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On semisimple extensions of serial rings
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Abstract. We prove that if B is a commutative local serial ring and A is a B-algebra
which is a left semisimple extension of B , A is a uniserial ring. If in addition A is
indecomposable as ring, the lengths of the composition serieses of Ae and B are same for
each primitive idempotent e of A . We also give some necessary and sufficient conditions
for A to be a left semisimple extension of a subring B of it, in the case where A and B
are local serial rings or the case where B is a commutative local serial ring and A is a
B-algebra which is serial.
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Throughout this paper A will always be a ring with identity 1, and
B a subring of A containing 1. In their previous paper [4] the authors
introduced the notion of semisimple extensions of a ring. A ring A is said
to be a left semisimple extension of B in the case where every left A-module
M is (A, B)-projective, that is, the map \pi of A\otimes_{B}M to M, defined by
\pi(a\otimes m)=am for any a\in A and m\in M , splits as left A-homomorphism,
or equivalently, for every left A-module M, every A-submodule which is a
B-direct summand of M is always an A-direct summand. (See Theorem
1.1 [4] ) . The right semisimple extension is similarly defined, and the both
left and right semisimple extension is called semisimple extension. Till now
some typical examples of the semisimple extension are known, for example,
each semisimple ring is a semisimple extension of each subring of it, and
each separable extension is a semisimple extension. However, since the
semisimplicity is a quite abstract condition, it is very difficult to research
the structure of the semisimple extension or find proper examples of it.

In this paper we will give some structure theorem of semisimple exten-
sions of (tw0-sided) uniserial local rings. A ring R is said to be left serial in
the case where R is left artinian and Re has the unique composition series
for each primitive idempotent e of R. In the case where R is a direct sum
of finite primary left serial rings, R is said to be a left uniserial ring. It is
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a well known fact that R is primary left uniserial if and only if R is a full
matrix ring over a local left serial ring. Right (uni) serial ring is defined
similarly, and a both left and right (uni) serial ring is called (uni) serial
ring. It is also a well known fact that, if R is serial, R satisfies the following
two conditions;

(1) Each left R-module is a direct sum of indecomposable submodules
(2) A left R-module is indecomposable if and only if it is a homomor-

phic image of some Re where e is a primitive idempotent of R.
In the case where R satisfies the condition (1), the indecomposable

decomposition of each module compliments direct summands by Corollary 2
to Theorem A [7]. Therefore in this case we see that the indecomposable
decomposition of each module is unique up to isomorphism by Theorem
12.4 [1], and that R is left artinian by Corollary 28.15 [1]. Consequently
each left R-module has the projective cover. In addition it can be easily
proved that, under the condition (2), for each primitive idempotent e of R
Re has the unique maximal left subideal, and each epimorphism of Re to M
is a projective cover of an indecomposable left R-module M. Under these
preparations we have;

Theorem 1 Let both A and B satisfy the above conditions (1) and (2),
and suppose that A is a left semisimple extension of B. Then for each
left ideal L of A and each primitive idempotent e of A , there exist a left
ideal I of B and a primitive idempotent e’ of A such that there is an A-
isomorphism of Ae to Ae’ whose restriction on Le is an isomorphism of Le
to AIe’

Proof. Suppose that A is a left semisimple extension of B and let L and
e be as in the theorem. Then Ae/Le is A-indecomposable and Ae/Le is
an A-direct summand of A\otimes_{B}Ae/Le . On the other hand B satisfies the
same condition. Therefore there exist classes \{K_{\alpha}\} of left ideals of B and
\{f_{\alpha}\} of primitive idempotents of B such that Ae/Le\cong\Sigma\oplus Bf_{\alpha}/K_{\alpha}f_{\alpha} as
B-modules. Then we have A\otimes_{B}Ae/Le\cong\Sigma\oplus A\otimes_{B}Bf_{\alpha}/K_{\alpha}f_{\alpha}\cong\Sigma\oplus

Af_{\alpha}/AK_{\alpha}f_{\alpha} . Write f=f_{\alpha} and K=K_{\alpha} for a fixed \alpha , and let Af/AKf=
M_{1}\oplus M_{2} be a decomposition of Af/AKf with M_{1} indecomposable. As is
stated above we have the projective covers p_{i} : P_{i}arrow M_{i}(i=1,2) and the
following commutative diagram
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Af arrow\mu M_{1}\oplus M_{2}

\rho\downarrow ||

P_{1}\oplus P_{2}
arrow p M_{1}\oplus M_{2}

where p=p_{1}+p_{2} is the projective cover of M_{1}\oplus M_{2} and \mu is the canonical
epimorphism, \rho is an epimorphism such that p\rho=\mu . Then there exists
a monomorphism \lambda of P of Af such that \rho\lambda=identity on P where P=
P_{1}\oplus P_{2} . Write \overline{P}_{i}=\lambda(P_{i}) for each i . Clearly we have p=\mu\lambda and \mu(\overline{P}_{i})=

p(P_{i})=M_{i} for each i . We have also Af=\overline{P}_{1}\oplus\overline{P}_{2}\oplus Ker\rho , and \mu(Ker\rho)=0 .
Hence we have \mu(\overline{P}_{2}\oplus Ker\rho)=M_{2} . Now there exist mutually orthogonal
idempotents e’ and e’ of A such that f=e’+e’ , \overline{P}_{2}\oplus Ker\rho=Ae’ and
\overline{P}_{1}=Ae’ . Here e’ is primitive, since Ae’ is the projective cover of the
indecomposable A-module M_{1} . Then by the above arguments we have the
following commutative diagram, where all rows and columns are exact

0 0
\downarrow \downarrow

Ae’\downarrow

arrow\mu’

M_{2}\downarrow

arrow 0

0 arrow AKf arrow

\pi\downarrow Af

arrow\mu

M_{1}\oplus M_{2}\downarrow

arrow 0

0 arrow Ker \mu’ arrow

Ae’\downarrow

arrow\mu’

M_{1}\downarrow

arrow 0

0 0

In the above diagram \mu’ and \mu’ are the restrictions of \mu on Ae’ and Ae’ re-
spectively, and \pi is the projection of Af(=Ae’\oplus Ae’) to Ae’ , which is given
by the right multiplication of e’ . Then the exactness of the above commuta-
tive diagram yields the epimorphism of AKf to Ker \mu’ , which is the restric-
tion of \pi to AKf . Hence we have Ker \mu’=AKfe’ , and M_{1}\cong Ae’/AKfe’ .
Thus we have shown that each indecomposable direct summand of Af/AKf
is of the form A\’e/AIef, with I(=Kf) a left ideal of B and e’ a primitive
idempotent of A . This fact together with the condition (1) shows that
Af_{\alpha}/AK_{\alpha}f_{\alpha}\cong\Sigma\oplus Ae_{\alpha i}/AI_{\alpha i}e_{\alpha i} for some left ideals I_{\alpha i} of B and primitive
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idempotents e_{\alpha i} of A , and consequently

Ae/Le<\oplus A\otimes_{B}Ae/Le\cong\Sigma\oplus A\otimes_{B}Bf_{\alpha}/K_{\alpha}f_{\alpha}

\cong\Sigma\oplus Af_{\alpha}/AK_{\alpha}f_{\alpha}\cong\Sigma\oplus Ae_{\alpha i}/AI_{\alpha i}e_{\alpha i}

Then by the uniqueness of the decomposition, we have Ae/Le\cong Ae_{\alpha i}/

AI_{\alpha i}e_{\alpha i} for some \alpha and i . Since as is stated above the canonical maps

Aearrow Ae/Le and Ae_{\alpha i}arrow Ae_{\alpha i}/AI_{\alpha i}e_{\alpha i}

are projective covers respectively, there exists an isomorphism \phi of Ae to
Ae_{\alpha i} such that

\vec{\phi}
Ae Ae_{\alpha i}

\downarrow \downarrow

Ae/Le \cong Ae_{\alpha i}/AI_{\alpha i}e_{\alpha i}

is commutative. Obviously we have \phi(Le)=AI_{\alpha i}e_{\alpha i} . Thus we have proved
the theorem. \square

Now we will apply Theorem 1 to two cases. One is the case where B is
a commutative local serial ring and A is a B-algebra, the other is the case
where both A and B are local serial rings. In either case the converse of
Theorem 1 is true.

Proposition 1 Let B be a commutative ring and A a B -algebra, and
suppose that both A and B satisfy the conditions (1) and (2). Then A is
a left semisimple extension of B if and only if, for each left ideal L and
primitive idempotent e of A , there exist an ideal I of B and a primitive
idempotent e’ of A such that there is an A-isomorphism of Ae to Ae’ whose
restriction on Le is an isomorphism of Le to Al\’e.

Proof. The ‘only if part is due to Theorem 1. In order to prove the
converse we need only to prove that each indecomposable left A-module
is (A, B)-projective. But this is almost clear, since each indecomposable
left A-module is of the form Ae/AIe for some primitive idempotent e of
A and an ideal I of B , and is isomorphic to Ae\otimes_{B}B/I . The latter is
(A, B)-projective, since it is an A-direct summand of A\otimes_{B}B/I , which is
(A, B) projective \square

In what follows we will always denote the radicals of A and B by N
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and J, respectively.

Theorem 2 Let B be a commutative local serial ring, and A a B-algebra.
Then if A is a left semisimple extension of B , A is a uniserial ring. In
addition if A is indecomposable as a ring, the length of the composition
series of Ae coincides with that of B for each primitive idempotent e of A .

Proof. AJ is a nilpotent ideal of A , and consequently contained in N .
Since B is local, we have AJ\cap B=J . Then A/AJ is a left semisimple
extension of a field B/J , and A/AJ is a semisimple ring (See Proposition 1.2
and Corollary 1.7 [4] ) . Therefore we have N=AJ, which is nilpotent. Thus
we see that A is semiprimary. We have also N^{i}=AJ^{i} for each number i .
Let e be a primitive idempotent of A , and r the natural number such that
J^{r}e=0 and J^{r-1}e\neq 0 . Since A is semiprimary, Ae/Ne is simple. It is
obvious that Ae/Ne=Ae/AJe\cong B/J\otimes_{B}Ae . On the other hand we have
B/J\cong J^{i}/J^{i+1} for each 1\leqq i\leqq r-1 . Therefore each J^{i}/J^{i+1}\otimes_{B}Ae is
also simple. Now consider the following commutative diagram

J^{i+1}\otimes_{B}Ae arrow J^{i}\otimes_{B}Ae arrow J^{i}/J^{i+1}\otimes_{B}Ae arrow 0
\downarrow \downarrow

J^{i+1}Ae arrow J^{i}Ae arrow J^{i}Ae/J^{i+1}Ae arrow 0
\downarrow \downarrow

0 0

where all rows and cololums are exact. Then there exists an epimorphism

J^{i}/J^{i+1}\otimes_{B}Aearrow J^{i}Ae/J^{i+1}Aearrow 0

which means that each J^{i}Ae/J^{i+1}Ae=N^{i}e/N^{i+1}e is simple. Note that if
N^{i}e=N^{i+1}e for i<r , we have N^{i}e=N^{i+1}e=N^{i+2}e= \cdot . =N^{r}e=0 ,
which contradicts the assumption on r . Thus we see that

0=N^{r}e<N^{r-1}e<\cdot\cdot<Ne<N^{0}e=Ae

is a composition series. Now assume that there exists a left A-submodule
I of Ae which is different from any N^{i}e(0\leqq i\leqq r) . Then there exists
the largest integer k such that I\subset N^{k}e . Then J\not\in N^{k+1}e , and we have
I+N^{k+1}e=N^{k}e , since N^{k+1}e is a maximal submodule of N^{k}e . But
this is a contradiction, since we have I=N^{k}e by Nakayama’s lemma.
Note that N^{k}e=AJ^{k}e is a principal left ideal of A , since J^{k} is principal.
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Therefore \{N^{i}e\} are the only submodules of Ae , and the above composition
series is the unique composition series of Ae . On the other hand since A
is semiprimary, we can write A=Ae_{1}\oplus Ae_{1}\oplus \oplus Ae_{n} , where \{e_{i}\} is
a system of orthogonal primitive idempotents of A . Then since each Ae_{i}

has a composition series, so does \Sigma\oplus Ae_{i} . Hence A is a left artinian ring.
Thus we have shown that A is a left (and right) serial ring. By the way,
in order to prove only that A is uniserial, we do not have to require the
entire argument given above. For instance, we can apply Theorem 2.51 [2]
which asserts that, if A is semiprimary and if each prime ideal of A is left
principal, then A is left uniserial. However, when the last assertion of the
theorem is proved, it will become necessary. Therefore, we give an explicit
decomposition of A and so on here. Let P be a prime ideal of A . Since A
is semiprimary, P is maximal as a tw0-sided ideal and contains N . Hence
for each i there exists the natural epimorphism of Ae_{i}/Ne_{i} to Ae_{i}/Pe_{i} .
Suppose Ae_{i}\neq Pei- Then since Ae_{i}/Ne_{i} is simple, this epimorphism is an
isomorphism, and we have Pe_{i}=Ne_{i} . Therefore, after renumbering e_{i} ’s if
necessary, we can write

P=Pe_{1}\oplus Pe_{2}\oplus\cdots\oplus Pe_{n}

=Ae_{1}\oplus Ae_{2}\oplus \oplus Ae_{m}\oplus Ne_{m+1}\oplus Ne_{m+2}\oplus\cdots\oplus Ne_{n}

Then since Ne_{j}=AJe_{j}=A\pi e_{j} for some \pi\in J\subset B , we see that P is
generated by e_{1}+e_{2}+\cdots+e_{m}+\pi e_{m+1}+\pi e_{m+2}+\cdots+\pi e_{n} as a left ideal.
Thus all prime ideals are left principal, and any two distinct prime ideals
P and Q are mutually prime, i.e., P+Q=A, because they are maximal.
Hence we have PQ=QP. Then since the multiplication of any two prime
ideals of a semiprimary ring A is commutative, A is a direct sum of finitely
many primary rings. (See e.g., [2] Theorem 2.43 and Lemma 6 \S 4 Chap. 2).
Therefore A is uniserial. We now prove the last assertion of the theorem.
Let e be a primitive idempotent of A and r the natural number such that
J^{r}=0 and J^{r-1}\neq 0 . Then since N=AJ, we have N^{i}=AJ^{i} , N^{r}=0 and
N^{r-1}\neq 0 . Since A is uniserial and indecomposable, A is a matrix ring of
a local serial ring. Hence we have Ae_{i}\cong Ae for any primitive idempotents
e_{i} . Therefore we have N^{r-1}e=AJ^{r-1}e\neq 0 . Then by the same argument
as the proof of the first part of the theorem we have that

0<N^{r-1}e< \cdot<N^{2}e<Ne<Ae

is the unique composition series of Ae . \square
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Note that in the proof of Theorem 2 we used only the condition that A
is a semiprimary B-algebra such that N=AJ. Therefore Theorem 2 holds
under a weaker condition that A is a semisimple B-algebra in the sence of
Hattori [3]. Moreover the above theorem can be described more generally
as follows;

Theorem 3 Let B be a commutative local serial ring and A a semipri-
wa y B-algebra such that N=AJ. Then A is a uniserial ring. If further-
more A is indecomposable as a ring, the length of Ae is equal to the length
of B for each primitive idempotent e of A .

By Theorem 1 and a part of the proof of Theorem 2 we have

Theorem 4 Let B be a commutative local serial ring and assume that A
is a serial B-algebra. Then A is a left semisimple extension of B if and
only if N=JA.

Proof. Assume N=AJ, and let L be a left ideal of A and e a primitive
idempotent of A . Since A is left serial, 0=N^{r}e<N^{r-1}e< , . <Ne<
N^{0}e=Ae is the unique composition series of Ae . Hence we have Le=N^{i}e

for some i , and Le=AJ^{i}e . Then by Proposition 1 A is a left semisimple
extension of B . The converse can be proved by the same way as Theorem 2.

\square

Now we will consider the case where B is not necessarily commutative.
Assume again that A and B satisfy the conditions (1) and (2), and further-
more that A has no nonzero idempotent except for 1. In the case where A
and B are local serial rings, A and B satisfy these conditions. Under these
conditions we see that each indecomposable left A-module (resp. 5-m0dule)
is isomorphic to A/L (resp. B/I) for some left ideal L of A (resp. I of B).
Then the same methods as the proofs of Theorem 1 and Proposition 1 can
be applied to A and B . In addition each left A-isomorphism of A to A is
given by the right multiplication of some unit element of A . Therefore we
have;

Theorem 5 Let A and B satisfy the conditions (1) and (2), and assume
that A has no idempotent except for 1 and 0. Then A is a left semisimple
extension of B if and only if for each left ideal L of A lhere exist a left ideal
I of B and a unit u of A such that Lu=AI .
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Applying the above theorem we see that the same results as Theorems 2
and 4 hold in the case of local serial rings as follows;

Theorem 6 Let A and B be local serial rings. Then the following condi-
tions are equivalent;
(i) A is a left semisimple extension of B
(ii) N=AJ
(iii) The lengths of the composition serieses of the left A-module A and the

left B -module B are same.
(iv) A is a right semisimple extension of B

Proof. First we will show J\subseteq N . Suppose J\not\subset N . Then JA\not\in N , and
we have JA=A, since A is local. Then A=JA=J^{2}A= \cdot . =J^{r}A=0 ,
which is a contradiction. Thus we have J\subseteq N . Now assume (i). Then by
Theorem 5 there exist a number i\geqq 1 and a unit u of A such that N=
Nu=AJ^{i} , while we have AJ^{i}\subseteq AJ\subseteq N , which imply (ii). Conversely
assume (ii). Then we have N^{i}=AJ^{i} for each i . Then again by Theorem 5
we have (i) since \{N^{i}\} is the set of all left ideals of A . We have also (iii),
since N^{r}=0 if and only if J^{r}=0 . Lastly assume (iii). Then N^{r}=J^{r}=0

and N^{r-1}\neq 0\neq J^{r-1} . If N^{k}=AJ for r>k>1 , N^{k(r-1)}=AJ^{r-1}\neq 0 .
But in this case we have k(r-1)=rk-k\geqq r+r-k>r , and N^{k(r-1)}=0 ,
a contradiction. Thus we have (ii). Since the condition (iii) is left and right
symmetry for local (tw0-sided) serial rings A and B , the conditions (i) to
(iii) are equivalent to (vi). \square

Theorem 7 Let B be a local serial ring and A a local ring, and assume
that A is finitely generated as a left B -module. Then if A is a left semisimple
extension of B , A is a left serial ring.

Proof. By the assumption A is left artinian and A/N is an artinian left B-
module. Hence A/N is a finite direct sum of indecomposable modules, and
we can write A/N=\Sigma\oplus B/J^{\alpha} (finite), where each \alpha is a natural number.
Then since A is left semisimple over B , we have A/N<\oplus A\otimes_{B}A/N\cong

\Sigma\oplus A\otimes_{B}B/J^{\alpha}\cong\Sigma\oplus A/AJ^{\alpha} as left A-modules. On the other hand as is
shown above we have J\subseteq N . Then each A/AJ^{\alpha} is A indecomposable and
artinian, since AJ^{\alpha}\subseteq N and A is local left artinian. Then we can apply
the theorem of Krull-Remak-Schmidt to obtain A/N\cong A/AJ^{\alpha} for some \alpha .
Now by comparing the lengths of composition serieses we have N=AJ^{\alpha} .
But B is a both left and right principal ideal ring. Hence N is principal
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as a left ideal. But N is the unique prime ideal of A , since N is nilpotent
and the unique maximal ideal of A . Then A is a left serial ring. (See for
example Theorem 2.51 [2] ) . \square

Finally we will give examples of ring extensions which satisfy the con-
ditions of Theorem 6. Let D be a division ring with a discrete valuation
v . Proposition 17.6 [6] shows that such division rings really exist. An uni-
formizer at v is an element z of D such that v(z)<1 and v(z) generates
the cyclic group V(D-\{0\}) . As usual we write

O(D)=O(D, v)=\{x\in D|v(x)\leq 1\} ,
P(D)=P(D, v)=\{x\in D|v(x)<1\}

It is well known that O(D) is a local ring with the radical P(D) , and
P(D)=O(D)z=zO(D) for each uniformizer z at v . It is also obvious that
O(D)/P(D)^{n} is a local serial ring with the length of the composition series
n for each natural number n . Now the next proposition gives examples one
of which satisfies the conditions of Theorem 6 and some other do not.

Proposition 2 Let D be a division ring with a discrete valuation v and
E a division subring of D. Then O(D)/P(D)^{n} is a semisimple extension
of O(E)/P(E)^{n} for each natural number n if and only if E contains a

uniformizer at v , that is, if and only if v(D)=v(E) .

Proof First suppose that E does not contain any uniformizer at v , and
let z and y be uniformizers at v and v|E , respectively, where v|E is the
restriction of v on E, which is clearly discrete. Then v(y)=v(z)^{r} for some
natural number r(\geqq 2) , and we have v(z^{-r}y)=1 and see that z^{-r}y=a is
a unit of O(D) . Then P(E)=yO(E)=z^{r}aO(E)\subseteq z^{r}O(D) , and P(E)\subseteq

z^{r}O(D)\cap O(E) . Let x be any element of z^{r}O(D)\cap O(E) . Then x=z^{r}b for
some b in O(D) , and x=z^{r}aa^{-1}b=yc , where c=a^{-1}b\in O(D) . Hence we
have c=y^{-1}x\in E\cap O(D)=O(E) , and x=yc\in yO(E)=P(E) . Thus
we have P(E)=z^{r}O(D)\cap O(E)=P(D)^{r}\cap O(E) . Therefore O(E)/P(E)
is a subring of O(D)/P(D)^{r} Both are local serial, but do not satisfy the
condition of Theorem 6. Next suppose that E contains a uniformizer z at
v . Then z is also a uniformizer at v|E , and we have P(E)=O(E)z=
zO(E) , and consequently, P(E)^{n}=O(E)z^{n}=z^{n}O(E)=P(D)^{n}\cap O(E)

for each natural number n . Here the last equality can be shown by the
same argument as in the proof of ‘only if’ part. Then O(E)/P(E)^{n} is a
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subring of O(D)/P(D)^{n} , and these local serial rings satisfy the condition of
Theorem 6. \square
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