
Hokkaido Mathematical Joumal Vol. 29 (2000) p. 11-21

Existence of \delta_{m}-periodic points for smooth maps
of compact manifold*

Grzegorz GRAFF
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Abstract. For a smooth self-map f of a compact manifold M we examine the connec-
tion between topological conditions put on M and differentials of a map f at periodic
points.
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1. Introduction

A classical example of the connection between global and local proper-
ties of a compact manifold M is Poincar\’e theorem: \sum_{x\in C}ind(T, x)=\chi(M) ,
where \chi(M) denotes the Euler characteristic of M, C is the set of critical
points of the vector field T_{J}. and ind(T, x) the local index of T-

In 1983 Chow, Mallet-Paret and Yorke ([CMY]) proved that the se-
quence ind(f^{n}, x_{0}) of isolated fixed point indices of iterated C^{1} map f is
an integral linear combination of elementary periodic sequences with the
periods determined by the spectrum of the derivative Df(x_{0}) of f at x_{0} .

Basing on this fact Matsuoka and Shiraki ([MS]) formulated for self-
maps of a compact manifold M with finitely many periodic points a global
homological condition on M that forces an existence of a periodic point (so
called a \delta_{m}-periodic point) which satisfies a certain degeneracy condition.

On the other hand Marzantowicz and Przygodzki ([MP]) expressed a
formula for i_{m}(f)= \sum_{k|m}\mu(k)I(f^{m/k}) , where I(f) is the fixed point index
of f , in terms of periodic points of a compact manifold. If i_{m}(f)\neq 0 then
we say that m is an algebraic period of f .

The aim of this paper is to prove the theorem analogous to given in
[MS] but formulated in the language of algebraic periods. This approach is
more general: we show that both theorems are equivalent for the class of
maps with finitely many periodic points, but by a use of algebraic periods it
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is possible to find a \delta_{m}-periodic point for maps with infinitely many periodic
points as well.

We give an application of that observation to rational exterior spaces.
For self-maps of such spaces the formula for Lefschetz number is known (cf.
[H] ) , which allows to draw additional information about algebraic periods
(cf. [G]).

2. Algebraic periods and periodic points

Let f be a self-map of a topological space X\tau For n\geq 1 we define
P^{n}(f)=Fix(f^{n}) and P_{n}(f)=P^{n}(f) \backslash \bigcup_{k<n}P^{k}(f) called the set of n-
periodic points. If P_{n}(f)\neq 0 then n is called a minimal period of f . The
set of all minimal periods of f is denoted by Per(/).

Throughout the paper we assume that if X=M is a compact manifold,
then for every natural n , P^{n}(f)\subset IntX and P^{n}(f) consists of isolated
points only.

We begin with formulation of the results from [MS].

Definition 2.1 ([MS]) A periodic point x of f with minimal period n is
said to be a \delta_{m}-periodic point if Dfn(x) , the differential of f^{n} at x , has an
eigenvalue which is an m’-th primitive root of unity for some multiple m’

of m . o

For integers i\geq 0 , n>0 , let e_{i}(n) be the number of eigenvalues of f_{*i} :
H_{i}(M;Q)arrow H_{i}(M;Q) , which are n-th primitive roots of unity (counting
multiplicity). Define

e(n)= \sum_{i=0}^{\infty}(-1)^{i}e_{i}(n) .

Theorem 2.2 ([MS]) Let f : Marrow M be a C^{1} map on a compact mani-

fold M with finitely many periodic points. Let m be an odd prime number
such that:
(i) e(n)\neq 0 for some multiple n of m
(ii) the period of any periodic point is not a multiple of m .

Then f has a \delta_{m} periodic point. o

Let us introduce the basic fact and results connected with algebraic
periods. Let f be a self map of a compact manifold M and I(f)=I(f, M)
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denotes the fixed point index of f . which is equal to L(f). . the Lefschetz
number of f . For every n\in N let us define:

i_{n}(f)= \sum_{k|n}\mu(k)I(f^{n/k})

where \mu(k) denotes the classical M\"obius function, (cf. [Ch]).

Definition 2.3 A natural number n is called an algebraic period ifi_{n}(f)\neq

0 . o

The following congruence (called Dold’s relations) holds (cf. [D]):

Proposition 2.4 For every n\in N we have i_{n}(f)\equiv 0 (mod n).

This formula has a clear interpretation for a self-map f of a discrete
countable set X . We have in that case: |P_{n}(f)|=i_{n}(f) and the congruence
(2.4) result from the fact that P_{n}(f) consists of n-0rbits (cf. [D]).

The numbers i_{n}(f) for C^{1} self-maps of a compact manifold M may be
expressed by differentials at periodic points.

Define the subset of natural numbers O(x) for x\in P_{d}(f) as O(x)=
Per(Df^{d}(x) ). Let \sigma_{-} denote the number of eigenvalues of Df^{d}(x) (counted
with multiplicity) smaller than -1.

Theorem 2.5 (cf. [MP]) Let f : Marrow M be a C^{1} map of a compact
manifold M Then there exist integers c_{k}(x) such that

i_{n}(f)= \sum_{dk=n}\sum_{x\in P_{d}(f)}c_{k}(x)+\sum_{2dk=n}\sum_{x\in P_{d}(f)}[(-1)^{\sigma-(x)k}-1]c_{k}(x)

with the convention that c_{k}(x)=0 if k\not\in O(x) . o

Lemma 2.6 The structure of the set O(x) is as follows (cf. [CMY]),
[MP] ) :

O(x)=\{1cm(K) : K\subset\sigma_{(1)}(Df^{d}(x))\}\cup\{1\}

where \sigma_{(1)}(Df^{d}(x)) is the set of degrees of primitive roots of unity contained
in \sigma(Df^{d}(x)) -the spectrum of derivative at x .

Now we are in a position to use algebraic periods for finding \delta_{m} periodic
points.

Theorem 2.7 Let f : M - M be a C^{1} map of a compact manifold M .
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Let m be an odd prime number such that:
(i) n is an algebraic period for some multiple n of m
(ii) the period of any periodic point is not a multiple of m .

Then f has a \delta_{m} -periodic point.

Proof By Theorem 2.5 we have:

i_{n}(f)= \sum_{dk=n}\sum_{x\in P_{d}(f)}c_{k}(x)+\sum_{2dk=n}\sum_{x\in P_{d}(f)}\alpha_{k}(x)c_{k}(x)
,

where \alpha_{k}(x)=(-1)^{\sigma_{-}(x)k}-1 (k\in O(x)) is an integer.
Let n be a multiple of m:n=ms . The first sum above extends over

all dk=ms , the second over all 2dk=ms . It follows from (ii) that d is not
a multiple of m thus m|k , because m is a prime number different from 2.

Clearly, i_{n}(f)\neq 0 implies that there exists such k that c_{k}(x)\neq 0 . Since
m|k and k\in O(x) , among elements of \sigma_{1}(Df^{d}(x)) there is multiplicity of
m:m’=ml . This is equivalent that x is a \delta_{m}-periodic point. \square

Roughtly speaking the formula of Theorem 2.5 says that the coefficient
i_{n}(f) is the sum of two kinds of components: one that comes from n-
periodic points and one from \delta_{m}-periodic points, where m|n and m is a
prime number.

In order to establish the relation between Theorems 2.2 and Theorem
2.7 we need some lemmas.

Let \phi be the Euler function. If \epsilon_{1} , . , \epsilon_{\phi(d)} are all d-th primitive roots
of unity then define

L^{d}=\epsilon_{1}+
+\epsilon_{\phi(d)} .

Lemma 2.8 L^{d}=\mu(d) .

Proof Induction by the number of primes in decomposition of d . The
statement is true for d=q, where q is prime. Inductively we assume that
the proposition is true for d=p_{1)}\cdot\cdot p_{r} , where p_{1}\cdot\cdot p_{r} are prime numbers
(not necessarily different). Consider now the number w=dp. We have:

L^{dp}=\epsilon_{1}+\cdot\cdot+\epsilon_{\phi(dp)} .

On the other hand

\epsilon_{1}+ , . +\epsilon_{\phi(dp)}+\epsilon_{\phi(dp)+1}
’. +\epsilon_{dp}=0 ,
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where the sum above extends over all roots of unity of degree dp.
Thus by our inductive hypothesis:

\epsilon_{1}+\cdot

+ \epsilon_{\phi(dp)}+\sum_{l|dp,l\neq dp}\mu(l)=0
.

As \sum_{l|dp}\mu(l)=0 we obtain finally:

\epsilon_{1}+ \cdot I+\epsilon_{\phi(dp)}-\mu(dp)=0 ,

which ends the proof. \square

Let \epsilon_{1} , \ldots , \epsilon_{\phi(d)} be all d-th primitive roots of unity. Define

i_{n}^{d}= \sum_{l|n}\mu(n/l)(\epsilon_{1}^{l}+, . +\epsilon_{\phi(d)}^{l})
.

Lemma 2.9 L^{d}=\mu(d) . The following equality holds:

i_{n}^{d}=\{\begin{array}{l}0 ifn\int d\sum_{k|n}\mu(d/k)\mu(n/k)\frac{\phi(d)}{\phi(d/k)} ifn|d.\end{array}

Proof.

i_{n}^{d}= \sum_{l|n}\mu(n/l)(\epsilon_{1}^{l}+ +\epsilon_{\phi(d)}^{l})=\sum_{l|n}\mu(n/l)\mu(d/(l, d))\frac{\phi(d)}{\phi(d/(l,d))} .

The last equality results from Lemma 2.8 and the fact that for l|n the sum
\epsilon_{1}^{l}+\cdots+\epsilon_{\phi(d)}^{l} consists of d/(l, d)-primitive roots of unity, each taken \frac{\phi(d)}{\phi(d/(l,d))}

times. Observe that if (n, d)=1 , n>1 then i_{n}^{d}= \mu(d)\sum_{l|n}\mu(n/l)=0 (cf.
[Ch] ) , otherwise

i_{n}^{d}= \sum \sum \mu(n/l)\mu(d/(l, d))\frac{\phi(d)}{\phi(d/(l,d))}

k|(n,d)\{l|n:(l,d)=k\}

= \sum_{k|(n,d)}\mu(d/k)\frac{\phi(d)}{\phi(d/k))}\sum_{\{l|n:(l,d)=k\}}\mu(n/l) .
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Let us calculate the sum: \sum_{\{l|n:(l,d)=k\}}\mu(n/l) . Notice that:

\sum_{\{l|n:(l,d)=k\}}\mu(n/l)=\sum_{\{l|n:(n/l,d)=k\}}\mu(l)
.

Let us now consider two cases (a) n\parallel d and (b) n|d .
(a) If n \int d then there exist: a prime number q and a natural number

\alpha such that q^{\alpha}|n and q^{\alpha} \int d . We have in this case:

\sum_{\{l|n:(n/l,d)=k\}}\mu(l)= \{\overline{l}\cdot.q\psi’\sum_{\overline{l}|n,(n/\overline{l},d)=k\}}\mu(\tilde{l})+\sum_{\{l’:q|l’|n,(n/l’,d)=k\}}\mu(l’)

.

Define the following function:
b : \{\tilde{l}:q\parallel\tilde{l}|n, (n/\tilde{l}, d)=k, \mu(\tilde{l})\neq 0\} –{ l’ : q|l’|n , (n/l’, d)=k , \mu(l’)\neq

0\} , b(\tilde{l})=q\tilde{l}. Then b is bijection and \mu(\tilde{l})=-\mu(b(\tilde{l})) . As a consequence we
obtain \sum_{\{l|n:(n/l,d)=k\}}\mu(l)=0 .

(b) If n|d then (n/l, d)=n/l , but the sum is taken over l such that
(n/l, d)=k , thus n/l=k and

\sum_{\{l|n:(n/l,d)=k\}}\mu(l)=\sum_{l=n/k}\mu(l)=\mu(n/k)
.

We now return to the calculation of i_{n}^{d} . We have: if n\parallel d then by (a)
i_{n}^{d}=0 , if n|d then (n, d)=n so by (b) i_{n}^{d}= \sum_{k|n}\mu(d/k)\mu(n/k)\frac{\phi(d)}{\phi(d/k)} . This
completes the proof. \square

Lemma 2.10 i_{n}^{n}=n .

Proof. We have by Lemma 2.9:

i_{n}^{n}= \sum_{k|n}\mu(n/k)\mu(n/k)\frac{\phi(n)}{\phi(n/k)}=\phi(n)\sum_{k|n}\frac{\mu^{2}(k)}{\phi(k)} .

Let n=p_{1}^{\alpha_{1}}’\cdot\cdot p_{r}^{\alpha_{r}} then \phi(n)=n(1-\frac{1}{p_{1}})\cdots(1-\frac{1}{p_{r}})=n\frac{(p_{1}-1)\cdots(p_{r}-1)}{p_{1}\cdots p_{r}}

i_{n}^{n}=n \frac{(p_{1}-1)\cdots(p_{r}-1)}{p_{1)}\cdot\cdot p_{r}}(1+\sum_{1\leq l_{1}<\cdots<l_{h}\leq r}\frac{1}{(p_{l_{1}}-1)\cdots(p_{l_{h}}-1)})

= \frac{n}{p_{1}\cdot\cdot p_{r}}(1+\sum_{1\leq l_{1}<\cdots<l_{h}\leq r}(p_{l_{1}}-1) (p_{l_{h}}-1))
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= \frac{n}{p_{1}1\cdot\cdot p_{r}}\sum_{k|p_{1}\cdots p_{r}}\phi(k)=n
.

The last equality is the consequence of well known fact: \sum_{k|s}\phi(k)=s (cf.
[Ch] ) . \square

Proposition 2.11 Theorem 2.2 and Theorem 2.7 are equivalent for smooth
maps with finitely many periodic points.

Proof. Define

L_{C}(f)= \sum_{\lambda\in C\cap\sigma(f)}(-1)^{\dim\lambda}\lambda
,

where C is the set of all roots of unity, \sigma(f) is the spectrum of the map
induced by f on homology, dim \lambda=i if \lambda is an eigenvalue for H_{i}(M;Q) .

Let us notice now that if \{L(f^{n})\}_{n=1}^{\infty} is bounded then L(fn)=Lc\{fn) ,

(cf. [BB], [Ma]). On the other hand for smooth maps with finitely many
periodic points, \{L(f^{n})\}_{n=1}^{\infty} is bounded (cf. [SS], [CMY]).

Thus, using our terminology we obtain for maps with finitely many
periodic points: L(f)= \sum_{d}\frac{e(d)}{\phi(d)}L^{d} , where the sum extends over the degrees
of all primitive roots of unity in C\cap\sigma(f) .

As a consequence we have:

i_{n}(f)= \sum_{d}\frac{e(d)}{\phi(d)}\sum_{l|n}\mu(n/l)(\epsilon_{1}^{l}+\cdot\cdot+\epsilon_{\phi(d)}^{l})=\sum_{d}\frac{e(d)}{\phi(d)}i_{n}^{d} .

Let us assume now that e(km)\neq 0 and m is an odd prime number.
Define n_{0}= \max\{nm : e(nm)\neq 0\} . Consider i_{n0}(f)= \sum_{d}\frac{e(d)}{\phi(d)}i_{n0}^{d} . By

Lemma 2.9 i_{n0}^{d}=0 if d<n_{0} . This implies that i_{n_{0}}(f)= \frac{e(n_{0})}{\phi(n_{0})}i_{n0}^{n_{0}} . Now
Lemma 2.10 gives: i_{n_{0}}(f)= \frac{e(n_{0})}{\phi(n_{0})}n_{0}\neq 0 . This ends the proof of the first
part of the equivalence. To prove the adverse implication let us assume that
for some n , multiplicity of prime odd m we have: i_{n}(f)= \sum_{d}\frac{e(d)}{\phi(d)}i_{n}^{d}\neq 0 .

Then there exists d_{0} such that \frac{e(d_{0})}{\phi(d_{0})}i_{n^{0}}^{d}\neq 0 . From Lemma 2.9 we deduce
that n|d_{0} , on the other hand m|n finally m|d_{0} and e(d_{0})\neq 0 which ends
the proof. \square
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3. \delta_{m}-Periodic points on rational exterior spaces

For a given space X and an integer r\geq 0 let H^{r}(X;Q) be the r-th
singular cohomology space with rational coefficients. Let next H^{*}(X;Q)=

\oplus_{0}^{s}H^{r}(X;Q) be the algebra of cohomology with the multiplication given
by the cup product.

An element x\in H^{r}(X;Q) is decomposable if there are some pairs
of elements (x_{i}, y_{i})\in H^{p}(X;Q)\cross H^{q}(X;Q)p , q>0 , p+q=r>0
so that x= \sum x_{i}\cup y_{i} , where \cup is the cup product in H^{*}(X;Q) . Let
A^{r}(X)=H^{r}(X)/D^{r}(X) , where D^{r} is the subspace over Q consisting of
all decomposable elements. Then A^{r}(X) is a vector space over Q . For a
continuous map f : Xarrow X let f^{*} be the induced homomorphism on the
cohomology spaces and A(f) the induced homomorphism on A(X) .

Definition 3.1 A connected topological space X is called rational exte-
rior if it is possible to find some homogeneous elements x_{i}\in H^{odd}(X;Q) ,
i=1 , . , k such that the inclusions x_{i}arrow H^{*}(X;Q) give rise to a ring
isomorphism \Lambda_{Q}(x_{1}, \ldots, x_{k})=H^{*}(X;Q) . o

One of the simplest example of a rational exterior space is T^{2} : if x_{1} , x_{2}

are generators of H^{1}(T^{2}; Q) then x_{1}\cup x_{2} is a generator for H^{2}(T^{2}; Q) . Thus
H^{*}(T^{2}; Q)=\Lambda(x_{1}, x_{2}) - exterior algebra with two generators.

Among rational exterior spaces there are: finite H-spaces, including all
finite dimensional compact Lie groups and some real Stiefel manifolds.

Definition 3.2 Let f be a self-map of a space X and let I : A(X)arrow A(X)

be the identity morphism. The polynomial

A_{f}(t)= \det(tI-A(f))=\prod_{r\geq 1}
det (tI-A^{r}(f))

will be called the characteristic polynomial of f . The zeros of this polyn0-
mial: \lambda_{1}(f) , . , \lambda_{k}(f) , k=rankX , where rank X is the dimension of A(X)
over Q , will be called the quotient eigenvalues of f .

Theorem 3.3 ([H]) Let f be a self-map of a rational exterior space, A
denotes the matrix of A(f) , and let \lambda_{1} , \ldots , \lambda_{k} be quotient eigenvalues of f .
Then L(f^{n})= \det(I-A^{n})=\prod_{i=1}^{k}(1-\lambda_{i}^{n}) . o

Let us introduce the following definition:

Definition 3.4 A map f will be called essential providing it satisfies the
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conditions:
(a) 1 is not its quotient eigenvalue
(b) at least one quotient eigenvalue is neither zero nor a primitive root of

unity.

We have the following characterization of essential maps:

Proposition 3.5 (cf. [G]) A self-map f of a rational exterior space is
essential iff \{L(f^{m})\}_{m=1}^{\infty} is unbounded.

Basing on some nontrivial inequalities for algebraic numbers proved
in [JL] it is possible to observe the presence of large algebraic periods for
essential self-maps of rational exterior spaces.

Let T_{A}=\{n\in N : \det(I-A^{n})\neq 0\} , A denotes the matrix of A(f) .

Theorem 3.6 ([G]) Let X be a rational exterior space. Then there exists
a number n_{X} which depends only on the space X_{j} and is independent of the
choice of f , such that for every essential self-map f of X and all n>n_{X} ,
n\in T_{A} , n is an algebraic period of f .

Theorems 3.6 makes possible to find \delta_{m}-periodic points of self-maps of
rational exterior spaces.

Theorem 3.7 Let M be a rational exterior compact manifold and f :
Marrow M be a C^{1} essential map. Let m be an odd prime number such that:
(i) neither of quotient eigenvalues is an m-th primitive root of unity
(ii) the period of any periodic point is not a multiple of m .

Then f has a \delta_{m} -periodic point.

Proof. Let us notice that n\in T_{A} iff \det(I-A^{n})\neq 0 . On the other
hand, by Theorem 3.3 we have: det (I-A^{n})= \prod_{i=1}^{k}(1-\lambda_{i}^{n})=L(f^{n}) .
If among \lambda_{i} , (i=1, \ldots, k) there is no m-th primitive root of unity then
L(f^{ml}) is different from zero for infinitely many l . Thus, by Theorem 3.6
for sufficiently large l we obtain i_{ml}(f)\neq 0 , which proves the statement due
to Theorem 2.7. \square

Remark 3.8 By Proposition 3.5, Theorem 3.7 refers only to maps with
infinitely many periodic points. Moreover, for a given self-map of a rational
exterior compact manifold M there is such number N_{f} (although usually
very large) that for all prime m>N_{f} there is always a point with minimal
period m (cf. [G]). As a result Theorem 3.7 acts effectively only for m<N_{f} .
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For every odd prime m we may formulate the following alternative.

Theorem 3.9 Let M be a rational exterior compact manifold. Then there
exists a number s_{M} , such that for every essential C^{1} self-map f of M and
all natural s>s_{M} , m^{s}\in T_{A} either there is a \delta_{m} -periodic point or there are
points of minimal period m^{s} .

Proof. Let us take s_{M} such that m^{s_{M}}>n_{M} , where n_{M}=n_{X} is taken
from Theorem 3.6. Then for every s>s_{M} we have:

i_{m^{s}}(f)= \sum_{x\in P_{1}(f)}c_{m^{s}}(x)

+ \sum_{x\in P_{m}(f)}c_{m^{s-1}}(x)+ + \sum_{x\in P_{m^{S}}(f)}c_{1}(x)\neq 0

If there is no \delta_{m}-periodic point then from the convention of Theorem 2.5
and Lemma 2.6 we conclude that for 1\leq r\leq s we have c_{m^{r}}(x)=0 . As a
result \sum_{x\in P_{m^{S}}(f)}c_{1}(x)\neq 0 which gives the thesis. \square
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