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On isomorphy of pure hulls of purifiable
torsion-free subgroups

Takashi OKUYAMA
(Received July 5, 2000)

Abstract. A subgroup A of an arbitrary abelian group G is said to be purifiable in G

if there exists a pure subgroup H of G containing A which is minimal among the pure
subgroups of G that contain A . Such a subgroup H is said to be a pure hull of A in
G . In general, not all pure hulls of purifiable subgroups of arbitrary abelian groups are
isomorphic. We show that if A is a purifiable torsion-free subgroup of an arbitrary abelian
group, then all pure hulls of A are isomorphic and for all pure hulls H of A , the quotients
H/A are isomorphic.
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All groups considered are arbitrary abelian groups. The terminol0-
gies and notations not expressly introduced here follow the usage of [6].
Throughout this note, p denotes a prime integer, G_{p} the p-primary sub-
group and T the maximal torsion subgroup of the abelian group G.

Definition 1 A subgroup A of an abelian group G is said to be pur.fiable
in G if, among the pure subgroups of G containing A , there exists a minimal
one. Such a minimal pure subgroup is called a pure hull of A .

Hill and Megibben [8] established properties of pure hulls of p-groups
and characterized the p-groups for which all subgroups are purifiable.

Later, Benabdallah and Irwin [2] introduced the concept of almost-
dense subgroups of p-groups and used it to characterize pure hulls of puri-
fiable subgroups of p-groups.

Furthermore, Benabdallah and Okuyama [3] introduced new invariants,
the s0-called n-th overhangs of a subgroup of a p-group, which are related
to the n-th relative Ulm-Kaplansky invariants. Using them, they obtained
a necessary condition for subgroups of p-groups to be purifiable.

Benabdallah, Charles, and Mader [1] introduced the concept of max-
imal vertical subgroups supported by a given subsocle of a p-group and
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characterized the p-groups for which the necessary condition given in [3]
is also sufficient. Other results about purifiable subgroups of p-groups are
contained in [4], [5], [9], and [10].

Recently, in [13], we extended the concept of almost-dense subgroup
from p-groups to arbitrary abelian groups and began to study purifiable
subgroups of arbitrary abelian groups. We determined the groups for which
all subgroups are purifiable and characterized purifiable torsion-free rank-
one subgroups of an arbitrary abelian group. The characterization of puri-
fiable subgroups in arbitrary abelian groups is an open question even if the
subgroup is torsion-free.

In this note, we consider the isomorphy of pure hulls of purifiable
torsion-free subgroups of arbitrary abelian groups. In a p-group G, it is
well known that if G is a direct sum of cyclic groups, then every subsocle
is purifiable and all pure hulls of a subsocle are isomorphic. However, in
torsion-complete groups, every subsocle is purifiable, but not all pure hulls
of a subsocle are isomorphic (see [7], [6, 66, Exercise 8]). In [11, Corol-
lary 4.4], we proved that if a subsocle S of a torsion-complete group G is
closed, then S is purifiable and all pure hulls of S are isomorphic. Moreover,
we proved in [3, Theorem 3.2] that if a subgroup A of a p-group G is purifi-
able, then all residual subgroups determined by G and A are isomorphic. In
[11, Theorem 3.1], we showed that if some pure hull of a purifiable subgroup
A of a p-group G is a direct summand of G , then all pure hulls of A are
isomorphic.

As for isomorphy of pure hulls of torsion-free purifiable subgroups of
arbitrary abelian groups, we proved in [14, Theorem 3.4] that if a torsion-
free rank-0ne subgroup N of an arbitrary abelian group is purifiable, then
all pure hulls of N are isomorphic. Moreover, in [14, Theorem 4.1], we
showed that if a T(X)-high subgroup N of an arbitrary abelian group X is
purifiable, then all pure hulls of N are isomorphic.

Our goal in this note is to prove that if A is a purifiable torsion-free
subgroup of an arbitrary abelian group G, then all pure hulls of A are
isomorphic and for all pure hulls H of A the quotients H/A is isomorphic.

First, we recall crucial definitions and properties mentioned in [13].

Definition 2 Let G be an abelian group. A subgroup A is said to be
p-almost-dense in G if, for every p-pure subgroup K of G containing A, the
torsion part of G/K is p-divisible. Moreover, A is said to be almost-dense
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in G if A is p-almost-dense in G for every prime p.

Proposition 3 [13, Proposition 1.4] For an abelian group G and a sub-
group A of G, the following properties are equivalent:
(1) A is almost-dense in G ;
(2) for all integers n\geqq 0 and all primes p , A+p^{n+1}G\supseteq p^{n}G^{\lceil}p];

Proposition 4 [13, Theorem 1.11] Let G be an abelian group and Aa
subgroup of G. Suppose that A is purifiable in G. Then a pure subgroup
H of G containing A is a pure hull of A in G if and only if the following
three conditions are satisfied:
(1) A is almost-dense in H ;
(2) H/A is torsion;
(3) for every prime p, there exists a nonnegative integer m_{p} such that

p^{m_{p}}H[p]\subseteq A .

Let G , A , and H be as in Proposition 4. If A is torsion-free, then H_{p}

is bounded for every prime p.

Proposition 5 [13, Theorem 4.1 (2)] Let G be a p group and A a sub-
group of G. If A\cap p^{m}G is p purifiable in p^{m}G for some m\geqq 0 , then A is
purifiable in G .

Note that if G is an abelian group and A is a subgroup of G , then A+T
is purifiable in G and has a unique pure hull M given by the stipulation
that M/T is the pure hull of (A+T)/T in the torsion-free group G/T

Furthermore, the subgroup M has the following property.

Proposition 6 Let G be an abelian group, A a subgroup of G , and M/T
the pure hull of (A+T)/T in G/T Then

M/A=T(G/A) .

Proof By Proposition 4, M/(A+T) is torsion. Hence M/A\subseteq T(G/A) .
Let g+A\in T(G/A) with g\in G . Then there exists an integer m such
that mg\in A\subset M . Since M is pure in G , there exists x\in M such that
mg=mx. Hence g-x\in T\subset M . \square

Definition 7 Let G be an abelian group and A a subgroup of G . For
every nonnegative integer n , we define the n-th p-Overhang of A in G to be



674 T. Okuyama

the verctor space

V_{p,n}(G, A)= \frac{(A+p^{n+1}G)\cap p^{n}G[p]}{(A\cap p^{n}G)[p]+p^{n+1}G[p]} .

It is convenient to use the following notations for the numerator and
the denominator of V_{p,n}(G, A) :

A_{G}^{n}(p)=(A+p^{n+1}G)\cap p^{n}G[p]=((A\cap p^{n}G)+p^{n+1}G)[p]

and

A_{n}^{G}(p)=(A\cap p^{n}G)[p]+p^{n+1}G[p] .

If A is p-almost-dense in G, then A+p^{n+1}G\supseteq p^{n}G[p] , so A_{G}^{n}(p)=

p^{n}G[p] . If A is torsion-free, then A_{n}^{G}(p)=p^{n+1}G[p] . Thus, if A is torsion-
free and p-almost-dense in G , then

V_{p,n}(G, A)= \frac{p^{n}G[p]}{p^{n+1}G[p]} ,

the nth Ulm-Kaplansky invariant of G_{p} .

Proposition 8 [13, Proposition 2.2] Let G be an abelian group and Aa
subgroup of G. For every p-pure subgroup K of G containing A,

V_{p,n}(G, A)\cong V_{p,n}(K, A)

for all n\geqq 0 .

Let G and A be as in Proposition 8. Suppose that A is torsion-free puri-
fiable in G and let H and K be pure hulls of A in G. By the comment after
Proposition 4, H_{p} and K_{p} are bounded for every prime p. By Proposition 8
and the comment after Definition 7. for every prime p, H_{p}\cong K_{p} .

Proposition 9 [13, Theorem 2.3] Let G be an abelian group and Aa
subgroup of G. If A is purifiable in G , then, for every prime p, there exists
a nonnegative integer m_{p} such that V_{p,n}(G, A)=0 for all n\geqq m_{p} .

Let G and A be as in Proposition 9. If A is purifiable in G, then, by
[13, Proposition 2.4], for every pure hull H of A in G and every prime p, the
least integer m_{p} such that V_{p,n}(G, A)=0 for all n\geqq m_{p} is equal to the least
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one such that p^{m_{p}}H[p]\subseteq A in Proposirion 4 (3). Hence, if A is torsion-free
purifiable in G , then, for every pure hull H of G and every prime p, the
least integer m_{p} such that V_{p,n}(G, A)=0 for all n\geqq m_{p} is equal to the
least one such that p^{m_{p}}H_{p}=0 .

Before proving the main theorem, we give a useful lemma.

Lemma 10 Let H be a pure subgroup of an abelian group G containing
some T-high subgroup of G. If for each prime p, U_{p} is a subgroup of G
such that G_{p}=H_{p}\oplus U_{p} , then G=H\oplus U where U=\oplus_{p}U_{p} .

Proof. Let ng\in H\oplus U with g\in G and n\in Z . Then we have mng\in H

for some integer m . Since H is pure in G , there exists h\in H such that
mng=mnh. Then g-h\in T\subset H\oplus U and so H\oplus U is pure in G . Since
H\oplus U is essential in G , G=H\oplus U . \square

Theorem Let G be an arbitrary abelian group and A a torsion-free sub-
group of G. Suppose that A is purifiable in G. Then all pure hulls of A are
isomorphic and for all pure hulls H of A , the groups H/A are isomorphic.

Proof. By the comment before Proposition 6, A+T is purifiable in G and
has a unique pure hull M of G . Let H be any pure hull of A in G . By
Proposition 4, H/A is torsion. By Proposition 6, all pure hulls of A are
included in M .

Note that A is purifiable in M and H is a pure hull of A in M . Fix a
prime p. After the comment of Proposition 9, there exists the least integer
m_{p} such that A_{M}^{n}(p)=A_{n}^{M}(p) for all n\geqq m_{p} .

For integer n\geqq 0 , let p^{n}g+A\in p^{n}(M/A)[p] . Since p^{n+1}g\in H\cap

p^{n+1}M=p^{n+1}H , there exists h\in H such that p^{n+1}g=p^{n+1}h . Since p^{n}g-

p^{n}h\in p^{n}M[p] , we have p^{n}(M/A)[p]=p^{n}(H/A)[p]+(p^{n}M[p]+A)/A . Let
x\in A_{M}^{n}(p) . Then we can write x=a+p^{n+1}g’ for some a\in A and g’\in M .
Since x+A\in p^{n+1}(M/A)[p]=p^{n+1}(H/A)[p]+(p^{n+1}M[p]+A)/A , there
exist a’\in A , h’\in H , and p^{n+1}g_{0}\in p^{n+1}M[p] such that x=a+p^{n+1}g’=
a’+p^{n+1}h’+p^{n+1}g_{0} . Since h_{p}(a)\geqq n , h_{p}(a’)\geqq n . Hence A_{M}^{n}(p)=A_{H}^{n}(p)+

A_{n}^{M}(p) . By Proposition 4 (1), A is almost-dense in H . By the comment
after Proposition 7, A_{H}^{n}(p)=p^{n}H[p] and A_{n}^{M}(p)=p^{n+1}M[p] . Hence, for
all n\geqq 0 , there exist subsocles S_{n} and H_{n} of M such that

p^{n}M[p]=A_{M}^{n}(p)\oplus S_{n}=(p^{n}H[p]+p^{n+1}M[p])\oplus S_{n}

=H_{n}\oplus p^{n+1}M[p]\oplus S_{n} .
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By the comment after Proposition 9, the integer m_{p} is the least one such
that p^{m_{p}}H[p]=0 . Inductively, we have

M[p]=H_{0}\oplus pM[p]\oplus S_{0}

=H_{0}\oplus H_{1}\oplus p^{2}M[p]\oplus S_{0}\oplus S_{1}

=(\oplus_{i=1}^{m_{p}-1}H_{i})\oplus p^{m_{p}}M[p]\oplus(\oplus_{i=1}^{m_{p}-1}S_{i})

=H[p]\oplus p^{m_{p}}M[p]\oplus S^{(p)}

where S^{(p)}=(\oplus_{i=1}^{m_{p}-1}S_{i}) .
If K is another pure hull of A in G , then we have similarly

M[p]=K[p]\oplus p^{m_{p}}M[p]\oplus S^{(p)} .

Hence, for every prime p, there exist a nonnegative integer m_{p} and a subsocle
S^{(p)} of M such that

M[p]=H[p]\oplus p^{m_{p}}M[p]\oplus S^{(p)}=K[p]\oplus p^{m_{p}}M[p]\oplus S^{(p)} .

Note that (S_{p}\oplus p^{m_{p}}M[p])\cap p^{m_{p}}M_{p}=(S_{p}\cap p^{m_{p}}M_{p})\oplus p^{m_{p}}M[p]=p^{m_{p}}M[p] .
By Proposition 5, (S_{p}\oplus p^{m_{p}}M[p]) is purifiable in M_{p} . Then there exists a
pure hull L_{p} of (S_{p}\oplus p^{m_{p}}M[p]) in M_{p} . It is immediate that M_{p}\supseteq H_{p}\oplus L_{p}

for every prime p. Now we prove that M_{p}=H_{p}\oplus L_{p} for every prime p.
Let h\in H[p] and x\in L_{p}[p] . We prove that h_{p}(h+x)= \min\{h_{p}(h), h_{p}(x)\} .

We can write x=p^{m_{p}}t+s , where p^{m_{p}}t\in p^{m_{p}}M and s\in S^{(p)} . Then h_{p}(h+

x)=h_{p}(h+s) unless h=s=0. If h=s=0, then we have h_{p}(h+x)=
\min\{h_{p}(h), h_{p}(x)\} . Suppose that n=h_{p}(x)=h_{p}(s) . Then n\leqq m_{p}-1 .
Without loss of generality, we may assume that h\in H_{n} and s\in S_{n} . By the
definitions of H_{n} and S_{n} , we have h_{p}(h+x)=n . Hence, by [9, Lemma 4],
M_{p}=H_{p}\oplus L_{p} . Similarly, M_{p}=K_{p}\oplus L_{p} . Let T_{1}=\oplus_{p}L_{p} . Note that all
T(H)-high subgroups are T(M)-high subgroups. By Lemma 10, we have

M=H\oplus T_{1}=K\oplus T_{1} .

Hence H\cong K . Furthermore, since M/A=H/A\oplus(T_{1}\oplus A)/A=K/A\oplus

(T_{1}\oplus A)/A , H/A\cong K/A . \square
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