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Existence of d,,-periodic points for smooth maps
of compact manifold*

Grzegorz GRAFF
(Received September 9, 1998; Revised January 6, 1999)

Abstract. For a smooth self-map f of a compact manifold M we examine the connec-
tion between topological conditions put on M and differentials of a map f at periodic
points.
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1. Introduction

A classical example of the connection between global and local proper-
ties of a compact manifold M is Poincaré theorem: ) .~ ind(T,z) = x(M),
where x(M) denotes the Euler characteristic of M, C is the set of critical
points of the vector field T', and ind(T, x) the local index of T.

In 1983 Chow, Mallet-Paret and Yorke ([CMY]) proved that the se-
quence ind(f", o) of isolated fixed point indices of iterated Cl-map f is
an integral linear combination of elementary periodic sequences with the
periods determined by the spectrum of the derivative D f(xg) of f at xg.

Basing on this fact Matsuoka and Shiraki ([MS]) formulated for self-
maps of a compact manifold M with finitely many periodic points a global
homological condition on M that forces an existence of a periodic point (so
called a d,,-periodic point) which satisfies a certain degeneracy condition.

On the other hand Marzantowicz and Przygodzki ([MP]) expressed a
formula for im(f) =3k w(k)I(f™/*), where I(f) is the fixed point index
of f, in terms of periodic points of a compact manifold. If i,,(f) # 0 then
we say that m is an algebraic period of f.

The aim of this paper is to prove the theorem analogous to given in
but formulated in the language of algebraic periods. This approach is
more general: we show that both theorems are equivalent for the class of
maps with finitely many periodic points, but by a use of algebraic periods it
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is possible to find a é,,-periodic point for maps with infinitely many periodic
points as well.

We give an application of that observation to rational exterior spaces.
For self-maps of such spaces the formula for Lefschetz number is known (cf.
[H]), which allows to draw additional information about algebraic periods

(cf. [G]).

2. Algebraic periods and periodic points

Let f be a self-map of a topological space X. For n > 1 we define
P*(f) = Fiz(f*) and Po(f) = P™(f) \ Ugen P*(f) called the set of n-
periodic points. If P,(f) # 0 then n is called a minimal period of f. The
set of all minimal periods of f is denoted by Per(f).

Throughout the paper we assume that if X = M is a compact manifold,
then for every natural n, P"(f) C Int X and P"(f) consists of isolated
points only.

We begin with formulation of the results from .

Definition 2.1 ([MS]) A periodic point x of f with minimal period n is
said to be a &,,-periodic point if D f™(x), the differential of f™ at x, has an
eigenvalue which is an m/-th primitive root of unity for some multiple m’
of m. o

For integers 1 > 0, n > 0, let e;(n) be the number of eigenvalues of f,; :
H;(M;Q) — H;(M;Q), which are n-th primitive roots of unity (counting
multiplicity). Define

e(n) = Z(—l)iei(n).
i=0

Theorem 2.2 ([MS]) Let f: M — M be a C'-map on a compact mani-
fold M with finitely many periodic points. Let m be an odd prime number
such that:
(i) e(n) # 0 for some multiple n of m
(ii) the period of any periodic point is not a multiple of m.

Then f has a d.,-periodic point. o

Let us introduce the basic fact and results connected with algebraic
periods. Let f be a self map of a compact manifold M and I(f) = I(f, M)
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denotes the fixed point index of f, which is equal to L(f) - the Lefschetz
number of f. For every n € N let us define:

= u(k)I(f*)
kln
where p(k) denotes the classical Mobius function, (cf. [Ch]).

Definition 2.3 A natural number n is called an algebraic period if i, ( f) #
0. o

The following congruence (called Dold’s relations) holds (cf. [D}):
Proposition 2.4 For every n € N we have i,(f) =0 (mod n).

This formula has a clear interpretation for a self-map f of a discrete
countable set X. We have in that case: |P,(f)| = i»(f) and the congruence
(2.4) result from the fact that P,(f) consists of n-orbits (cf. [D]).

The numbers i, (f) for C! self-maps of a compact manifold M may be
expressed by differentials at periodic points.

Define the subset of natural numbers O(z) for z € Py(f) as O(z) =
Per(Df¢(x)). Let o_ denote the number of eigenvalues of D f(z) (counted
with multiplicity) smaller than —1.

Theorem 2.5 (cf. [MP]) Let f : M — M be a C! map of a compact
manifold M. Then there exist integers cx(x) such that

=3 Y @+ Y, > )Tk o)

dk=n z€ Py(f) 2dk=n z€ Py(f)
with the convention that ck(z) =0 if k & O(z). o

Lemma 2.6 The structure of the set O(z) is as follows (cf. [CMY])),
[MPY):

O(z) = {lem(K) : K C 0(1)(Dfd(a:))} u{1}

where o1y (D f(z)) is the set of degrees of primitive roots of unity contained
in o(Df%(x))-the spectrum of derivative at x.

Now we are in a position to use algebraic periods for finding §,,-periodic
points.

Theorem 2.7 Let f: M — M be a C'-map of a compact manifold M.
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Let m be an odd prime number such that:

(i) n is an algebraic period for some multiple n of m

(ii) the period of any periodic point is not a multiple of m.
Then f has a ,,-periodic point.

Proof. By [l’heorem 2.5 we have:

W= Y a@+ Y Y a@ea),

dk=n € Py(f) 2dk=n x€Py(f)

where o (z) = (—1)°-@* — 1 (k € O(z)) is an integer.

Let n be a multiple of m: n = ms. The first sum above extends over
all dk = ms, the second over all 2dk = ms. It follows from (ii) that d is not
a multiple of m thus m|k, because m is a prime number different from 2.

Clearly, i, (f) # 0 implies that there exists such k that ci(z) # 0. Since
m|k and k € O(z), among elements of o1(Df%(z)) there is multiplicity of
m: m’' = ml. This is equivalent that x is a J,,-periodic point. O

Roughtly speaking the formula of [Theorem 2.5 says that the coefficient
in(f) is the sum of two kinds of components: one that comes from n-
periodic points and one from d,,-periodic points, where m |n and m is a
prime number.

In order to establish the relation between Theorems and Theorem
2.7 we need some lemmas.

Let ¢ be the Euler function. If €1,...,€4(g) are all d-th primitive roots
of unity then define

Ld:€1+'”+€¢(d)'

Lemma 2.8 L% = p(d).

Proof.  Induction by the number of primes in decomposition of d. The
statement is true for d = ¢, where q is prime. Inductively we assume that
the proposition is true for d = p; - - - p., where p; - - - p, are prime numbers
(not necessarily different). Consider now the number w = dp. We have:

Ldp:61+...+€¢(dp).
On the other hand

1t + E(ap) T Eg(dp)+1 "+ Edp =0,
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where the sum above extends over all roots of unity of degree dp.

Thus by our inductive hypothesis:

et tegapn+ Y u(l)=0.
l|dp,l#dp

As D 14p (1) = 0 we obtain finally:
€1+ +eg(ap) — (dp) =0,
which ends the proof. O

Let €1,...,€4(q) be all d-th primitive roots of unity. Define

in=> um/E+-+ Eo(d)):

ln

Lemma 2.9 L¢= w(d). The following equality holds:

0 if nfd

¢(d) .
kzp; pu(d/k)pu(n/k) 3(d/k) if n|d.

S &

Proof.

id = %u(n/l)(sﬁ +otega) = ”Zn“("/l)“(d/(l’ d”%(%((zi,)T))‘

The last equality results from and the fact that for I|n the sum
b+ '+5fb( 1) consists of d/(l, d)-primitive roots of unity, each taken ﬁ((dl?d_))
times. Observe that if (n,d) =1, n > 1 then i¢ = u(d) i (/1) =0 (cf.
Ch]), otherwise

=), D u(n/l)u(d/(l,d))_M._
k|(n.d) {U|n:(L,d)=k} o(d/(l,d))

S wdfgans Y wo)

k|(n,d) {ln:(1,d)=k}
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Let us calculate the sum: ) ¢, 4)-ky #(n/1). Notice that:

Y. wun/y= Y, u)

{l|n:(l,d)=k} {lln:(n/l,d)=k}

Let us now consider two cases (a) n fd and (b) n|d.

(a) If n Jfd then there exist: a prime number ¢ and a natural number
a such that ¢®|n and ¢* fd. We have in this case:

)ORETCED S!S SN (0}

{lin:(n/l,d)=k} {l:q)/ l|n,(n/l,d)=k} {V:q|l'|n,(n/V ,d)=k}

Define the following function:
b:{l:q flin,(n/l,d) =k, p(l) # 0} — {U': qll'|n, (n/V',d) = k, (V') #
0}, b(l) = ¢l. Then b is bijection and u(l) = —u(b(l)). As a consequence we

obtain 3. (n/1,4)=k} #(1) = 0.
(b) If n|d then (n/l,d) = n/l, but the sum is taken over [ such that
(n/l,d) =k, thus n/l = k and

ool = Y w) = un/k).

{ln:(n/l,d)=k} l=n/k

We now return to the calculation of i¢. We have: if n Jd then by (a)
=0, if n|d then (n,d) = n so by (b) i¢ = D _kjn H(d/k)p(n/k) ¢C(l/3€) This
completes the proof. N

Lemma 2.10 7

n

Proof. We have by [Lemma 2.9

in —Z,un/k n/k) $(n) qb(n)Z“Q(k).
2 5(n/K)

=n.

Let n = pin ... p2 then ¢(n) — n(l —_ p%) - (1 — L) — n(Pl—;l):::;p;r—l)

in:n(pl—l)-“(pr—l)(pr 3 1 )
" 1 pr e i< Pu = 1) (o, = 1)

== (1+ > (pzl—l)-'-(Plh—1)>

A 1<h < <p<Lr




Master of science in mathematics 17

klpl ‘Pr

The last equality is the consequence of well known fact: .\ ¢(k) = s (cf.

[CH]). 0

Proposition 2.11 Theorem 2.2 and Theorem 2.7 are equivalent for smooth
maps with finitely many periodic points.

Proof.  Define

Le(= 3 (~1)dmiy,

AECNa(f)

where C' is the set of all roots of unity, o(f) is the spectrum of the map
induced by f on homology, dim A = i if A is an eigenvalue for H;(M; Q).

Let us notice now that if {L(f")}22, is bounded then L(f™) = Lo(f™),
(cf. [BB], [Ma]). On the other hand for smooth maps with finitely many
peI'lOdIC points, {L(f")}52; is bounded (cf. [SS], [CMY]).

Thus, using our termmology we obtain for maps with finitely many
periodic points: L(f) =), 3 d)) L4, where the sum extends over the degrees
of all primitive roots of unity in C' N o (f).

As a consequence we have:

)= 0 S Sl DE] el = 3
d I d

f‘\

dd
dn

S

Let us assume now that e(km) # 0 and m is an odd prime number.

Define ng = max{nm : e(nm) # 0}. Consider in,(f) = > 4 ¢Z))zﬁ0 By
i¢ = 0if d < ng. This implies that in,(f) = ¢((TT’L((’))) in9. Now
Lemma 2.10 gives: in,(f) = ;((Z?))) ng # 0. This ends the proof of the first
part of the equivalence. To prove the adverse implication let us assume that;

for some n, multiplicity of prime odd m we have: i,(f) = Ed e(d) id £

Then there exists dy such that ¢(ZO) jd £ 0. From Lemma 2.9 we deduce

that n|dp, on the other hand m |n finally m|dy and e(dg) # 0 which ends
the proof. O
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3. O, -Periodic points on rational exterior spaces

For a given space X and an integer 7 > 0 let H"(X; Q) be the r-th
singular cohomology space with rational coefficients. Let next H*(X;Q) =
) H(X; Q) be the algebra of cohomology with the multiplication given
by the cup product.

An element ¢ € H"(X;Q) is decomposable if there are some pairs
of elements (z;,¥;) € HP(X;Q) x HI(X;Q) p,g > 0, p+q =7 >0
so that x = ) x; Uy;, where U is the cup product in H*(X;Q). Let
A™(X) = H"(X)/D"(X), where D" is the subspace over @) consisting of
all decomposable elements. Then A"(X) is a vector space over Q). For a
continuous map f : X — X let f* be the induced homomorphism on the
cohomology spaces and A(f) the induced homomorphism on A(X).

Definition 3.1 A connected topological space X is called rational exte-
rior if it is possible to find some homogeneous elements z; € H°%(X;Q),
i = 1,...,k such that the inclusions z; — H*(X;Q) give rise to a ring
isomorphism Ag(z1,...,zx) = H*(X; Q). o

One of the simplest example of a rational exterior space is T?: if 1, zo
are generators of H'(T?; Q) then x1 Uzs is a generator for H2(T?; Q). Thus
H*(T?;Q) = A(x1,x2) - exterior algebra with two generators.

Among rational exterior spaces there are: finite H-spaces, including all
finite dimensional compact Lie groups and some real Stiefel manifolds.

Definition 3.2 Let f be a self-map of a space X andlet I : A(X) — A(X)
be the identity morphism. The polynomial

Ag(t) = det(tI — A(f)) = [ det(tI — A7(f))

r>1

will be called the characteristic polynomial of f. The zeros of this polyno-
mial: A (f),..., \(f), k = rank X, where rank X is the dimension of A(X)
over (), will be called the quotient eigenvalues of f.

Theorem 3.3 ([H]) Let f be a self-map of a rational exterior space, A
denotes the matriz of A(f), and let A1, ..., \x be quotient eigenvalues of f.
Then L(f™) = det(I — A™) = []*_,(1 — A»). o

Let us introduce the following definition:

Definition 3.4 A map f will be called essential providing it satisfies the
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conditions:
(a) 1 is not its quotient eigenvalue

(b) at least one quotient eigenvalue is neither zero nor a primitive root of
unity.

We have the following characterization of essential maps:

Proposition 3.5 (cf. [G]) A self-map f of a rational exterior space is
essential iff {L(f™)}5°_, is unbounded.

m=1

Basing on some nontrivial inequalities for algebraic numbers proved
in it is possible to observe the presence of large algebraic periods for
essential self-maps of rational exterior spaces.

Let T4 = {n € N :det(I — A™) # 0}, A denotes the matrix of A(f).

Theorem 3.6 ([G]) Let X be a rational exterior space. Then there erists
a number nx which depends only on the space X, and is independent of the
choice of f, such that for every essential self-map f of X and all n > ny,
n € Ty, n is an algebraic period of f.

Theorems makes possible to find d,,-periodic points of self-maps of
rational exterior spaces.

Theorem 3.7 Let M be a rational exterior compact manifold and f :
M — M be a C! essential map. Let m be an odd prime number such that:
(i) neither of quotient eigenvalues is an m-th primitive root of unity
(ii) the period of any periodic point is not a multiple of m.

Then f has a d,-periodic point.

Proof.  Let us notice that n € T4 iff det(I — A™) # 0. On the other
hand, by [Theorem 3.3 we have: det(I — A™) = Hle(l — A1) = L(f™).
If among A;, (¢ = 1,...,k) there is no m-th primitive root of unity then
L(f™) is different from zero for infinitely many I. Thus, by [Theorem 3.6

for sufficiently large [ we obtain i,,;(f) # 0, which proves the statement due
to [I'heorem 2.7l ad

Remark 3.8 By [Proposition 3.5, [['heorem 3.7 refers only to maps with
infinitely many periodic points. Moreover, for a given self-map of a rational
exterior compact manifold M there is such number Ny (although usually
very large) that for all prime m > Ny there is always a point with minimal

period m (cf. [G]). As a result [Theorem 3.7 acts effectively only for m < Nj.
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For every odd prime m we may formulate the following alternative.

Theorem 3.9 Let M be a rational exterior compact manifold. Then there
exists a number syr, such that for every essential C! self-map f of M and
all natural s > spr, m® € Ty either there is a 6,,-periodic point or there are
points of minimal period m?.

Proof.  Let us take sps such that m®™ > nj;, where ny; = nx is taken
from [['heorem 3.6. Then for every s > sp; we have:

+ Y (@t Y al@) #£0

£€Pm (f) T€Pp,s(f)

If there is no é,,-periodic point then from the convention of [Theorem 2.5
and we conclude that for 1 <7 < s we have ¢,,r(z) = 0. As a
result - cp (5 c1(z) # 0 which gives the thesis. O
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