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Solvability of convolution equations in D,
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Abstract. In this paper we give a necessary condition on the Fourier transform of a
convolution operator S of the space D} ,;2 < p < oo, for the equation S *u = v to
have a solution u in D}, for every v in D} ,. In the case p = 2, this condition with
the additional assumption S(£¢) # 0 for all £ € R™, are sufficient for solvability of the
convolution equation.
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1. Introduction

Convolution equations in spaces of distributions and ultradistributions
of LP-growth were studied by several authors. In this work we study the
problem of characterizing the convolution operators S for which the convo-
lution equation S*u = v have a solution u in D/, for every v in D},. Pahk
characterized hypoelliptic convolution operators in the space D), and
left the problem of solvability of convolution equations in Diy,1<p<oo
open. Pilipovi¢ [4] has established necessary condition and sufficient con-

o : . a1 (Mp)
dition on the convolution operator S to be invertible in D’L2 "’. Moreover,

Pilipovi¢ characterized hypoelliptic convolution operators in Dﬁ;w ? Here

we give a necessary condition on S , the Fourier transform of the convolution
operator S, for the convolution equation S * u = v to have a solution u in

7» for a given v in D},. Moreover, in the case p = 2 we give sufficient
conditions for solvability of the equation S * u = v. Characterizing invert-
ible and hypoelliptic convolution operators in D}, is difficult in general.
This is due to lack of differentiability of S. It is known (see [1] part (c) of
Theorem 2 and the remark which follows it on page 202) that the Fourier
transform of any convolution operator in D},,1 < p < oo, is a continuous

function which is slowly increasing at infinity. We remark that in this work
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we did not assume any differentiability condition on the Fourier transform
of the convolution operator. We will use the standard notations as in
and [5]. For more information on the space O,(D),;D},) of convolution
operators on D/, and its topology, we refer the reader to [1].

We recall the definitions of the space Dyrq; 1 < q < 2, of test functions
and the space Dj, of distributions of LP-growth, 2 < p < co. The space
Draq; 1 < q < 2, consists of all infinitely differentiable functions ¢ such that
D%p is in L? for all a in X", equipped with the topology generated by the
norms

1
q
HS"“m,q = { Z ||Da(p“g} ’ m = Ov 172a3a- e

o] <m

With this topology, the space D4 is a Frechet space.
The subspace of all functions in Dy which converge to 0 at infinity is

denoted by Dre. The strong dual of Dy is D', the space of distributions
with restricted LP-growth, where 2 < p < oo, and ;1) + -(1; = 1. For any
¢ in Dpq; 1 < ¢ < 2, its Fourier transform { and its multiple with any
polynomial are in LP. The space F(Drs) = {® : ¢ € Drq} is a subspace
of LP  and will be provided with the induced LP norm topology. It follows
that the Fourier transformation from Dyq into LP is continuous. Given T
in D, we define its Fourier transform T in F(Drq) by (T,3) = (T, ). It
follows that T is well defined and continuous onto F (Dra).

2. The Results

Our first result gives neccessary condition for solvability of convolution
equations in D} ,.

Theorem 1 Let S be a convolution operator on Dj,, 2 < p < oco. If the
convolution equation

Sxu=v (1)

has a solution u in D}, for every v in Di,, then there exist positive con-
stants c, d, and k such that

15(€)] > (1 + |€))~ (2)
for all € in R™ with €| > k.
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Proof.  The proof is by contradiction. Suppose that condition (2) is not
satisfied. Then there exists a sequence of points (§;) such that |£41| >
&1+ 1, 1&1] > 2, j2 < |¢], for j > 4, and

—~~ . .3 _ . .

IS(EH <277 A+ 15D, =1 (3)
From the continuity of S it follows that there exist open balls U; centered
at §; with positive small radius €; such that

—~ _ 3 _ .

1S(E)] <277 (1 + |&|) > (4)
forall £ € Uj, j € N

For each j € N we define
Ti(€) = "1+ )7, €eU;
0 if £ isin ch (5)

and T(§) = 322, T;(§), where n is the dimension of ™. We claim that T

is in the set F(D7,) of all Fourier transforms of the distributions in D/,.
Indeed, for any ¥ € Dyq one has

T8 = (3 /| RIGHGE
<3 / I ) dg (6)
< i) (7)
j=1
< Y Cu |, = C|T|lp; (8)
j=1

where C is a constant which is independent of ¥. Thus T is a well defined
continuous linear functional on F(Dpq) considered as a subspace of LP. We
remark that the above argument shows that 7' is in D},.

Next we construct a function which is in F(Drq). Let U; be as above.
For each j, let B; be a ball with center ¢; and radius %sj. Let ¢; be a C*°-
function with compact support in Uj, such that |§;|737 < ¢;(€) < |§;|7% if
§isin Bj and 0 < ¢;(§) < |&]7% if £ is in U;\B;. Let ¢(€) = > e i (6)-
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Then

F i) (@) =

[ <o < [ loselas < e

J

Hence the function F~1(p)(z) = > 521 F 1 (pj)(z) satisfies the estimates

o0 o0 o0
D) <D IFHep)@) <D 5 Ye <Y 5 < oo
j=1 j=1 '

Thus F~1(¢p) is a well defined function. We claim that the function P(£)p(€)
is in LP for any polynomial P(£). For, there exist a positive integer k¥ and
a constant C such that |P(€)] < C(1 + |¢])*. Moreover, for any ¢ € U; one
has || < [§;] + €5, and

(L+ €D < (1+e5 + D™ < (2+ &)

Thus one has
1P©)s )l
- / PO ©Pde < [ CP1+Ig)lpy(e)Pde
U; U;

< CP(2 + Ig1) /U e (©Pde < CP@+ g Plg 1 ¥%ep. (9)

Hence

o0
X 1P 6l <

C(2+1&)*1g1™ eF

M]3

<.
ﬂ‘

C(2°(2% + 1¢;1"))1g;1 ™ (10)

1

< Cre Y _I&G17% + Crp Y1617 (11)
i=1 i=1

<.
i

o0
< Crk <l + Zj—z(%-k)) <Cyp <o, (12)

where C} x and Cy are constants which depend on k (the polynomial P)
only.
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On the other hand, the inequality || f + gllp < ||fllp + llgll, whenever
f,9 € LP;1 < p < 0o, and induction imply that || >0, fill, < >°52; 11 fillp,

where f fo2,..., fn are in LP. Hence continuity of the norm function imply
that
= | dim, 2 A = Jim,
j=1 lip ;
n o0
< i N = .
= JLH;OZHfJIIP Z”fa“p- (13)
i=1 j=1
From (11) and (12) one has
o0
1Pl = | >_ P
ji=1 p
o0
Z ()]lp < Cap < 0. (14)

Thus ¢ is in F(Dra).
Finally using (4), the definition of T', and the definition of the functions
©; one has

T¢)
<|S| > / |S£ #i(€)dt
—joj \9F | ¢ .1—37
Z;L-Uﬂw2ﬂHWKﬂ%
> S0l (L + ) (2)”
j=1

> (%)ni?s = 00. (15)

J=1

Therefore - is not in F(D},). This implies that % is not in F(D],).

S|
Indeed, if % is in F(Dy,) where 5(€) = S1(€) + iSy(€), then TEAE —
T (£)S2(6) T(£)51(8) T(§)S2(8€) / o
Z_Z—'S(E)P € .7-'( »)- Hence —x=L5/ Bepr 0 nd Sop are in F(D},). Inparticu
T(&)S T(£)S 00
lar, <T(§ﬁ’ 90> nd <T(S£i£)%’ <p> are bounded, where ¢(§) = ijl vi()
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as above. On the other hand < e > is unbounded. Thus =22 S1(8) and =5=2 52(8)

|1S1? 151 15)l
must be very small in absolute value, which contradicts the fact that the
modulus of r‘;% is 1. The contradiction shows that % is not in F(D%,).

Thus the convolution equation S *x u = F~1(T) does not have a solution in
"».This contradicts the hypothesis and completes the proof of the theo-
rem. O

The next result provides sufficient conditions for solvabilty of the con-
volution equation in D’ This result covers a wider set of convolution

operators than the correbpondlng theorem of Pilipovi¢ for the space D}, (i)

(see Proposition 8 of [4]). In our result we did not assume that S has an-
alytic continuation onto C™. As well, our proof is different from that of
Pilipovié. We recall that the Fourier transformation is a topological iso-
morphism from L? onto itself. Since Dj2 is a subspace of L? it follows that
F(Dy2) is a subspace of L2. We provide F(D;2) with the L? norm. If S is
a convolution operator on D), we provide the space S *Dy2 with the topol-
ogy induced by D;2. The following lemma follows from the above cited fact
that the Fourier transformation is a topological isomorphism from L? onto
itself. We provide its proof for the sake of completeness.

Lemma 2 The Fourier transform is a topological isomorphism of Dp:
onto F(Dy2).

Proof.  Let ¢ be any element in D;2. Let kK > 1 be any integer. From
continuity of the Fourier transform on L? and contiuity of the differential
operator from D2 into itself, it folows that

1812 < (L + [€%)*@ll2 < CrIP(D)¢ll2 < CLC2 l¢ll2m;

where P(D) = (1+ D?+---+ D?)?%, C1, Cs are positive constants and m is
a positive integer. This takes care of contiuity of the Fourier transform. To
establish continuity of the inverse Fourier transform, let k£ be any positive
integer. From continuity of the differential operator from D;2 into itself,
and contiuity of the inverse Fourier transform from L? onto itself one has
for any positive integer k,

lel3e =Y ID%0l3 < ) Coliel < Cll@li3,
1BI<k 1BI<k
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where C}, is a constant which is independent of ¢. This takes care of con-
tiuity of the inverse Fourier transform. H

Theorem 3 Let S be a convolution operator on Dj,. If §(§) # 0 for

all £ € R™ and |§(§)| > ¢(1 + |€])~? whenever |£| > k for some positive
constants c, d, and k, then the convolution equation

Skxu=v (16)
has a solution u in D}, for every v in D',.

Proof.  Using the Hahn-Banach theorem, it suffices to show that the map
Sx ¢ — ¢ from S *Dy2 into D2 is continuous, where we assumed without
loss of generality that S = S the symmetry of S with respect to the origin.
From Lemma 2 it suffices to show that the map S — @ from F(D r2) into
itself is continuous in the L? norm. We consider two cases:

Case I: If the support of ¢ is contained in the closed ball B(0, k). Then

Sc,o 2 /| )2dg

< / 8E)a(©)de < ISR (17)
Ok) 1S(€)]

12113 =

AN

Case II: If the support of ¢ is not contained in the closed ball B(0, k).
Then from condition (2) and continuity of the differential operator on D2

one has,
2 _45
171 = |2 / 3 >|2d§
<o / 8&)3(€) 1P )l2d§
< ¢ / [P(D)(S * ) (€) de
< C1|P(DY(S * 9)|3 < C|IS* 912, (18)

for some polynomial P(€) and constants C;, C independent of ¢. Thus the
map S *x ¢ — ¢ from Sx D2 into D;2 is continuous. O

Remark 1 The additional assumption S (&) # 0 for all £ in R™, was used
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in the proof of in a very essential way. Thus it is not expected
that the neccessary condition for solvability to be sufficient. Moreover, the
proof of does not work for the general case p, 2 < p < co. This is
because, in the general case, the Fourier transform does not have continuous
inverse.

Remark 2 We leave the conjecture that is true for general
p > 2 un answered. To prove the conjecture one needs to study carefully
the relation between the topologies of the space F(Drq)
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