct of countable abelian
groups. Our major assertions are selected in the next paragraph.

2. Main results

Well, we are in position to state the following our goals.

Theorem (Direct Factor) Suppose that G is an abelian coproduct of
countables, R and F are a perfect unitary commutative ring with zero nil-
radical and a perfect field of characteristics p\neq 0 , respectively. Then G_{p} is
a direct factor of S(RG) and S(RG)/G_{p} is a coproduct of countables. As
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a corollary, G is a direct factor of V(FG) and V(FG)/G is a coproduct of
countables, provided G is p-mixed.

We continue with the other paramount

Theorem (Isomorphism) Suppose G is an abelian coproduct of counta-
bles and F is a field of characteristic p>0 . Then FH\cong FG as F algebras
for an arbitrary group H yields H_{p}\cong G_{p} . As a consequence, H_{t}\cong G_{t}

and there exists a totally projective p group T with length not exceeding \Omega

such that H\cross T\cong G\cross T , provided G_{t} is a p-group. In particular, H is a

coproduct of countables.

Remark This theorem partially settles a question posed by W. May in
[8] (see also [2, 3]).

Next, we come to the proofs of our central statements, given in the
following paragraph.

3. Proofs of the theorems

Before proving the claims, we will establish a few preliminaries and
multiplicities very needed for our good presentation. As usual, R is an
abelian unitary (i.e. with unity) ring of prime characteristic p.

We start with a key technical

Lemma (Intersection) Let A, B\leq G . Then

RA\cap I(RG;B)=I(RA;A\cap B) and
S(RA)\cap(1+I(RG;B))=1+I_{p}(RA;A\cap B) .

Proof. To prove the first relation, we take x in the left-hand side. Hence
x= \sum_{a\in A}r_{a}a , where r_{a}\in R and \sum_{a\in\overline{a}B}r_{a}=0 for very \overline{a}\in A . But
\overline{a}B\cap A=\overline{a}(B\cap A) because \overline{a}\in A . As a final we deduce \sum_{a\in(A\cap B)}-r_{a}=0 ,
i.e. it is trivial that x\in I(RA;A\cap B) , as desired.

For the second dependence, given y in the left-hand side. Therefore

y= \sum_{a\in A}r_{a}a , where r_{a}\in R and \sum_{a\in\overline{a}B}r_{a}=\{

0, \overline{a}\not\in B

for each \overline{a}\in A .
1, \overline{a}\in B

Since \overline{a}B\cap A=\overline{a}(B\cap A) it follows that \sum_{a\in} - (A\cap B)r_{a}=\{
0, \overline{a}\not\in B\cap A

1, \overline{a}\in B\cap A
’

hence y lies in 1+I(RA;A\cap B) . \square
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Now we can attack the next valuable.

Proposition (Direct decomposition) Suppose G=A\cross B is abelian.
Then S(RG)=S(RA)\cross(1+I_{p}(RG;B)) . Inductively, G= \prod_{\alpha<\tau}G_{\alpha} im-
plies S(RG)=LI_{\beta<\tau}(1+I_{p}(RC_{\beta+1} ; ^{G_{\beta}})) , where C_{\beta+1}=LI_{\alpha<\beta+1}G_{\alpha} .

Proof. Foremost, let G=A\cross B . Since RG=(RA)B may be regarded
as a group algebra of the group B over a ring RA, for every x\in S(RG)
we may write x= \sum_{b\in B}x_{ab}b , x_{ab}\in RA . Besides, it is clear that x=
\sum_{b\in B}x_{ab}+\sum_{b\in B}x_{ab}(b-1) . Because x\in S(RG) we derive 1= \sum_{b\in Bab}x^{p^{t}}+

( \sum_{b\in B}x_{ab}(b-1))^{p^{f}} for some t\in N . Consequently by virtue of the lemma,
1- \sum_{b\in Bab}x^{p^{t}}\in RA\cap I(RG;B)=0 . Thus ( \sum_{b\in B}x_{ab})^{p^{t}}=1 and imme-
diately \sum_{b\in B}x_{ab}\in S(RA) since evidently it is a normed element. By the
Intersection Lemma, x= \sum_{b\in B}x_{ab}(1+\sum_{b\in B}(\sum_{b\in B}x_{ab})^{-1}x_{ab}(b-1))\in

S(RA)\cross(1+I_{p}(RG;B)) .
Further, the transfinite inductive procedure is organized thus: choose

arbitrary \beta with \beta<\tau and such that C_{\beta}=II_{\alpha<\beta}G_{\alpha} . Clearly C_{\beta+1}=

C_{\beta}\cross G_{\beta} . Employing the first half of the statement, we yield S(RC_{\beta+1})=

S(RC_{\beta})\cross(1+I_{p}(RC_{\beta+1} ; G_{\beta})) . By induction hypothesis, S(RC_{\beta})=

\square _{\gamma<\beta}(1+I_{p}(RC_{\gamma+1} ; ^{G_{\gamma}})) where C_{\gamma+1}=\square _{\alpha<\gamma+1}G_{\alpha} and hence S(RC_{\beta+1})=

\square _{\gamma\leq\beta}(1+I_{p}(RC_{\gamma+1} ; G_{\gamma})) . Finally, it is a routine exercise to verify that
S(RG)=II_{\beta<\tau}(1+I_{p}(RC_{\beta+1} ; ^{G_{\beta}})) since G=LI_{\beta<\tau}C_{\beta} . \square

Of some interest and importance is also the next significant.

Proposition (Structure) (*) If G is countable torsion and R is perfect,
then S(RG)/G_{p} is a coproduct of countables.

(**) If G is p-mixed and F is perfect, then V(FG) as a coproduct of
countables yields that G is a coproduct of countables.

Proof. (*) Although that this claim is well-known and documented by
us in a more general form in [1] (see [5], too), we give a new distinguish
confirmation. Indeed, we can write G= \bigcup_{k<\omega}A_{k} , where A_{k}\subseteq A_{k+1} and all
A_{k} are finite. Furthermore S(RG)/G_{p}= \bigcup_{k<\omega}[S(RA_{k})G_{p}/G_{p}] . Certainly
S(RA_{k}) are height-finite in S(RG) . Now, we show that all S(RA_{k})G_{p}/G_{p}

have finite height spectrum in S(RG)/G_{p} . In fact, since G_{p} is balanced
in S(RG) (cf. [2]), for each element aG_{p}\in S(RA_{k})G_{p}/G_{p} such that a\in
S(RA_{k})\backslash G_{p} it is true that height(aG_{p})=height(ag_{p}) for some g_{p}\in G_{p} . Ap-
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parently height(a) \leq height(aG_{p}) and immediately height(a) \leq height(g_{p}) ;
otherwise height(a) \leq height(g_{p})< height(a) which is a false. If now
height(a)<height (g_{p}) there is nothing to prove. That is why, let height(a) =

height (g_{p}) . Write a= \sum_{i}r_{k}^{(i)}a_{k}^{(i)} , where r_{k}^{(i)}\in R , a_{k}^{(i)}\in A_{k} , i\in N . Hence
ag_{p}= \sum_{i}r_{k}^{(i)}a_{k}^{(i)}g_{p} and besides it is no harm in presuming that a_{k}^{(i)}=1

for some i , owing to the form of aG_{p} . Moreover, because height(a) =

\min_{i}height(a_{k}^{(i)}) and height(ag_{p})=\min_{i}height(a_{k}^{(i)}g_{p}) , it is a routine matter

to verify that height(ag_{p})=height(g_{p})=height(a) , as required. Finally,
the criterion for total projectivity in [5] is applicable to complete the proof.

(**) Since V(FG) is a coproduct of countables, it is evident that so is
S(FG) . Next, we will show that the same holds for S(FG)/G_{p} . Really, if
\{N_{\alpha}\}_{\alpha} is a nice composition series for S(FG) , then \{N_{\alpha}G_{p}/G_{p}\}_{\alpha} is (or can
be refined to) a nice composition series for S(FG)/G_{p} . In order to prove
this, let

1=N_{0}\subseteq N_{1}\subseteq . . \subseteq N_{\alpha}\subseteq (\alpha<\mu)

be a smooth ascending chain of nice subgroups of S(FG) with S(FG)=
\bigcup_{\alpha<\mu}N_{\alpha} . Furthermore S(FG)/G_{p}= \bigcup_{\alpha<\mu}(N_{a}G_{p}/G_{p}) and on the other
hand it is easy to verify that

1=N_{0}G_{p}/G_{p}\subseteq N_{1}G_{p}/G_{p}\subseteq\cdot\tau\subseteq N_{\alpha}G_{p}/G_{p}\subseteq\cdot( (\alpha<\mu)

is a smooth ascending chain. Now, in order to finish the claim in general, we
must prove only that N_{\alpha}G_{p} is nice (or can be expanded in a nice subgroup)
in S(FG) . But the last follows automatically from the technique described
in [5, Theorems 4.2 and 5.6]. So, finally N_{\alpha}G_{p}/G_{p} or its extension will
be nice in S(FG)/G_{p} (see, for example, [4]). By the above arguments
S(FG)/G_{p} is a coproduct of countables. After this, owing to the fact G_{p}

is balanced in S(FG) (cf., for example, [9]), G_{p} must be a direct factor of
S(FG)[4] . But it follows from [8, 2] that V(FG)=GS(FG) and thus we
directly have that G is a direct factor of V(FG) . As a final, we need only
apply [4, p.63, Proposition 9.10] to get the proposition. \square

We begin now in the paper with all details of the proofs of two theorems.
First, we are now prepared to obtain

Proof of the Direct Factor theorem. We shall show now that the quotient
group S(RG)/G_{p} is a coproduct of countables by using a standard transfi-
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nite induction on the power of G denoted by |G| . The countable case is done
by [1, 5] (or the structure proposition for the torsion situation), therefore
we may presume that G is uncountable. For this purpose, let \tau be the first
(i.e. the smallest) ordinal such that |\tau|=|G| . Thus we may assume that
G=II_{\alpha<\tau}G_{\alpha} , where each G_{\alpha} is countable. For every \beta<\tau , put C_{\beta}=

\prod_{\alpha<\beta}G_{\alpha} ; note that G_{0}=1 . Next, we observe that the decomposition’s
Proposition is applicable to obtain that S(RG)=II_{\beta<\tau}(1+I_{p}(RC_{\beta+1} ; G_{\beta})) .
Since G=\square _{\beta<\tau}G_{\beta} , the standard canonical isomorphism ensure

(o) S(RG)/G_{p} \cong\prod_{\beta<\tau}[(1+I_{p}(RC_{\beta+1;}G_{\beta}))/(G_{\beta})_{p}]

Moreover C_{\beta+1}=C_{\beta}\cross G_{\beta} , and so applying again the cited above PropO-
sition on the splitting, we deduce S(RC_{\beta+1})=S(RC_{\beta})\cross(1+I_{p}(RC_{\beta+1} ; G_{\beta}))

and consequently S(RC_{\beta+1})/(C_{\beta+1})_{p}\cong S(RC_{\beta})/(C_{\beta})_{p}\cross(1+I_{p}(RC_{\beta+1} ; G_{\beta}))

/(G_{\beta})_{p} . Besides, without loss of generality \tau may be choosen to be limit,
whence \beta+1<\tau and |\beta+1|<|G| implies |C_{\beta+1}|<|G| . Therefore
S(RC_{\beta+1})/(C_{\beta+1})_{p} is a coproduct of countables by an induction hypothe-
sis. By [4], so is (1+I_{p}(RC_{\beta+1} ; G_{\beta}))/(G_{\beta})_{p} . It now follows directly by the
formula (o) that S(RG)/G_{p} is a coproduct of countables, as claimed.

After this, if G_{t}=G_{p} , then by [8, 2] V(FG)=GS(FG) and hence
V(FG)/G\cong S(FG)/G_{p} is also a coproduct of countables. \square

We begin with

Proof of the Isomorphism theorem. Without any restriction F may be
choosen perfect. And so, by what we have just proved above, S(FG)\cong

S(FH) is a coproduct of countables, hence the same holds for H_{p} by ap-
plication of a slight modification of [5, Theorem 5.6]. On the other hand,
the Ulm-Kaplansky cardinal invariants of G_{p} and H_{p} are known by May [6]
to be equal, therefore [4] guarantees G_{p}\cong H_{p} , as stated. Moreover, it is a
simple matter to see that H_{t} is p-primary, too. Hence G_{t}\cong H_{t} .

Next, according to the first central theorem along with (**) we establish
that V(FG)=G\cross T_{1}\cong H\cross T_{2}=V(FH) for some totally projective p-
group T_{1} and T_{2} with lengths \leq\Omega . As in [5] we can select a totally
projective p–group T such that T. T\cross T_{1} and T\cross T_{2} have equal Ulm-
Kaplansky functions (such a group is easy to construct; as example the
Ulm-Kaplansky invariants of T_{1} and T_{2} not exceed these of T). Thus T\cong

T\cross T_{1}\cong T\cross T_{2} by [4] and now automatically G\cross T\cong H\cross T , which must
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be proved. \square

Now, we conclude this paragraph with an interesting discussion. The
first significant observation is that our major theorems proved above gen-
erate the stated above Hill-Ullery’s theorem. Indeed, the case for lengths
\Omega follows immediately from the fact given by us, and the general case for
lengths \Omega+n(n\in N) is a trivial consequence of the first. Besides, using the
isomorphism theorem and the technique of \sigma-summable groups developed
by us in [2], we are ready to formulate and establish a new independent
proof of the following our assertion more stronger than the corresponding
result of Hill-Ullery [5, Corollary 5.9], namely:

Theorem ([3], 2000) Suppose G is of countable torsion-free rank and G_{p}

is totally projective of length <\Omega^{2} . Then the F isomorphism FH\cong FG for
any group H implies H_{p}\cong G_{p} . Moreover, if G_{t} is a p-group, it is fulfilled
that H_{t}\cong G_{t} and even more that H\cong G provided G is of torsion-free rank
one.

Further, combining the Direct Factor Theorem together with (**) we
yield the statement listed below that is an expanson of the corresponding
in [3].

Corollary Let G be p-mixed and F be perfect. Then V(FG) is a coprod-
uct of countables if and only if G is a coproduct of countables.

Well, we close the investigation with

4. Epilogy

The concluding discussion leads us to state the following general and
very important group-theoretic question: What is the complete set of in-
variants for two p-mixed coproducts of countables to be isomorphic? The
situation will be solved if it is done for the countable case.

In this light, numerous other actual problems remain unanswered; here
are a few, namely:

-It is still unknown to the moment, whether in the main isomorphism
theorem it is true that G\cong H ? This probably is so for p-mixed groups.

-Does it follow that S(FG)/G_{p} is totally projective provided F is
perfect and G is of cardinality \geq\aleph_{1} or of p-length \geq\Omega? If this is the
case, then the central theorem will be itself valid for direct sums of such
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groups with the above power and length restrictions, following the present
algorithm.
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