A remark on a theorem of Y. Kurata

Christian Lomp

(Received May 29, 2000)

Abstract. In [K] Y. Kurata proved that the Goldie torsion theory splits centrally for dual rings. Here we extend his result to semilocal rings with left essential socle such that $Soc(_RR)^2 \subseteq Soc(R_R)$. An example will demonstrate that our observation extends Kurata's result.

Key words: Goldie torsion theory, central splitting, semilocal rings, essential socle.

All rings are associative rings with unit, all left (or right) R-modules are unital and all torsion theories are considered to be hereditary. The singular submodule of a left R-module M is denoted by Z(RM). We abbreviate $S := \operatorname{Soc}(R)$ and $J := \operatorname{Jac}(R)$ for the left socle resp. the Jacobson radical. We denote the left Goldie torsion theory, that is the torsion theory whose torsion free modules are exactly the nonsingular left R-modules, by τ_G (see [G, 1.14] or [AD]) and we denote the torsion submodule of a module M by $\tau_G(M)$. A torsion theory τ is called jansian (or TTF) if the class of τ torsion modules is closed under taking products. Moreover a jansian torsion theory τ is called *centrally splitting* if $\tau(R)$ is a direct summand of R and τ -torsion free modules are closed under homomorphic images. (see [Be, Theorem 1]). A classical result of Alin and Dickson [AD, Theorem 3.1] states that τ_G is centrally splitting for a ring R if and only if R is a direct product of a semisimple ring and a ring with essential left singular ideal. (Alin and Dickson use the term global dimension zero instead of centrally splitting, meaning that all torsionfree modules are injective. We have that τ_G is centrally splitting if and only if all nonsingular left R-modules are injective. The sufficiency is clear (see also [G, 5.10]). The necessity follows since if nonsingular modules are closed under homomorphic images and τ_G torsion submodules split off, then each nonsingular module must equal its injective hull. By the remark on page 201 in [AD] τ_G is also jansian.)

¹⁹⁹¹ Mathematics Subject Classification: 16S90.

I would like to thank Patrick Smith for having pointed out the above example while I was visiting Glasgow and Carl Faith for all his valuable comments and his interest.

646 C. Lomp

Let us start with an easy Lemma. Note that (1) also follows from a more general statement in [Ba, Proposition 1.10 (d)].

Lemma 1 Let R be a ring with essential left socle S. Then

- (1) $S = S^2 \oplus (S \cap Z(R))$, where S^2 is projective and R/S^2 is τ_G -torsion.
- (2) J is τ_G -torsion if and only if $S^2J = 0$.

Proof. The socle can be decomposed as $S = S_0 \oplus S_1$ where $S_1 := S \cap Z(RR)$ and S_0 is a projective left R-module. $S^2 \subseteq S_0$, because for $x, y \in S$ with $y = y_0 + y_1$ where $y_0 \in S_0$ and $y_1 \in S_1$. The product $xy = xy_0 \in S_0$ as $xy_1 \in SZ(RR) = 0$. Thus $S^2 \subseteq S_0$ holds and there exists a left module \tilde{S} such that $S_0 = S^2 \oplus \tilde{S}$. We have $S\tilde{S} \subseteq S^2 \cap \tilde{S} = 0$. If RS is essential in RR, then \tilde{S} becomes singular (as it is annihilated by S) and must be zero as it is also projective. Thus $S_0 = S^2$. Also R/S^2 becomes τ_G -torsion as $S_1 \simeq S/S^2$ and R/S are singular. This proves (1). Assume $S^2J = 0$, then J is an R/S^2 -module and hence τ_G -torsion by (1). On the contrary, if J is τ_G -torsion, then S-torsion, then S-torsion and therefore $S^2J = 0$.

For a semilocal ring R we have $Soc(R_R) = l.ann(Jac(R))$, therefore the condition $S^2J = 0$ is equivalent to $Soc(R_R)^2 \subseteq Soc(R_R)$.

Every semilocal ring R has a decomposition $R = R_0 \oplus R_1$ of left R-modules R_0 and R_1 , where R_0 is semisimple artinian and J is essential in R_1 (see [L, Theorem 3.5]).

Lemma 2 Let R be a semilocal ring. Then τ_G is centrally splitting if and only if J contains an essential singular left R-submodule. In this case $\operatorname{Soc}({}_RR)^2 \subseteq \operatorname{Soc}(R_R)$ holds.

Proof. " \Rightarrow " By Alin and Dickson's theorem $R = S \times T$ where S is semisimple artinian and T has essential left singular ideal. Thus $J = \operatorname{Jac}(T) \subseteq T$. Obviously T is also semilocal and has a decomposition $T = T_0 \oplus T_1$ with J essential in T_1 . Since Z(T) is essential in T we get that $T_0 = 0$, hence $Z(T) \cap J$ is an essential submodule of J. " \Leftarrow " Recall the above decomposition of semilocal rings $R = R_0 \oplus R_1$. As J is essential in R_1 , R_1/J is singular. By hypothesis J is τ_G -torsion and so is R_1 . Thus $\operatorname{Hom}_R(R_0, R_1) = 0 = \operatorname{Hom}_R(R_1, R_0)$ as R_0 is semisimple projective. Hence $R = R_0 \times R_1$ is a direct product of a semisimple ring and a ring with essential singular ideal. By [AD, Theorem 3.1] τ_G is centrally splitting.

As R_1 is τ_G -torsion it does not contain any projective simple submodule.

Hence
$$S^2 = R_0$$
 and we have $S^2J = 0$ as $\operatorname{Hom}_R(R_0, R_1) = 0$.

As a special case we get the following criterion for the splitting of τ_G for semilocal rings with essential left socle that extends Kurata's result for dual rings.

Theorem 3 Let R be a semilocal ring with essential left socle. Then τ_G is centrally splitting if and only if $\operatorname{Soc}({}_RR)^2 \subseteq \operatorname{Soc}(R_R)$.

Proof. The necessity is clear by Lemma 2. Assume that R is semilocal with essential left socle and $S^2J=0$, then by Lemma 1 (2) J is τ_G -torsion and by Lemma 2 the result follows.

In order to verify that our result extends Kurata's result, we give an example of a commutative semilocal ring with essential simple socle that is not semiperfect and hence not a dual ring. I am very grateful to Patrick F. Smith for the following example.

Example (P.F. Smith) For any number n, there exists a commutative semilocal subdirectly irreducible non-local (and hence not semiperfect) ring with exactly n maximal ideals. Take n different prime numbers p_1, \ldots, p_n . Then $R := \{\frac{a}{b} \in \mathbb{Q} \mid p_i \nmid b \ \forall i = 1, \ldots, n\}$ is a semilocal integral domain with n maximal ideals, which is not local. Let $M = \mathbb{Z}_{p_1} \infty$ be the p_1 -Prüfer group then M is a faithful R-module with essential simple socle isomorphic to $\mathbb{Z}/p_1\mathbb{Z}$. Form the trivial extension

$$S:=R \propto M:=\left\{\left(egin{array}{cc} a & m \ 0 & a \end{array}
ight) \mid a \in R, \ m \in M
ight\}.$$

Then S is a commutative semilocal subdirectly irreducible non-local ring with exactly n maximal ideals.

Patrick Smith's results follows from the following lemma:

Lemma 4 Let R be a commutative semilocal ring, which is not local and assume there is a faithful subdirectly irreducible (SDI) R-module M. Then $S := R \propto M$ is a commutative semilocal SDI ring which is not local.

Proof. Let M be faithful with essential simple submodule N. Take an element $s = a \propto m \in S$. If $a \neq 0$, then $(a \propto m) \cdot (0 \propto M) = 0 \propto aM \neq 0$ since M is faithful. As $N \subseteq aM$ as R-modules we get $(0 \propto N) \subseteq (0 \propto aM) \subseteq sS$. If a = 0 and $m \neq 0$, then $sS = (0 \propto m)S = (0 \propto mR) \supseteq (0 \propto mR)$

648 C. Lomp

N) as $mR \supseteq N$. Thus S has an essential simple S-submodule $0 \propto N$. As $Jac(S) = Jac(R) \propto M$, S is semilocal, but not local as R is not local and S is indecomposable.

References

- [AD] Alin J.S. and Dickson S.E., Goldie's torsion theory and its derived functor. Pacific
 J. Math. 24 (1968), 195–203.
- [Ba] Baccella G., On C-semisimple rings, A study of the socle of a ring. Comm. Algebra 8 (19) (1980), 889–909.
- [Be] Bernhardt R.L., Splitting hereditary torsion theories over semiperfect rings. Proc. Amer. Math. Soc. 22 (1969), 681–687.
- [G] Golan J.S., *Torsion Theories*. Pitman Monographs and Surveys in Pure and Applied Mathematics **29** (1986).
- [K] Kurata Y., Dual-bimodules and torsion theories. Hokkaido Math. J. 28 No.1, (1999), 87-95.
- [L] Lomp C., On Semilocal modules and rings. Comm. Algebra 27 (4) (1999), 1921–1935.

Centro de Matemática Faculdade de Ciências Universidade do Porto 4099-002 Porto, Portugal E-mail: clomp@fc.up.pt